We’re committed to improving our ecosystems, quality of life, and communities for the better.
Our passion and commitment to the integration of innovative science and engineering drive us to exceed on behalf of every client.
WP_Query Object ( [query] => Array ( [page] => [pagename] => blog ) [query_vars] => Array ( [page] => 0 [pagename] => blog [error] => [m] => [p] => 0 [post_parent] => [subpost] => [subpost_id] => [attachment] => [attachment_id] => 0 [name] => [page_id] => 0 [second] => [minute] => [hour] => [day] => 0 [monthnum] => 0 [year] => 0 [w] => 0 [category_name] => climate-change [tag] => [cat] => 1 [tag_id] => [author] => [author_name] => [feed] => [tb] => [paged] => 1 [meta_key] => [meta_value] => [preview] => [s] => [sentence] => [title] => [fields] => all [menu_order] => [embed] => [category__in] => Array ( [0] => 1 ) [category__not_in] => Array ( ) [category__and] => Array ( ) [post__in] => Array ( ) [post__not_in] => Array ( ) [post_name__in] => Array ( ) [tag__in] => Array ( ) [tag__not_in] => Array ( ) [tag__and] => Array ( ) [tag_slug__in] => Array ( ) [tag_slug__and] => Array ( ) [post_parent__in] => Array ( ) [post_parent__not_in] => Array ( ) [author__in] => Array ( ) [author__not_in] => Array ( ) [search_columns] => Array ( ) [posts_per_page] => 11 [ignore_sticky_posts] => [suppress_filters] => [cache_results] => 1 [update_post_term_cache] => 1 [update_menu_item_cache] => [lazy_load_term_meta] => 1 [update_post_meta_cache] => 1 [post_type] => [nopaging] => [comments_per_page] => 5 [no_found_rows] => [order] => DESC ) [tax_query] => WP_Tax_Query Object ( [queries] => Array ( [0] => Array ( [taxonomy] => category [terms] => Array ( [0] => 1 ) [field] => term_id [operator] => IN [include_children] => ) ) [relation] => AND [table_aliases:protected] => Array ( [0] => ph_term_relationships ) [queried_terms] => Array ( [category] => Array ( [terms] => Array ( [0] => 1 ) [field] => term_id ) ) [primary_table] => ph_posts [primary_id_column] => ID ) [meta_query] => WP_Meta_Query Object ( [queries] => Array ( ) [relation] => [meta_table] => [meta_id_column] => [primary_table] => [primary_id_column] => [table_aliases:protected] => Array ( ) [clauses:protected] => Array ( ) [has_or_relation:protected] => ) [date_query] => [queried_object] => WP_Post Object ( [ID] => 6 [post_author] => 1 [post_date] => 2021-01-18 12:51:43 [post_date_gmt] => 2021-01-18 12:51:43 [post_content] => [post_title] => Blog [post_excerpt] => [post_status] => publish [comment_status] => closed [ping_status] => closed [post_password] => [post_name] => blog [to_ping] => [pinged] => [post_modified] => 2021-01-18 12:51:43 [post_modified_gmt] => 2021-01-18 12:51:43 [post_content_filtered] => [post_parent] => 0 [guid] => http://princetonhydro.com/?page_id=6 [menu_order] => 0 [post_type] => page [post_mime_type] => [comment_count] => 0 [filter] => raw ) [queried_object_id] => 6 [request] => SELECT SQL_CALC_FOUND_ROWS ph_posts.ID FROM ph_posts LEFT JOIN ph_term_relationships ON (ph_posts.ID = ph_term_relationships.object_id) WHERE 1=1 AND ( ph_term_relationships.term_taxonomy_id IN (1) ) AND ((ph_posts.post_type = 'post' AND (ph_posts.post_status = 'publish' OR ph_posts.post_status = 'acf-disabled'))) GROUP BY ph_posts.ID ORDER BY ph_posts.menu_order, ph_posts.post_date DESC LIMIT 0, 11 [posts] => Array ( [0] => WP_Post Object ( [ID] => 18009 [post_author] => 1 [post_date] => 2025-08-07 19:26:22 [post_date_gmt] => 2025-08-07 19:26:22 [post_content] => We're pleased to announce the release of the "New Jersey Nature-Based Solutions: Planning, Implementation, and Monitoring Reference Guide," a free resource that provides a comprehensive roadmap to incorporating nature-based solutions (NBS) into infrastructure, construction, restoration, and resilience projects across the state. Created by the Rutgers University New Jersey Climate Change Resource Center with support from The Nature Conservancy in New Jersey, the guide compiles current research, case studies, best practices, practical tools, science-based strategies, and funding resources to "inform and empower readers to implement and seek funding for NBS." Click here to view and download the guide now. Inside the Guide As the guide states, "nature-based solutions (NBS) are defined as actions to protect, sustainably manage, and restore natural and modified ecosystems that address societal challenges effectively and adaptively, simultaneously benefiting people and nature." (IUCN 2024) Whether you're a municipal planner, community leader, contractor, public- or private-sector professional, or an academic, new to NBS or experienced in large-scale restoration projects, the guide offers value at every level with practical instruction that spans the full project lifecycle, from planning and permitting to funding and long-term monitoring. While the content is tailored to New Jersey's diverse landscapes, the guide's insights and approaches are broadly applicable to regions with similar ecosystems, from Massachusetts to Virginia. The guide equips readers with:
We're pleased to announce the release of the "New Jersey Nature-Based Solutions: Planning, Implementation, and Monitoring Reference Guide," a free resource that provides a comprehensive roadmap to incorporating nature-based solutions (NBS) into infrastructure, construction, restoration, and resilience projects across the state.
Created by the Rutgers University New Jersey Climate Change Resource Center with support from The Nature Conservancy in New Jersey, the guide compiles current research, case studies, best practices, practical tools, science-based strategies, and funding resources to "inform and empower readers to implement and seek funding for NBS."
Click here to view and download the guide now.
As the guide states, "nature-based solutions (NBS) are defined as actions to protect, sustainably manage, and restore natural and modified ecosystems that address societal challenges effectively and adaptively, simultaneously benefiting people and nature." (IUCN 2024)
Whether you're a municipal planner, community leader, contractor, public- or private-sector professional, or an academic, new to NBS or experienced in large-scale restoration projects, the guide offers value at every level with practical instruction that spans the full project lifecycle, from planning and permitting to funding and long-term monitoring. While the content is tailored to New Jersey's diverse landscapes, the guide's insights and approaches are broadly applicable to regions with similar ecosystems, from Massachusetts to Virginia.
The guide also includes insights on how to address equity considerations and foster meaningful community engagement, helping users implement NBS that are both impactful and inclusive.
Princeton Hydro was proud to contribute technical expertise to this important effort. Our Director of Restoration & Resilience, Christiana L. Pollack, CERP, CFM, GISP, participated on the guide's steering committee, and our team provided informational resources, including content and case studies on invasive species management, wetland and floodplain enhancement, and dam and culvert removal to restore rivers and improve fish passage. These contributions along with those from many other participants, reflect the collaborative nature of the guide and the collective commitment to advancing NBS across the state.
The guide's easy-to-follow format includes four key sections:
Whether you're just beginning to conceptualize a project or deep into project implementation, this guide is an invaluable addition to your toolbox. We encourage you to explore, download, and share it widely! Click here to access the guide now.
Nestled in Luzerne County, Pennsylvania, Harveys Lake spans 622 acres and is the largest natural lake by volume in the Commonwealth. Beyond its scenic beauty and popularity as a recreational destination, the lake plays a critical ecological role in the region.
Harveys Lake forms the headwaters of Harveys Creek, which flows into the Susquehanna River and ultimately the Chesapeake Bay. As such, it is part of the greater Susquehanna River Valley and contributes to the health of the Chesapeake Bay watershed. The lake and its outflow are designated High Quality – Cold-Water Fisheries, supporting sensitive aquatic life, providing vital cold-water habitat, and contributing to regional biodiversity.
Given its ecological significance and its connection to regional waterways, efforts to manage stormwater and reduce nutrient pollution in the Harveys Lake watershed are more than just local improvements, they are integral to protecting downstream water quality all the way to the Chesapeake Bay.
In 2022, building on decades of water quality initiatives, the Borough of Harveys Lake launched a forward-thinking pilot project to enhance stormwater treatment using innovative nutrient-filtering technologies. Supported by funding from the National Fish and Wildlife Foundation (NFWF) Chesapeake Bay Small Watershed Grant Program and designed and implemented in partnership with Princeton Hydro, this project explores the use of biochar and EutroSORB® filtration media to capture dissolved nutrients, an important step toward improving water quality and meeting regulatory goals.
This blog explores the local history of water management at Harveys Lake, the science behind this novel pilot approach, and the broader implications for watershed protection across the region.
Once a remote, wooded landscape, the Harveys Lake area was settled in the early 19th century and gradually developed into a hub for timbering and milling. By the late 1800s, the lake was regularly stocked with game fish, and with the arrival of the railroad in 1887, it quickly became a popular summer destination. The shoreline soon featured hotels, restaurants, and even an amusement park.
As the community flourished, the lake's natural systems began to show signs of strain. Like many waterbodies across the country, Harveys Lake faced growing water quality challenges driven by stormwater runoff, nutrient pollution, and a lack of formal environmental protections. By the 1960s, declining water clarity and seasonal algal blooms began to impact recreation, contributing to the lake’s gradual transition from a bustling public getaway to a primarily residential community.
A significant shift occurred following the passage of the U.S. Environmental Protection Agency’s Clean Water Act of 1972. Harveys Lake established a municipal sewer authority, and construction began on a utility line around the lake's perimeter to reduce point-source pollution. Still, algae blooms persisted throughout the 1980s, fueled by nonpoint sources such as stormwater runoff, lawn fertilizers, and waterfowl droppings.
In 1994, a Phase I Diagnostic Feasibility Study was conducted that formally identified Harveys Lake as impaired due to recurring algal blooms linked to elevated nutrient levels. Following this study, a Total Maximum Daily Load (TMDL) was established, and management efforts were initiated to meet long-term water quality goals.
Since 2003, the Harveys Lake watershed has undergone extensive stormwater management efforts, including the installation of numerous manufactured treatment devices (MTDs) to reduce pollutant loading. Most of these MTDs are nutrient separating baffle boxes (NSBBs), chosen due to the watershed’s steep slopes, dense residential development, and shallow bedrock. The first NSBB, pictured below, was installed at Hemlock Gardens:
In 2009, the Borough of Harvey’s Lake worked with Princeton Hydro to develop a Stormwater Implementation Plan that laid the foundation for future restoration efforts. Over the following years, the Borough of Harveys Lake, supported by state and regional grants, implemented 34 stormwater best management practices (BMPs) and installed four floating wetland islands throughout the watershed.
These projects were strategically designed to reduce nutrient loading, enhance water quality, and move the lake closer to achieving its TMDL targets. Click here to read more about these efforts.
While NSBB stormwater BMPs are highly effective at capturing sediments and associated pollutants, they are limited in their ability to remove dissolved nutrients, particularly nitrogen and phosphorus. This is evident in the Harveys Lake Watershed, where NSBBs remove approximately 70% of total suspended solids (such as sediment and plant debris), 35% of total phosphorus, and 0% of total nitrogen. To address this gap and improve overall nutrient removal efficiency, the Borough of Harveys Lake received funding from the NFWF Chesapeake Bay Small Watershed Grant Program to augment existing MTD stormwater BMPs using new filter technologies.
Partnered with Princeton Hydro for design, implementation, and technical support, the Borough launched a unique pilot project involving the installation of biochar and EutroSORB® (manufactured by SePRO Corporation) to evaluate the effectiveness of these two innovative materials in removing dissolved phosphorus and total nitrogen from stormwater runoff before it reaches Harveys Lake.
Biochar, a carbon-rich material derived from plant biomass, is valued for its high surface area and nutrient-adsorption capacity. EutroSORB® is a manufactured media specifically engineered to bind and retain dissolved phosphorus with demonstrated effectiveness in aquatic systems.
Filter socks filled with either biochar or EutroSORB® were installed at key stormwater outfalls and stream inlets that drain directly to the lake. At four NSBB sites, the socks were secured beneath manhole covers using a rope-and-carabiner system designed for easy, seasonal replacement. Each sock weighs approximately 50–60 pounds when saturated and was carefully positioned to avoid dislodgement or blockage of outlet pipes during high-flow events.
At the Hemlock Gardens site, which features a larger, multi-tray baffle box, twelve filter socks were installed across two horizontal trays to maximize contact time between stormwater and the filter media.
By integrating these innovative filter techniques into the existing BMP infrastructure, the Borough of Harveys Lake is taking a proactive, science-based approach to nutrient reduction and long-term water quality improvement.
Princeton Hydro implemented a comprehensive water quality monitoring program in the Harveys Lake watershed to assess the real-world performance of the biochar and EutroSORB® filtration systems under varying hydrologic conditions, with a particular focus on dissolved nutrients that contribute to eutrophication.
Six stormwater monitoring stations were established at locations where biochar or EutroSORB® were deployed within NSBBs or stream inlets. Each site included paired upstream (pre-treatment) and downstream (post-treatment) sampling points to capture the nutrient concentrations entering and exiting the filtration media.
Stormwater sampling was conducted during six separate rainfall events between March and April 2025. At each location, during storm flow conditions, discrete grab samples were collected via a portable polyethylene sampling pole and analyzed for key water quality parameters.
Beyond concentration-based comparisons, Princeton Hydro used empirical monitoring data to model pollutant loads upgradient and downgradient of the filtration media. These load estimates provide insights into pollutant removal effectiveness on a mass basis, with a focus on:
Emphasis was placed on SRP—the biologically available form of phosphorus most readily assimilated by algae and a key driver of harmful algal blooms and eutrophication. Because phosphorus is the target pollutant in Harveys Lake’s TMDL, SRP reduction serves as a critical indicator of the filtration media’s performance and its potential role in long-term water quality management strategies.
Overall, the study revealed variable but promising results across media types and installation locations:
These early findings suggest that both EutroSORB® and biochar hold promise as cost-effective tools for reducing soluble phosphorus in stormwater runoff. Additionally, observed differences in removal efficiency, based on installation context (NSBB vs. stream), filter media volume, and site-specific hydrologic conditions, underscore the importance of continued monitoring and system refinement.
As part of the project’s commitment to long-term sustainability and public education, a native pollinator garden was established near the Harveys Lake Department of Public Works garage, adjacent to the Little League fields.
After the final sampling in April 2025, the nutrient-saturated biochar and EutroSORB® socks were removed from the stormwater treatment systems. The spent biochar, having captured phosphorus and nitrogen from runoff, was repurposed as a soil amendment to enrich a 500-square-foot planting area. This repurposing effort served a dual purpose: demonstrating a closed-loop approach to managing excess nutrients while also creating a community-oriented space that supports local biodiversity.
The Harveys Lake Environmental Advisory Council volunteered to help plant the garden, installing 450 native plant plugs across nine species including Foxglove Beardtongue, Clustered Mountain Mint, Blue Wild Indigo, and Common Yarrow to attract pollinators such as butterflies, bees, and songbirds.
Designed by Princeton Hydro, the pollinator garden serves as both an ecological asset and an educational tool. Its prominent location next to the ballfields encourages community engagement, and an interpretive sign on-site helps visitors understand the garden’s purpose and its connection to local water quality initiatives. The sign features a QR code linking to an interactive ArcGIS StoryMap, developed by Princeton Hydro, which explores the broader context of the project. It draws connections between nutrient management efforts in Harveys Lake and similar challenges facing the entire Chesapeake Bay watershed, emphasizing how local actions contribute to regional water quality improvements. To support public outreach, the StoryMap was also shared on the Borough’s website, making this educational resource widely accessible to the community.
It is important to note that while this project illustrates a successful example of biochar reuse, all reuse applications must be assessed on a case-by-case basis. For example, biochar exposed to hazardous pollutants is not suitable for soil use. In this case, the biochar had only been used to absorb excess nutrients, making it appropriate for the garden setting.
Supported by the U.S. Environmental Protection Agency and the NFWF’s Chesapeake Bay Stewardship Fund, which promotes community-based conservation strategies to protect and restore Chesapeake Bay’s natural resources, this project was designed with scalability in mind. A core objective was to evaluate whether these filtration media could be more broadly implemented throughout the Chesapeake Bay watershed as a low-cost, community-integrated strategy for achieving water quality goals.
Through continued innovation and shared learning, small-scale efforts like this can drive large-scale impact, proving that effective water quality solutions don’t have to be costly or complex. The Harveys Lake model offers a replicable framework that communities across the region can adopt and adapt, empowering local action that contributes meaningfully to the restoration and resilience of Chesapeake Bay.
Earth Day is more than a date on the calendar—it’s a gentle nudge to reconnect with the natural world around us, and a reminder that everyday actions can shape a more sustainable future. Whether you’re tending a garden, removing invasive plants, or picking up litter while out on a walk, these small steps add up to a healthier, more resilient planet. This year, our team found a few fun and meaningful ways to mark the occasion, and we hope this inspires you to get outside and get growing, too.
Spring is the perfect season to take action in your yard or community green space. Whether you’re a seasoned gardener or just starting out, here are a few tips from our team to help your garden thrive:
Looking for more tips? Princeton Hydro landscape architects Jamie Feinstein, RLA and Cory Speroff, PLA, ASLA, CBLP shared their top spring gardening tips in an "Ask Me Anything" Facebook live Q&A session, including:
To welcome spring, members of the Princeton Hydro team spent an afternoon outside tending the native garden bed at the Trenton headquarters. Located at the front of the building, the perennial planting area features climate-adapted, drought-resistant native species chosen for their ecological benefits and aesthetic appeal.
Although perennials return year after year, they still benefit from seasonal care. Tasks like weeding, pruning, and loosening the soil support strong root systems, encourage healthy growth, and help maintain a thriving, sustainable garden ecosystem. Recognizing the garden's significance and the value of collaboration, our team united to accommodate and nurture this year's growth.
“It was a fun chance to unplug, get our hands in the dirt, and connect with coworkers in a different kind of ‘team meeting,’” said Mikhail Velez, Communications Coordinator. “It’ll be exciting to see how the space fills in over the season, and we’re looking forward to doing small things throughout the year to keep it healthy and thriving.”
Feeling inspired? Organizing a gardening day is a fun, low-cost way to give back to your environment and bring people together. Celebrate Earth Day 2025 by starting a garden, volunteering with a local environmental group, or organizing your own mini planting day with friends, family or coworkers.
Rain gardens are a beautiful, low-maintenance green infrastructure solution for managing stormwater, reducing erosion, and improving water quality by filtering pollutants before they reach local waterways. They also provide valuable habitat for pollinators and other beneficial wildlife.
On April 12, Princeton Hydro President Geoffrey M. Goll, P.E. led a free public workshop on how to build a rain garden of your own. Hosted in Yardley, PA by the Lower Makefield Township Environmental Advisory Council as part of their Environmental Lecture Series, the session offered practical, approachable guidance for managing stormwater at home.
Using photos from his own yard, Geoffrey walked attendees through how he designed and installed a rain garden to reduce runoff and eliminate pooling water. He shared ten easy-to-follow tips and answered questions on plant selection, drainage strategies, long-term maintenance, and when and why to amend soil before planting.
Want to learn more? Watch Geoffrey’s full presentation and get inspired to create your own eco-friendly solution to stormwater management:
The real spirit of Earth Day lies in our ongoing commitment to care for the natural world, not just once a year, but in everyday choices and community actions. As Geoffrey quoted in his rain garden presentation, "Small acts, when multiplied by millions of people, can transform the world." – Howard Zinn.
When we made the decision to move Princeton Hydro’s headquarters to Trenton in April of 2022, we knew we were becoming part of something special. It wasn’t just about finding a new office—it was about joining a community with a rich history, vibrant culture, and a shared dedication to environmental and social progress. From the very beginning, we felt a sense of belonging and purpose here. Trenton isn’t just where we work; it’s where we’ve had the chance to grow, learn, and give back to a place that inspires us every day.
From its founding by Dr. Fred Lubnow, original and former President, Dr. Stephen J. Souza (retired), and us, our firm has always been guided by a philosophy of stewardship, sustainability, and community partnership. While our core work focuses on ecological and engineering consulting, we firmly believe that our responsibility extends beyond the projects we undertake, focusing on fostering genuine partnerships and creating lasting impacts in the communities we serve. In Trenton, we've been especially fortunate to experience the powerful connection that comes from working alongside local organizations and residents.
Since relocating our headquarters to Trenton, we’ve been honored to open our doors and our hearts to a wide range of local organizations and causes. By hosting events for nonprofit groups like Greater Trenton, Outdoor Equity Alliance, NJ Society of Women Environmental Professionals, Boys and Girls Club of Mercer County, Revolutionary Trenton, Princeton-Mercer Regional Chamber, and many others, we’ve had the privilege of supporting efforts that protect both the environment and the cultural heritage of Trenton. These events are more than gatherings; they are moments that strengthen community bonds and foster a sense of connection that is vital to the city’s growth and vibrancy.
In that spirit, we are proud to contribute to local causes that directly uplift Trenton’s residents. Whether organizing coat drives for the Children’s Home Society of NJ, running food drives for Arm & Arm, or sponsoring local events like Juneteenth, the Black Farmers Market, Jersey Fresh Jam, and the Summer Splash Bash, we are constantly inspired by the resilience and commitment of the people in this city. These initiatives allow us to give back to a community that has given us so much, while also fostering environmental awareness and celebrating the rich cultural and communal life that makes Trenton so special.
Our focus on STEAM (Science, Technology, Engineering, Arts, and Math) education is another way we aim to make a lasting impact. We are honored to support programs like the Hold High the Torch’s Eco Innovators for Youth STEAM Leaders, the Outdoor Equity Alliance’s Careers in Conservation, and the NJ Department of Environmental Protection’s Youth Inclusion Initiative, which are essential for nurturing the next generation of environmental leaders. By helping students engage with real-world environmental challenges, we hope to inspire future conservationists and scientists who will carry forward the work we’ve begun.
In addition to our community outreach, we have been directly involved in significant environmental projects throughout Trenton. Our partnership with Trenton Water Works on the water quality sampling at Pennington Reservoir has been crucial in ensuring safe and reliable water for the city. We collaborated with the Trenton South Ward Neighborhood Association on a Community Garden and Park Visioning project, assisting them in securing a grant that resulted in the planting of 500 native plants, enhancing public spaces and creating a habitat for monarch butterflies. One of our most impactful efforts has been the Abbott Marshlands wetland restoration project at John A. Roebling Park, in collaboration with the Mercer County Park Commission, to eradicate invasive species and bring back the native landscape for park goers to enjoy. These projects demonstrate our commitment to restoring greater Trenton’s natural habitats, creating a sustainable future for its ecosystems, and leaving a positive, tangible mark on the city’s landscape.
As we reflect on our work in the Trenton region, we are truly humbled by the recognition we’ve received. In 2023, Princeton Hydro was honored with the New Good Neighbor Award by the NJBIA, a testament to our commitment to being more than just a business operating in Trenton, but a dedicated partner in its success. Additionally, our office itself was recognized with a Historic Preservation Award from Preservation New Jersey, underscoring the importance we place on respecting and preserving the rich history of the City while looking toward the future.
At Princeton Hydro, we are committed to being not just a business in Trenton, but a dedicated partner in its success. We take pride in the contributions we’ve made thus far, yet we recognize that our journey is far from complete. With the community's support and collaboration, we believe we can continue to make a meaningful, lasting impact as we work together toward a sustainable future – one that enriches our environment and enhances the quality of life for everyone.
New Jersey Department of Environmental Protection (NJDEP) Commissioner Shawn M. LaTourette presented the City of Lambertville with the NJDEP "Our Water’s Worth It" award. The award ceremony, held at a stormwater infrastructure improvement project site behind the Lambertville Firehouse, celebrated the Lambertville's commitment to improving stormwater management, addressing flooding, protecting local waterbodies, increasing storm resilience, and mitigating the impacts of climate change.
In a press release announcing the award, Commissioner LaTourette said, “Modernization of stormwater management strategies and infrastructure is critical to mitigating flooding that is severely impacting communities across New Jersey. My DEP colleagues and I applaud Lambertville for paving the way for others to follow in managing stormwater more effectively.”
The "Our Water’s Worth It" campaign, launched by NJDEP earlier this year, aims to raise awareness about the importance of protecting New Jersey’s water resources. The campaign highlights municipalities, water systems, and others who go above and beyond in water resource management and infrastructure improvements. Lambertville’s forward-thinking approach to stormwater management, particularly in meeting permitting requirements ahead of schedule, earned the city this well-deserved recognition.
At Princeton Hydro, we are proud to support the City of Lambertville in its stormwater management initiatives. Our team has been working closely with Lambertville to design projects that not only mitigate flooding but also enhance the surrounding natural environment.
During the award ceremony, Senior Project Manager and Professional Engineer, Sean Walsh, PE, said: “We are honored to be here today alongside NJDEP and the City of Lambertville celebrating Lambertville's remarkable achievement in receiving the 'Our Water's Worth It' trophy. It's particularly meaningful that this recognition comes during Climate Week, underscoring the importance of local action in addressing global environmental challenges.”
Earlier this year, the Princeton Hydro team completed a comprehensive Stormwater Utility Feasibility Study, which provided critical insights into Lambertville’s current stormwater management capacity and forecasted future needs.
Among the ongoing projects, Princeton Hydro is evaluating solutions for capturing runoff and reducing flooding in Lambertville's Music Mountain area, a critical greenspace in the heart of the city. This steep, wooded hillside, home to popular nature trails, serves as a cherished spot for after-school exploration, dog walking, and outdoor recreation. Music Mountain also plays a critical role in the city’s stormwater management system, acting as a natural buffer to protect lower-lying areas from flash flooding caused by runoff from the residential neighborhoods above. However, storm sewer outfalls discharging into the hillside have created deep erosion gullies, and during heavy rain events, the runoff has flooded the Fire Department. In collaboration with the City and the Fire Department, Princeton Hydro is designing a comprehensive solution that includes both the installation of a piped stormwater system and enlarging the inlet at the base of the mountain to better capture surface water runoff.
Additionally, on the Closson Farm property, Princeton Hydro is designing a riparian restoration project to manage the effects of increasing storm intensity. Funded by the National Fish and Wildlife Foundation, this project will result in 4.6 acres of restored floodplain, 300 trees planted, creation of wildlife habitat, measurable sediment and nutrient reduction, reduced stormwater runoff, community engagement, and new walking paths for recreation.
“Together with Lambertville, we are taking essential steps to enhance the city’s infrastructure and safeguard the community against future flooding. Our partnership reflects a shared commitment to protecting the environment and promoting resilience,” said Princeton Hydro’s Director of Restoration & Resilience, Christiana Pollack, CFM, GISP.
By embracing innovative stormwater solutions, Lambertville is not only enhancing its infrastructure but also setting a benchmark for resilience and environmental stewardship across New Jersey. This recognition reflects the city’s commitment to proactive flood management and sustainability, serving as an inspiration for other communities.
Princeton Hydro is honored to partner with the City of Lambertville on these important efforts. We extend our heartfelt congratulations on this well-deserved recognition and are excited to continue our collaboration on future projects that will further strengthen the city's resilience and protect its vibrant neighborhoods.
To learn more about NJDEP’s "Our Water’s Worth It" campaign, watch the video below:
New Jersey’s water-related infrastructure is a complex system, constantly facing the challenges posed by stormwater runoff and working to properly manage it. Stormwater management isn’t just about handling rainfall; it’s a critical aspect of improving water quality and mitigating flood risks. In New Jersey, where urbanization and rainfall patterns intersect, managing stormwater is more than just a priority; it’s a necessity. To learn more about stormwater management solutions, check out our blog: "In the Eye of the Storm: Exploring A Stormwater Utility in New Jersey."
Could cows be a potential solution to climate change?
Livestock contributes significantly to climate change, with estimates ranging from 11.1% to almost 20% of global greenhouse gas emissions. This is primarily due to their methane-rich belches and flatulence. Given these substantial numbers, it may seem unlikely that cows could be part of the solution. However, Arizona State University Professor Peter Byck argues that cows themselves are not the problem but rather the manner in which they are managed and raised.
Progressive farmers can enhance soil health and increase carbon sequestration through a cattle grazing technique known as Adaptive Multi-Paddock (AMP) grazing. This practice, entailing the periodic movement of cattle between various land plots, facilitates the creation of carbon sinks by ranchers utilizing their herds. It mimics the historical grazing patterns of bison on the expansive U.S. plains, incorporating extended rest periods between grazing events to allow grass to flourish, thereby enriching the soil. Please note however, despite anecdotal evidence from scientists and farmers, comprehensive research to validate these assertions is lacking.
The extent to which traditional grazing farmers will adopt this innovative solution remains an open question. For several years, Peter Byck has dedicated himself to meeting with scientists and farmers. This journey has culminated in the creation of a four-part docuseries titled "Roots So Deep (You Can See the Devil Down There)." This docuseries chronicles Peter Byck's experiences and the knowledge he gained along the way.
The documentary features Princeton Hydro's Senior Wildlife Biologist, Michael McGraw, CSE, QAWB, and ACE. He is part of a multidisciplinary team of scientists whose research forms the basis of the documentary.
Michael's studies have focused on observing the dynamics of breeding bird populations in paddocks grazed by AMP and those continuously grazed. The documentary highlights that when managed effectively, farmland can boost productivity and profitability for farmers while simultaneously contributing positively to the environment and the diverse wildlife that shares the planet with humans.
During a screening of "Roots So Deep (You Can See the Devil Down There)," Michael discusses his deep emotional connection formed through a decade-long collaboration with scientists and farmers. This partnership aimed to explore new opportunities to enhance our soils, wildlife, and communities. He bestows upon the audience a powerful message: “It doesn’t matter if you believe in climate change because, at the end of the day, we’re supporting healthy American families and promoting biodiversity, which benefits us all.”
In this clip, Peter and Michael explore how individuals from diverse backgrounds and beliefs can find common ground in unexpected places. They discuss how environmental stewardship unites people, revealing shared values that transcend differences and inspire collective action towards a sustainable future.
The complete docuseries is now available for rent. Learn more and watch the series at rootssodeep.org. To learn more about Senior Wildlife Biologist, Michael McGraw, a CSE, QAWB, and ACE, click here.
As we reflect on the winter of 2023-2024, it's evident that New Jersey experienced another unusually mild season, mirroring the winter of 2022-2023. Notably, Lake Hopatcong, located in Sussex and Morris Counties, remained virtually ice-free throughout the winter, with only a brief period of minor ice formation in early January. This pattern was not isolated to Lake Hopatcong; many lakes across the state and the broader Mid-Atlantic region exhibited similar ice-free conditions. Such conditions can lead to increased algal and plant growth earlier in the year.
Adding to this, from January to early June 2024, 15 of New Jersey's 21 counties recorded precipitation levels 26% to 50% higher than their long-term averages. The remaining six counties, predominantly in the southern part of the state, had precipitation increases of 11% to 25% above their long-term normals. This heightened precipitation is significant as it can transport nutrients, most notably phosphorus and nitrogen, into water bodies, potentially fueling the growth of algae.
Compounding these factors, long-range climate models and trends suggest that the summer of 2024 could rank among the hottest on record. The combination of a mild winter, increased precipitation, and anticipated high summer temperatures sets the stage for conditions similar to those experienced in 2019, a year marked by widespread harmful algal blooms (HABs) in numerous lakes.
HABs, characterized by rapid overgrowths of cyanobacteria, present serious challenges to water quality and aquatic ecosystems. Cyanobacteria, or blue-green algae, naturally occur in aquatic environments but can proliferate rapidly under warm, nutrient-rich conditions. These blooms pose risks to human health, wildlife, aquatic species, local economies, and the overall ecological balance. The interplay between climate change and HABs is undeniable: rising temperatures and altered precipitation patterns foster conditions that exacerbate bloom occurrences.
Given these circumstances, it is crucial for lake managers and water utilities to adopt proactive measures. Early and consistent sampling efforts can detect cyanobacteria and akinetes, dormant spores that contribute to bloom formation. Additionally, reducing nutrient inputs, particularly phosphorus, into waterways is essential to prevent HABs. Princeton Hydro strongly recommends that lake managers, water utilities, and concerned community members closely monitor their lakes, reservoirs, and riverways to stay as proactive as possible in managing these valuable resources.
By raising awareness, fostering collaboration, and implementing effective strategies, we can work towards safeguarding the health and sustainability of our freshwater ecosystems. Together, we can address the challenges posed by HABs and protect the integrity of our water bodies. For more information about HABs, click here.
Dr. Fred Lubnow, Princeton Hydro’s Senior Technical Director, Ecological Services, is an expert in aquatic and watershed management, restoration ecology, community and ecosystem ecology, and the use of benthic macroinvertebrate and fish in-stream bioassessment protocols. Dr. Lubnow has managed hundreds of lake projects and provides technical expertise for a variety of lake and watershed restoration projects.
His experience in lake and reservoir restoration includes the design and implementation of dredging, aeration, chemical control of nuisance species, nutrient inactivation (i.e. alum) and biomanipulation. His experience in watershed restoration includes the design and implementation of structural Best Management Practices (BMPs), the development of Total Maximum Daily Load (TMDL) pollutant budgets, and the design, implementation and analysis of watershed-based monitoring programs.
Did you know that New York State is home to a rich tapestry of natural waterbodies, including over 7,600 freshwater lakes, ponds, and reservoirs? Our team recently journeyed to Lake George, New York, to participate in the 41st annual conference of the New York State Federation of Lake Associations (NYSFOLA).
This year’s conference, themed “It Takes a Community to Protect a Watershed,” brought together environmental experts, lake management professionals, students, recreation enthusiasts, watershed advocates, and lake community members to advance the best available information and techniques for protecting and restoring New York’s watersheds. The two-day program featured a diverse exhibitor hall, networking events, a silent auction, a student poster session and a variety of presentations and workshops that combined science, policy, practical applications, and tangible resources.
Princeton Hydro, a proud sponsor of the conference, led two presentations during the “Climate Resilience and Your Lake" segment of the educational program:
Michael Hartshorne, Director of Aquatics, delivered an insightful presentation titled "Impacts of Climate Change on Lake Ecology," which delved into the significant role of climate change in shaping lake ecosystems. During the session, Michael highlighted key factors such as rising water temperatures, heightened frequency and severity of rainfall, depletion of dissolved oxygen, fluctuating patterns of algal blooms, and the migration of invasive species due to changing latitudinal conditions. His presentation underscored the necessity for evolving approaches to lake management in response to these profound ecological shifts.
Dr. Fred Lubnow, Senior Technical Director of Ecological Services, presented "A Survey of the Ecology of Select Lakes and Ponds in Central Park, NYC," which provided an insightful overview of Princeton Hydro's water quality and ecological monitoring efforts conducted across lakes and ponds of Central Park from 2020 to 2023 for the Central Park Conservancy. These assessments revealed elevated nutrient levels driving planktonic algae, filamentous mat algae and in some cases high densities of aquatic plants, prompting the Central Park Conservancy and Princeton Hydro to collaborate on a tailored Management Plan. Fred’s presentation spotlighted the distinct ecological profiles of key sites, addressed the impact of cyanobacteria on both ecological dynamics and recreational usage, and provided practical management methods and techniques.
Additional educational session topics included, Environmental Justice and New York Lakes, Community Leadership for Healthy Lakes in New York State, and iMap Invasive Species Workshop. Click here to view the complete agenda.
Founded in 1983, NYSFOLA is a not-for-profit coalition of lake associations, individuals, and corporate members dedicated to the protection and restoration of New York lakes. Princeton Hydro is the industry leader in lake restoration and watershed management. We have conducted diagnostic studies and have developed management and restoration plans for over 300+ lakes and watersheds throughout the country. Our long-standing partnership with NYSFOLA as a corporate member, annual conference sponsor, and active participant highlights our unwavering commitment to collaborative initiatives aimed at safeguarding our water resources. To learn more about our lake and natural resource management services and how we're contributing to a healthier environment, click here.
When we hear about harmful algal bloom (HAB) outbreaks, like those recently spotted in New Jersey, the first thoughts that come to mind usually involve discolored waters, environmental disruption, closed beaches, and potential human health hazards. Yet, a crucial aspect that often escapes the spotlight is the impact of these blooms on animals, including pets, wildlife, and livestock.
As HABs proliferate due to factors like excess nutrients and warming waters, the impacts ripple across a wide spectrum of living things, encompassing everything from aquatic species to humans to our animal companions, working animals, and livestock. Animals are most at risk because they may bathe/swim in affected water, drink contaminated water, or ingest it when cleaning algae from fur/hair coat, and the symptoms of HABs toxicity can go unnoticed for a period of time.
The U.S. Department of Agriculture (USDA) Natural Resources Conservation Service (NRCS) released a new factsheet that specifically provides an array of information and techniques to safeguard livestock from the dangers of HABs.
In this blog, we provide links to the USDA NRCS's newly released informational resources, shed light on the often-unseen consequences of HABs, and outline steps to protect the four-legged members of our agricultural communities.
HABs are rapid, large overgrowths of cyanobacteria. Cyanobacteria, also known as blue-green algae, aren’t actually algae, they are prokaryotes, single-celled aquatic organisms that are closely related to bacteria and can photosynthesize like algae. These microorganisms are a natural part of aquatic ecosystems, but, under the right conditions (e.g., heavy rains followed by hot, sunny days), these organisms can rapidly increase to form HABs. Climate change is leading to more frequent, more intense rainstorms that drive run-off pollutants into waterways, coupled with more hot days that increase the water temperature, creating the ideal environment for HABs to proliforate. In recent years, HABs have begun to appear in more places, earlier in the summer.
HABs can cause significant water quality issues in lakes and ponds, often forming a visible and sometimes odorous scum on the surface of the water. They can produce toxins that are incredibly harmful (even deadly) to humans, aquatic organisms, and animals, including livestock.
The health impacts and symptoms can vary depending on the size and type of animal, how an animal is exposed to the cyanotoxin, how long they were exposed, which type of toxin was present, and how much toxin was present.
Symptoms of cyanotoxin exposure in animals includes: vomiting, profuse salivation, fatigue, unsteady gait, labored breathing, convulsions, and liver malfunction. When animals bathe or swim in waters with even low concentrations of cyanotoxins, it may cause skin rashes, ear/throat infections, and gastrointestinal distress. In severe cases, especially when contaminated water is ingested, HAB poisoning can prove fatal.
When HABs are present in a waterbody that is accessible to and utilized by livestock, it's important to immediately restrict access to the contaminated water. If a potential exposure to cyanotoxins has occurred, NRCS recommends:
In its newly released fact sheet, NRCS also provides a number of ideas for segregating livestock from tainted waters, reducing the risk of livestock exposure to HABs, and providing alternate water sources, including:
To minimize the risk of future HABs, it's important to stay informed, routinely monitor waterbodies, take actions to reduce harmful effects, and adopt conservation practices that prevent nutrient loading to waterbodies.
Princeton Hydro is regionally recognized for its HABs expertise, having provided management recommendations and services for 100+ lakes and ponds in the Northeast, including Lake Hopatcong, New Jersey’s largest lake. To learn more about our lake management and HABs prevention services, click here. For additional HABs resources from the USDA NRCS, click here.
On June 6, 2023, New Jersey Governor Philip Murphy announced the Administration’s upcoming adoption of the Inland Flood Protection Rule to better protect New Jersey’s communities from worsening riverine flooding and stormwater runoff. The rulemaking was filed with the Office of Administrative Law and was adopted, effective on July 17, 2023, after publication in the New Jersey Register. A courtesy copy of the rule and additional information are available here.
The Inland Flood Protection Rule updates New Jersey’s existing flood hazard and stormwater regulations by replacing outdated precipitation estimates with modern data that account for observed and projected increases in rainfall. These changes will help reduce flooding from stormwater runoff and increase the resilience of new developments located in flood-prone inland areas. Upon adoption, New Jersey will become the first state to use predictive precipitation modeling to implement rules to inform and protect future development and redevelopment from the impacts of climate change.
“The Inland Flood Protection Rule will serve as a critical component of my Administration’s comprehensive strategy to bolster our state’s resilience amid the worsening impacts of climate change,” said Governor Murphy. “As a national model for climate adaptation and mitigation, we can no longer afford to depend on 20th-century data to meet 21st-century challenges. This rule’s formation and upcoming adoption testify to our commitment to rely on the most up-to-date science and robust stakeholder engagement to inform our most crucial policy decisions.”
The Inland Flood Protection Rule establishes design elevations that are reflective of New Jersey’s changing climate and more frequent and intense rainfall, replacing standards based on outdated data and past conditions. The updated standards will apply to certain new and substantially reconstructed developments in inland riverine areas that are subject to flooding, but they do not prohibit development in these flood hazard areas.
Under the two primary components of the rule:
The updated standards in the Inland Flood Protection Rule will apply to new or reconstructed developments and not to existing developments. Pending development applications before NJDEP that are administratively complete at the time of adoption are not affected by these changes. Existing provisions of the flood hazard and stormwater rules that provide flexibility from strict compliance based on unique site-specific conditions will remain in place, along with new provisions designed to ensure that infrastructure projects already in progress can continue to move forward.
The final rule also provides clarifications for the legacy provision of the Flood Hazard Area Control Act rules at N.J.A.C. 7:13-2.1 to address projects that were wholly located outside the prior flood hazard area, and which have already received local approval under the Municipal Land Use Law. As initially proposed, this exemption from the new flood elevations would have been limited to those projects that had begun construction before the new rules were adopted. In recognition of the often-significant investments made for projects that have reached the stage of receiving municipal approval, NJDEP is retaining the existing exemption for such projects.
“New Jersey’s communities are facing unprecedented threats from the devastating impacts of extreme rainfall events, which are expected to continue to intensify in their frequency and severity,” said Commissioner of Environmental Protection Shawn M. LaTourette. “The Inland Flood Protection Rule ensures that inland, riverine areas at significant risk are better defined and that new and reconstructed assets in these areas are designed and constructed to protect New Jersey’s assets, economy and, above all, our people from the catastrophic effects of worsening floods. My DEP colleagues and I are truly grateful for Governor Murphy’s vision and leadership and for the thoughtful feedback we have received from the public and leaders in labor, business, local government, academia, and advocacy in designing this rule as part of the New Jersey Protecting Against Climate Threats (NJ PACT) initiative.”
In connection with the proposed Inland Flood Protection Rule, to aid the public to gauge flood risk and provide a visual approximation of regulatory jurisdiction on specific parcels, NJDEP has launched a flood indicator tool. While the tool does not provide a definitive demonstration of regulatory jurisdiction or calculate actual risk, it can be useful in assisting property owners or prospective property owners on potential risk and, by referencing the 500-year flood extent, approximate NJDEP’s regulatory jurisdiction and flood risk. Equipped with this information, property owners may then decide to take additional steps to determine actual risk, which is dependent on site-specific conditions.
Your Full Name * Phone Number * Your Email * Organization Address Message *
By EmailBy Phone
Submit
Δ
Couldn’t find a match? Check back often as we post new positions throughout the year.