We’re committed to improving our ecosystems, quality of life, and communities for the better.
Our passion and commitment to the integration of innovative science and engineering drive us to exceed on behalf of every client.
From 2001 through 2002 Princeton Hydro collected the necessary field data such as in-situ, bathymetric, and discrete (both water and sediment), and also delineated and modeled the hydrologic and nutrient loads of the watershed for four (4) New Jersey state park lakes: Round Valley swimming area, Lake Absegami, Host Lake, and Hook Creek Lake. This data was then compiled and computed to prepare a Management Plan for each of the individual lakes.
The plans provided specific objectives and recommendations for the short and long-term management of each Lake and its watershed. Both in-lake and watershed management techniques were provided in the plan. In-lake techniques tended to focus on symptomatic problems such as algal blooms and the accumulation of sediments, while watershed techniques tended to focus on reducing pollutant loads through the use of structural and non-structural Best Management Practices (BMPs) and Green Infrastructure (GI) techniques. The management techniques were priority ranked, with these rankings being dependent upon applicability, regulatory constraints, technical feasibility, degree of effectiveness, initial implementation costs, and operations and maintenance costs.
In-lake restoration techniques were designed to improve the water quality and/or aesthetics of the waterbody by alleviating the specific impacts of pollution. Although these measures typically provide only short-term relief without controlling the source of the pollutants, they can substantially improve the aesthetics of a lake while the long-term, watershed-based management practices are being implemented.
In contrast to in-lake restoration techniques, watershed-based techniques focused on the causes of eutrophication rather than the effects. Watershed techniques were not as visible as in-lake techniques and tended to take more time to produce their desired results. However, they were absolutely vital in reducing the pollutant load, as well as producing and sustaining long-term improvements in surface water quality for each of the lakes.
Your Full Name * Phone Number * Your Email * Organization Address Message *
By EmailBy Phone
Submit
Δ
Couldn’t find a match? Check back often as we post new positions throughout the year.