search
WP_Query Object
(
    [query] => Array
        (
            [page] => 
            [pagename] => blog
        )

    [query_vars] => Array
        (
            [page] => 0
            [pagename] => blog
            [error] => 
            [m] => 
            [p] => 0
            [post_parent] => 
            [subpost] => 
            [subpost_id] => 
            [attachment] => 
            [attachment_id] => 0
            [name] => 
            [page_id] => 0
            [second] => 
            [minute] => 
            [hour] => 
            [day] => 0
            [monthnum] => 0
            [year] => 0
            [w] => 0
            [category_name] => 
            [tag] => 
            [cat] => 
            [tag_id] => 
            [author] => 
            [author_name] => 
            [feed] => 
            [tb] => 
            [paged] => 1
            [meta_key] => 
            [meta_value] => 
            [preview] => 
            [s] => 
            [sentence] => 
            [title] => 
            [fields] => 
            [menu_order] => 
            [embed] => 
            [category__in] => Array
                (
                )

            [category__not_in] => Array
                (
                )

            [category__and] => Array
                (
                )

            [post__in] => Array
                (
                )

            [post__not_in] => Array
                (
                )

            [post_name__in] => Array
                (
                )

            [tag__in] => Array
                (
                )

            [tag__not_in] => Array
                (
                )

            [tag__and] => Array
                (
                )

            [tag_slug__in] => Array
                (
                )

            [tag_slug__and] => Array
                (
                )

            [post_parent__in] => Array
                (
                )

            [post_parent__not_in] => Array
                (
                )

            [author__in] => Array
                (
                )

            [author__not_in] => Array
                (
                )

            [search_columns] => Array
                (
                )

            [posts_per_page] => 11
            [ignore_sticky_posts] => 
            [suppress_filters] => 
            [cache_results] => 1
            [update_post_term_cache] => 1
            [update_menu_item_cache] => 
            [lazy_load_term_meta] => 1
            [update_post_meta_cache] => 1
            [post_type] => 
            [nopaging] => 
            [comments_per_page] => 5
            [no_found_rows] => 
            [order] => DESC
        )

    [tax_query] => WP_Tax_Query Object
        (
            [queries] => Array
                (
                )

            [relation] => AND
            [table_aliases:protected] => Array
                (
                )

            [queried_terms] => Array
                (
                )

            [primary_table] => ph_posts
            [primary_id_column] => ID
        )

    [meta_query] => WP_Meta_Query Object
        (
            [queries] => Array
                (
                )

            [relation] => 
            [meta_table] => 
            [meta_id_column] => 
            [primary_table] => 
            [primary_id_column] => 
            [table_aliases:protected] => Array
                (
                )

            [clauses:protected] => Array
                (
                )

            [has_or_relation:protected] => 
        )

    [date_query] => 
    [queried_object] => WP_Post Object
        (
            [ID] => 6
            [post_author] => 1
            [post_date] => 2021-01-18 12:51:43
            [post_date_gmt] => 2021-01-18 12:51:43
            [post_content] => 
            [post_title] => Blog
            [post_excerpt] => 
            [post_status] => publish
            [comment_status] => closed
            [ping_status] => closed
            [post_password] => 
            [post_name] => blog
            [to_ping] => 
            [pinged] => 
            [post_modified] => 2021-01-18 12:51:43
            [post_modified_gmt] => 2021-01-18 12:51:43
            [post_content_filtered] => 
            [post_parent] => 0
            [guid] => https://princetonhydro.com/?page_id=6
            [menu_order] => 0
            [post_type] => page
            [post_mime_type] => 
            [comment_count] => 0
            [filter] => raw
        )

    [queried_object_id] => 6
    [request] => 
					SELECT SQL_CALC_FOUND_ROWS  ph_posts.ID
					FROM ph_posts 
					WHERE 1=1  AND ((ph_posts.post_type = 'post' AND (ph_posts.post_status = 'publish' OR ph_posts.post_status = 'acf-disabled')))
					
					ORDER BY ph_posts.menu_order, ph_posts.post_date DESC
					LIMIT 0, 11
				
    [posts] => Array
        (
            [0] => WP_Post Object
                (
                    [ID] => 13340
                    [post_author] => 1
                    [post_date] => 2023-09-06 14:26:37
                    [post_date_gmt] => 2023-09-06 14:26:37
                    [post_content] => We are proud to announce the addition of two new team members!

Join us in welcoming them as we provide a glimpse into their backgrounds and expertise. Their unique skills and perspectives promise to enrich our company culture and contribute to the innovative solutions we provide to our clients.




Angelica Diaz, Landscape Designer

Angelica is a recent graduate of Temple University, where she obtained her Master Degree in landscape architecture with a focus on ecological restoration. She received the 2023 American Society of Landscape Architects Merit Award for her academic work, which culminated in a graduate thesis that explored and integrated creative solutions to flood  resilience in New Castle, Delaware. This work unlocked a desire to discover the unique ways in which landscape architecture can be realized through the lens of ecology and sustainability.

Before joining Princeton Hydro, Angelica was employed at a small-scale landscape architecture firm focusing on public and residential design. She had the opportunity to use her previous experience in invasive management to help ensure longevity by developing long-term maintenance manuals for clients. Through this work, she also gained invaluable experience in design development, preparation of proposals and construction documentation packages, and client communication.

In her free time, Angelica loves to paint, read, bake bread, and maintain her tiny Philadelphia backyard.


Lexie Seifert, Staff Engineer

Lexie received a B.S. in Environmental Engineering with a concentration in Air Quality from Rutgers University. During her studies, she was part of the Rutgers Water Resources Program where she helped design and construct rain gardens to address flooding and stormwater runoff impacts. After graduation, Lexie began her professional career in the wastewater engineering sector designing decentralized wastewater treatment plants.

During her free time, Lexie enjoys hiking, exercising, and being outside. When the weather is bad, she likes making rugs and trying out new recipes.


Our staff is composed of individuals with academic training and extensive project experience in stormwater management, geotechnical investigation, hydrology and hydrogeology, aquatic and wetland ecology, fishery biology, population and community ecology dynamics, GIS, environmental design, and landscape architecture. Click here to read more about the Princeton Hydro team.

[post_title] => Employee Spotlight: Meet Our New Landscape Architecture and Engineering Team Members [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => employee-spotlight-august-2023 [to_ping] => [pinged] => [post_modified] => 2023-09-11 16:49:49 [post_modified_gmt] => 2023-09-11 16:49:49 [post_content_filtered] => [post_parent] => 0 [guid] => https://princetonhydro.com/?p=13340 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [1] => WP_Post Object ( [ID] => 13571 [post_author] => 1 [post_date] => 2023-08-28 15:49:51 [post_date_gmt] => 2023-08-28 15:49:51 [post_content] =>

On July 31, 2023, renowned limnologist Dr. Robert Evan Carlson passed away after his battle with Parkinson’s disease and multiple myeloma. Below is a statement by Princeton Hydro’s Senior Technical Director of Ecological Services, Dr. Fred S. Lubnow, who speaks for all of us at Princeton Hydro, on the legacy that Dr. Carlson left on the field of limnology.


[caption id="attachment_13572" align="alignright" width="378"]Headshot of Dr. Robert Evans Carlson Photo credit: Legacy.com[/caption]

“The field of limnology, and ecology in general, recently lost one of its greats with the passing of Dr. Robert Evan Carlson. His contributions to the fields of limnology and lake management were numerous, but he is best known for the development of the Carlson Trophic State Index (TSI). This is an internationally accepted protocol of assessing the health of lakes, ponds, and reservoirs that is used by everyone - from lake associations and ecological consultants to local, state, and federal governments - as a means of determining both declines in water quality due to increased nutrient loading and/or climate change, and improvements through watershed management and in-lake control measures.

As mentioned in his obituary, Dr. Carlson created the Secchi Dip-in, which is an annual summer event where volunteers measure the clarity of lakes throughout North America to develop a database on the overall health and status of our inland waterbodies. This program has grown to be a staple during Lakes Appreciation Month in July, and his tradition will continue on in every sample collected by volunteers.

As both a professor at Kent State University and an environmental consultant through his company Clearwater Environmental Consulting, Inc., Bob was an incredible source of information on measures to restore, protect, and preserve our aquatic ecosystems. On a personal note, I have met and spoken with Bob from time to time at the North American Lake Management Society’s annual conferences, and he was always willing to discuss and share his knowledge on lakes. Bob was always very friendly and generated a passion for freshwater ecology and management that was contagious. Bob will be sorely missed, but his legacy will live on as the TSI is widely used and the Great Secchi Dip-In continues in the future! Rest in Peace.”


A celebration of his life will be held on Saturday, November 4, 2023 at 2:00 PM at the Kent United Church of Christ, 1400 E. Main St. Kent, OH 44240. Donations in Bob’s memory can be made to the Dr. Robert E. Carlson Scholarship in Ecology and Evolutionary Biology at Kent State University. This scholarship offers stipends for students to travel to professional conferences, reflecting his passion for helping students in their studies and professional careers. Gifts to this scholarship fund can be made payable to The Kent State University Foundation and sent to The Kent State University Foundation, Attn: Gift Processing; P.O. Box 5190, 350 S. Lincoln St.,  Kent, Ohio 44242.

[post_title] => Remembering a Limnology Legend: Dr. Robert Evan Carlson [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => remembering-a-limnology-legend-dr-robert-evan-carlson [to_ping] => [pinged] => [post_modified] => 2023-08-28 16:23:36 [post_modified_gmt] => 2023-08-28 16:23:36 [post_content_filtered] => [post_parent] => 0 [guid] => https://princetonhydro.com/?p=13571 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [2] => WP_Post Object ( [ID] => 13535 [post_author] => 1 [post_date] => 2023-08-25 15:21:48 [post_date_gmt] => 2023-08-25 15:21:48 [post_content] =>

The New Jersey Department of Environmental Protection (NJDEP) has launched its third annual Youth Inclusion Initiative. The program hopes to enrich young participants, who may not have the opportunity to explore open spaces in their community, with hands-on environmental field experience under the tutelage of NJDEP professionals and mentors.

This year’s youth consists of 47 participants from ages 16-20 that hail from five different community-based organizations. These partners include Neighborhood Improvement Association (Trenton), Rutgers-Camden, Groundwork Elizabeth, Ironbound Community Corporation (Newark), and The Work Group (Camden).

[caption id="attachment_13546" align="aligncenter" width="1230"] The youth program participants gather together with their certificates for a final group photo.[/caption]  

Over the course of this six week program, the youth participated in a curriculum that showcased career pathways in the water resources and natural resources management fields. Participants learned through classroom instruction and by receiving some in-field experience across sectors regulated by NJDEP such as touring an air monitoring station, visiting a trout hatchery, conducting stream assessments, and practicing proper tool and equipment recognition at a state park. After their time with the initiative is through, they will have nurtured the skills to pursue these job opportunities and develop a deeper appreciation for our environment.

Princeton Hydro representatives Mark Gallagher, Dana Patterson, and Michael Rehman, CERP, PWS led one of the mentorships. This is the second year NJDEP’s Division of Land Resource Protection Mitigation Unit invited Princeton Hydro to teach a portion of the program. The goal in participating was to educate the youth about the importance of restoring native landscapes and explore the job responsibilities of environmental scientists, water resource engineers, geologists, ecologists, pesticide applicators, and regulatory compliance specialists, while building upon and cultivating  fascination with nature.


The Abbott Marshlands in Trenton, New Jersey

The program kicked off with a presentation in Mercer County Park Commission’s Tulpehaking Nature Center located in John A. Roebling Park. After learning about the history of the site from representatives from Mercer County and Friends of the Abbott Marshlands, Princeton Hydro discussed opportunities for careers in conservation and gave a brief overview of the restoration efforts in the park to eradicate the invasive Common Reed (Phragmites australis). Prior to heading out to explore the Abbott Marshlands, the northernmost freshwater tidal wetlands on the Delaware River, the Princeton Hydro team went through a health and safety briefing, a very important part of our job, to make sure everyone was aware of the potential risks and exposures.

[gallery link="none" ids="13543,13540,13552"]

Princeton Hydro team members and NJDEP’s Environmental Specialist Jessica Klein led the participants through the park. Right away, the first group witnessed one of nature’s marvels when they spotted a Northern Red-bellied Cooter (Pseudemys rubriventris) laying her eggs along the side of the main road. Participants learned of the marshland and surrounding upland’s rich cultural significance. On their trek through this natural oasis, they followed in the footsteps of the Lenape, a tribe of Native Americans who regularly visited and eventually settled in the area at least 13,000 years ago. These early nomadic people relied on the land for food, fuel, and other readily available resources until they were displaced due to European settlement along the Delaware River. Learn more about the Abbott Marshland cultural history here.

Eventually, the group made it to the area of the restoration site. Here, the students gained a better understanding of the harsh effects that invasive species have on an ecosystem. The 3000-acre freshwater tidal marsh provides habitat to many rare and endangered species, but it has experienced a significant amount of degradation due to monoculture of the invasive Common Reed. In order to improve the area’s biodiversity and elevate visitors’ recreational experience, Princeton Hydro implemented a restoration plan that aimed to eradicate the aggressive non-native plants within a 40-acre stretch of the marsh and enable native plants like Wild Rice (Zizania aquatica) to flourish. Learn more about this project.

NJDEP Commissioner Shawn LaTourette surprised the Rutgers-Camden group with his joyful presence. After giving a zealous speech to the class, he accompanied them on their journey to the marshland.

[caption id="attachment_11299" align="aligncenter" width="1230"] NJDEP Commissioner Shawn LaTourette joins the class.[/caption]  

Overall, participants had fun learning how to use a field guide to identify invasive species found within the area. They were taught how to differentiate them with native flora like sensitive fern, poison ivy, and wild rice. With a wide survey of the marshland, the youth were taught about wetland delineation and got a peek into the process of using a hand auger and a Munsell Soil Color Book to identify wetland soils. Utilizing binoculars, the last group was lucky to spot a Northern Harrier, an uncommon visitor for the marshland, soaring circles in the sky in search of prey. The rare sighting led to the successful end of the final tour.

[gallery link="none" ids="13538,13541,13545,13590,13592,13595,13596,13597,13594"]
The NJDEP Youth Inclusion Initiative began on July 6 and culminated on August 16 with a graduation and NJDEP Career Day where students had the opportunity to meet and discuss career options with various organizations who tabled at the event, including Princeton Hydro. To learn more about the NJDEP education program, click here. If you’re interested in learning more about Princeton Hydro’s ecological restoration services, click here. [post_title] => Another Successful Year Mentoring Participants from NJDEP's Youth Inclusion Initiative [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => njdep-youth-inclusion-initiative-2023 [to_ping] => [pinged] => [post_modified] => 2023-08-28 19:50:30 [post_modified_gmt] => 2023-08-28 19:50:30 [post_content_filtered] => [post_parent] => 0 [guid] => https://princetonhydro.com/?p=13535 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [3] => WP_Post Object ( [ID] => 13468 [post_author] => 1 [post_date] => 2023-08-18 06:00:22 [post_date_gmt] => 2023-08-18 06:00:22 [post_content] =>

A wetland is a unique ecosystem that is permanently or seasonally saturated by water, including swamps, marshes, bogs, vernal pools, and similar areas. They provide water quality improvement, flood protection, shoreline erosion control, food for humans and animals, and critical habitat for thousands of species of aquatic and terrestrial plants, aquatic organisms, and wildlife.

[gallery link="none" ids="13477,13487,13472"]

Princeton Hydro is regionally recognized for its capabilities in the restoration of freshwater and saltwater wetland ecosystems. Our ecologists also regularly conduct wetland delineations. A wetland delineation, a requirement of most permitting efforts, is the field work conducted to determine the boundary between the upper limit of a wetland and the lower limit of an upland thus identifying the approximate extent and location of wetlands on a requested site.

For this edition of our “A Day in the Life” blog series, we join Environmental Scientist Ivy Babson and Regulatory Compliance & Wildlife Surveys Project Manager Emily Bjorhus, PWS out in the field for a wetland delineation.


To Delineate a Wetland We Must First Define It

Most commonly, wetlands are delineated based on the Routine Onsite Determination Method set forth in the Federal Manual Identifying and Delineating Jurisdictional Wetlands (FICWD 1989) with supplemental information provided by the applicable United States Army Corps of Engineers’ (USACE) regional supplement manual.

USACE’s “three-parameter” approach defines an area as a wetland if it exhibits, under normal circumstances, all the following characteristics:

  1. The land supports a dominance of hydrophytic vegetation;
  2. The substrate is hydric soil; and
  3. The soil/substrate is at least periodically saturated or inundated during a portion of the growing season.

Step 1: Prepare for Delineation Day

Ivy and Emily begin by coordinating with the client to ensure they’ve been granted site access approval.

They then perform a comprehensive desktop analysis of the project site, identifying existing features like wetlands, open waters (streams, lakes), and potential hydric soils. This involves utilizing resources like USFWS's National Wetland Inventory Mapper, the U.S. Geological Survey's SSURGO Soils Survey, and, for New Jersey-based delineations, NJDEP's GeoWeb. The desktop review also allows Ivy and Emily to assemble the proper safety gear and create a Model Health & Safety Plan (HASP). A HASP must always be prepared before the field work begins.

Then, the field-day packing begins; the following items are a requirement for any wetland delineation:
  1. Field notebook and writing utensils
  2. Soil auger (for examining soil profiles)
  3. Munsell soil color chart book (for assessing soil types)
  4. High-vis flagging and pin flags
  5. Hi-vis surveyors or wetland delineator’s vest
  6. Muck boots or waders (depending on the type of environment and existing features)
  7. Field map, usually an up-to-date aerial, showing the boundaries of the site
  8. Sunscreen and bug spray (ticks are a common occurrence)
  9. Plenty of water and food - wetland delineations can be quite strenuous, especially in the summer
  10. Appropriate clothing - wetland delineations can be conducted year-round
 

Step 2: Set the Game Plan & Review HASP

It's always important to make a plan for the project. If we are delineating a large property, it might take several days to traverse, and each day, the weather might be different. So planning ahead, but also being prepared for unexpected changes, will make the day go that much smoother. And, as part of the HASP, we must identify important points of contact and know where the closest hospital is in case of a serious emergency.  So, reviewing this information and planning ahead prior to heading into the field is a very important step in the process.


Step 3: Perform the Three-Parameter Wetland Delineation

While wetland delineations can be conducted any time of the year, they are best conducted during the “growing season” when soil temperatures are above the biologic zero and vegetation is easily identifiable by leaves, inflorescence, or other unique identifying characteristics that would otherwise be difficult to identify during the winter months.

Ivy and Emily begin by locating known (mapped) wetland or waterbody features and writing a list of all plants observed on-site. They maintain the plant list throughout the day.

If, during the desktop review, they find a mapped wetland or stream, they walk there first to determine if wetlands are actually present. Even if a wetland is mapped on a database, it may not actually exist for various reasons. On the flip side, even if a site is not mapped as containing wetlands, the site could very well contain them. As such, the wetland delineation determines exactly what is on-site and supplements the desktop review.

As mentioned above, a wetland delineation considers three determining factors: 1) vegetation, 2) soils, and 3) hydrology. While on site, Ivy and Emily must identify hydrophytic vegetation, take soil borings, and look for wetland hydrology to identify whether a wetland is present or not.

Parameter 1: Vegetation

Wetlands are dominated by hydrophytes which are plants that can grow in water or on a substrate that is at least periodically deficient in oxygen because of excessive water content and depleted soil oxygen levels.

The USACE and NJDEP definition of hydrophytes is based on the USFWS classification system. In general, any plant species that is found growing in wetlands more than 50% of the time is considered a hydrophyte. These plants include those classified by the USFWS as “facultative," “facultative wetland," or “obligate."

As a wetland delineator, it is important to possess strong plant identification skills and an eye for recognizing various ecological plant communities, which are groups of plants that share a common environment and environmental requirements. They are often defined by dominant plant species.

Once Ivy and Emily identify the hydrophytic plant community, they determine what type of ecological community they are in (e.g., freshwater forested wetland, estuarine scrub-shrub wetland, or freshwater tidal emergent marsh). Today, they are in a freshwater forested wetland, which means Ivy and Emily must now assess each stratum of the forested wetland by writing down the species and associated percent species cover.

[gallery link="none" ids="13448,13450,13475"]

To accurately describe the vegetation at each sampling point, we collect data on each horizontal strata or layer. Vegetative strata for which dominants are determined include (1) tree (> 5.0 inches diameter at breast height (DBH) and 20 feet or taller); (2) sapling (0.4 to <5.0 inches DBH and <20 feet tall); (3) shrub (usually 3 to 20 feet tall including multi-stemmed, bushy shrubs); (4) woody vine; and (5) herb (herbaceous plants including graminoids, forbs, ferns, fern allies, herbaceous vines, and tree seedlings). They repeat this process for each representative wetland.

Next, Ivy and Emily look for the upland plant community that is directly upslope of the wetland and make note of the proximity to the wetland, repeating the same vegetation documentation process.

Parameter 2: Soils

Ivy and Emily must determine whether the soils within the hydrophytic plant community are hydric. Hydric soils are defined as soils that are saturated, flooded, or ponded long enough during the growing season to develop anaerobic conditions in the upper part. Hydric soil indicators are features in the soil that predominantly form by biogeochemical processes in a saturated and anaerobic environment and result in the accumulation of loss of iron, manganese, sulfur, or carbon compounds.

Emily uses a soil auger to collect a sample of the first 6 - 12 inches of soil where the most significant parts of a hydric soil would be occurring.

 

Once Ivy and Emily identify that the soil is indeed hydric, Ivy uses her Munsell soil color book to determine the value of the soil and each hydric soil indicator.

[gallery link="none" columns="2" ids="13489,13485"]

They also document additional characteristics of each soil layer: Is it loam, silty loam, sand, sandy loam, silt, muck, clay, clayey loam, etc.? What is the percentage of rocks, plant roots, or other organic matter in each layer? What is the percentage of redoximorphic features of each layer and are they faint or prominent?

Each layer of the soil profile, which is typically documented to a depth of at least 18 inches, is sectioned out and thoroughly described.

Parameter 3: Hydrology

The identification of positive indicators of wetland hydrology includes direct observation of indicator groups, such as the observation of surface water or saturated soils, evidence of recent inundation, evidence of current or recent soil saturation, and evidence from other site conditions or data. Each group contains several indicators, which are classified into categories known as “primary” or “secondary” indicators.

To positively identify the area as being a wetland, at least one primary wetland indicator (from any group) or at least two secondary wetland indicators (from any group) must be present.

Additionally, for an area to be designated as a wetland, the area must have the presence of water for a week or more during the growing season. Areas with wetland hydrology characteristics are those where the presence of water has an overriding influence on characteristics of vegetation and soils due to anaerobic and reducing conditions, respectively.

[caption id="attachment_13488" align="aligncenter" width="483"] This red maple developed morphologic adaptations in the form of buttressed roots.[/caption]  

Today, Emily and Ivy observe a depression (secondary) along with a few inches of standing water (primary), water-stained leaves (primary), frogs hopping around (primary), and moss trim lines on the tree trunks (secondary). All signs point to a forested wetland; however, there is more to consider.

Ivy and Emily’s soil boring assessment showed that the soils within the top 12 inches of the soil surface were saturated (primary) and bright orange streaks were visible along the plant roots, which they documented as oxidized rhizospheres along living roots (primary). Because they identified more than one primary and two secondary wetland indicators, they can confidently delineate the wetland.


Step 4: Delineate Between the Wetland and Upland

Now that Ivy and Emily established that a wetland is present, they must find the boundary of the upland. They are now looking for the absence of hydrophytic vegetation, hydric soils, and positive indicators of wetland hydrology as well as the dominance of upland ecological plant communities. The same analysis and documentation process they completed for the wetland area is also required for the upland area.

Once they locate the boundary, they flag the wetland line, labeling the flagging with the wetland nomenclature and either hanging it or pinning it into the ground.

While the description sounds relatively simple, finding the boundary between a wetland and upland can be tricky and time consuming. For example, there may be some hydrophytic vegetation growing within an upland and there may be one secondary positive indicator of wetland hydrology, but hydric soils are missing. To positively classify an area as a wetland, a slam dunk on all three parameters is required.

[caption id="attachment_13513" align="aligncenter" width="639"] Marked up image indicating the upland, wetland, and stream. The red line marks the boundary between a wetland and an upland. The blue line marks the boundary between a stream and the wetlands on either side of the stream’s banks.[/caption]

Step 5: Delineate Waterbodies

Ivy and Emily must also delineate waterbodies concurrent with wetlands. Waterbodies may include, but are not limited to, streams, rivers, lakes, and ponds. To delineate a waterbody, they hang labeled flagging along the waterbody’s top of bank or its ordinary high water mark. Throughout this process, they take pictures to document the existing waterbody conditions.

[gallery link="none" ids="13457,13460,13455"]

Step 6: Post-Delineation Wrap-up

Once the wetland delineation is complete, Ivy and Emily draw out a field sketch that depicts the approximate extent and location of the wetland and waterbody boundaries with their respective nomenclature.

Depending on the project scope, the field sketch is either submitted to a Professional Licensed Surveyor who will then visit the site to survey each wetland and waterbody flag, or Ivy and Emily will return to the site to survey each flag with a survey-grade GPS. Once the survey is complete, Ivy and Emily will conduct a final review of the plans to ensure accuracy.

If requested, they will also prepare a wetland delineation report, which outlines the delineation method, findings, results, and thorough description of each wetland and its soils, hydrology, and vegetation.

“Wetland delineations aren’t for the faint of heart,” said Ivy. “At the end of the day, you might emerge from a dense stand of Phragmites garnering strange looks from passersby with muck smeared on your face, sticks and leaves poking out of your hair, a belly full of mosquitos that you might have accidentally swallowed, and fingernails stuffed with dirt. However, there isn’t any other type of field that I would rather be in. As a wetland delineator, I can access environments that most people would steer clear of and, as a result, I get to see things that I wouldn’t get to see anywhere else. I get to improve my plant identification skills and expand my knowledge of how wetlands function as an ecosystem.”

[caption id="attachment_13478" align="aligncenter" width="566"] Ivy standing in a tidal marsh at Spring Creek North in Brooklyn and Queens, New York. "This wetland delineation is one of my favorite delineating experiences yet. And, I'm looking forward to many more to come!"[/caption]
A big thanks to Ivy and Emily for taking us out in the field for a wetland delineation!

Emily Bjorhus is a Project Manager that specializes in environmental regulatory compliance, ecological services and wildlife surveys. She leads federal, state and local environmental permitting processes, NEPA compliance and documentation, Endangered Species Act Section 7 consultations, and Clean Water Act Section 404(b)1 analyses. Mrs. Bjorhus is a certified Professional Wetland Scientist.

As an Environmental Scientist, Ivy Babson regularly conducts wetland delineations and monitoring, flora/fauna surveys, water quality sampling, fishery surveys, permitting, and regulatory compliance for a series of projects. She earned her Wetland Delineation Certification from Rutgers University. Ivy graduated from the University of Vermont in 2019 with a B.S. in Environmental Science with a concentration in Ecological Design, and minor in Geospatial Technologies.

  To read more about our wetland restoration work, go here: http://bit.ly/PHwetland. If you enjoyed this blog, check out another one from our “A Day in the Life” series, and stay tuned for more. [post_title] => A Day in the Life: Performing a Wetland Delineation [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => a-day-in-the-life-performing-a-wetland-delineation [to_ping] => [pinged] => [post_modified] => 2023-08-18 12:51:54 [post_modified_gmt] => 2023-08-18 12:51:54 [post_content_filtered] => [post_parent] => 0 [guid] => https://princetonhydro.com/?p=13468 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [4] => WP_Post Object ( [ID] => 13355 [post_author] => 1 [post_date] => 2023-08-16 07:03:24 [post_date_gmt] => 2023-08-16 07:03:24 [post_content] =>

400 native plants were installed along the western shoreline of Memorial Pond in Mount Arlington, New Jersey. The planting was completed in one day by a team of 20+ volunteers, staff members from Mt. Arlington Department of Public Works (DPW), Lake Hopatcong Foundation, Lake Hopatcong Commission, Princeton Hydro, and a generous community member who volunteered his excavating equipment (and time).

The planting initiative aims to prevent shoreline erosion, promote the growth of native species, increase wildlife habitat, and improve the water quality of Memorial Pond and Lake Hopatcong. Funding for this project was secured through a grant from the New Jersey Department of Environmental Protection, awarded to the Lake Hopatcong Commission in partnership with the Lake Hopatcong Foundation.

[caption id="attachment_13422" align="aligncenter" width="616"] Photo by Lake Hopatcong Foundation Executive Director Kyle Richter[/caption]

Memorial Pond

Drainage Area Aerial Map of Mt. Arlington Memorial Beach and Memorial Park in New Jersey. Created by Princeton Hydro.Memorial Pond is a 0.3-acre stormwater runoff basin that gradually releases into Glen Brook, which then flows into Lake Hopatcong. The pond receives sheet flow of stormwater from the adjacent road, which contributes to nutrient and sediment loading, thus locally reducing water quality in Memorial Pond and ultimately the waters of Lake Hopatcong.

Memorial Park, which includes Memorial Pond and Glen Brook, was identified by Princeton Hydro and the Lake Hopatcong team as a priority site for improvement, targeting initiatives that reduce pollutants and excessive nutrients entering into Lake Hopatcong.

Additionally, the pond’s steeply-sloped shoreline was bare and only stabilized with large rocks at the base of the banks. In the absence of stabilizing vegetation, the pond’s banks were experiencing erosion, and there was some concern about a few mature trees along the shoreline potentially falling into the pond.

[gallery link="none" ids="13416,13407,13413"]

The photos above were taken in April 2023 before the planting initiative.


Shoreline Planting Initiative

The plant selection and layout were designed taking into account the steep slope and presence of mature, existing trees as well as focusing on regionally native plant species that will thrive and help stabilize the eroding shoreline. The planting team, led by Princeton Hydro Landscape Architect Jamie Feinstein, RLA and Aquatics Project Manager Pat Rose, was given precise instructions on how to install the plants to eliminate washouts and ensure the root systems can embrace the soil and hold it in place.

A variety of native herbaceous plants and shrubs were chosen for the site, including pennsylvania sedge, slender mountain mint, blue flag iris, sweet azalea, smooth hydrangea, and maple-leaved viburnum.

[gallery link="none" ids="13427,13421,13428"]

The plants will help reduce stormwater flow, absorb excess nutrients, prevent erosion, and ultimately decrease sedimentation to the pond, while creating a visually pleasing addition to the park and providing a habitat for pollinators and birds. Overall, this project promotes a healthier and more balanced ecosystem in Memorial Park.

[gallery link="none" ids="13400,13392,13394"]

The photos above were taken in July 2023 immediately after the planting initiative.


Multi-Faceted Approach to Water Quality Improvements

The installation of these beneficial plants is part of a series of water quality initiatives on Lake Hopatcong funded by a NJDEP Freshwater Harmful Algal Bloom (HAB) Prevention & Management Grant and 319(h) Grant awarded to Lake Hopatcong Commission in partnership with the Lake Hopatcong Foundation.

Additional initiatives included in the watershed implementation and HABs management plan are, the installation of:

  • floating wetland island (FWI), which are a low-cost, effective green infrastructure solution designed to mimic natural wetlands in a sustainable, efficient, and powerful way. FWIs improve water quality by assimilating and removing excess nutrients; provide valuable ecological habitat for a variety of beneficial species; help mitigate wave and wind erosion impacts; provide an aesthetic element; and add significant biodiversity enhancement within open freshwater environments;

  • biochar filtration bags, which improve water quality by removing phosphorus from waterbodies. Biochar can be placed in floatation balls, cages, or sacks, which are then tethered along the shoreline and in critical locations throughout the waterbody; and

  • nanobubble aeration system, which increases the concentrations of dissolved oxygen in the water, prevents stagnation of water, increases circulation, disrupts thermal stratification which provides “through-column” mixing, and minimizes the occurrence of HABs.

“Paired with biochar filters attached to buoys in the pond and continued monitoring and maintenance of the plantings by the DPW, these steps will set a healthy precedent for what can be achieved through working together with funders, local partners, science, and landscape architecture,” said Feinstein, who sourced plant material, provided logistics and co-led the planning and volunteer planting event along with Rose.

Princeton Hydro's Landscape Architect, Cory Speroff PLA, ASLA, CBLP, designed the planting plan, and Will Kelleher and Jackson Tilves from the Aquatics Team participated in the plant installation event with Feinstein.

Princeton Hydro is also authoring and supplying a maintenance manual that provides guidance on seasonal care of the plantings, when to remove the herbivory protection fencing, pruning, watering, and other activities that support the long term success of the planting initiative. 

“This collaborative effort to enhance water quality serves as a prime example of how seemingly simple actions can have a meaningful impact on safeguarding our water resources for the benefit of future generations,” said the Lake Hopatcong Foundation.

[gallery link="none" ids="13403,13429,13393"]

The photos above from left to right: June 2023 before the planting; July 2023 during the planting (photo by Lake Hopatcong Foundation Executive Director Kyle Richter); and July 2023 immediately after the planting.


Princeton Hydro has been working on Lake Hopatcong, New Jersey’s largest Lake, for 30+ years, restoring the lake, managing the watershed, reducing pollutant loading, and addressing invasive aquatic plants and nuisance algal blooms. To read about some of the other projects we’ve recently worked on at Lake Hopatcong, click here.

[post_title] => Community-Powered Initiative Installs 400 Native Plants to Improve Water Quality in Mount Arlington [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => memorial-pond-planting-2023 [to_ping] => [pinged] => [post_modified] => 2023-08-16 17:57:31 [post_modified_gmt] => 2023-08-16 17:57:31 [post_content_filtered] => [post_parent] => 0 [guid] => https://princetonhydro.com/?p=13355 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [5] => WP_Post Object ( [ID] => 13345 [post_author] => 1 [post_date] => 2023-08-02 11:49:44 [post_date_gmt] => 2023-08-02 11:49:44 [post_content] =>

When we hear about harmful algal bloom (HAB) outbreaks, like those recently spotted in New Jersey, the first thoughts that come to mind usually involve discolored waters, environmental disruption, closed beaches, and potential human health hazards. Yet, a crucial aspect that often escapes the spotlight is the impact of these blooms on animals, including pets, wildlife, and livestock.

As HABs proliferate due to factors like excess nutrients and warming waters, the impacts ripple across a wide spectrum of living things, encompassing everything from aquatic species to humans to our animal companions, working animals, and livestock. Animals are most at risk because they may bathe/swim in affected water, drink contaminated water, or ingest it when cleaning algae from fur/hair coat, and the symptoms of HABs toxicity can go unnoticed for a period of time.

The U.S. Department of Agriculture (USDA) Natural Resources Conservation Service (NRCS) released a new factsheet that specifically provides an array of information and techniques to safeguard livestock from the dangers of HABs. 

In this blog, we provide links to the USDA NRCS's newly released informational resources, shed light on the often-unseen consequences of HABs, and outline steps to protect the four-legged members of our agricultural communities.


Deciphering HABs

HABs are rapid, large overgrowths of cyanobacteria. Cyanobacteria, also known as blue-green algae, aren’t actually algae, they are prokaryotes, single-celled aquatic organisms that are closely related to bacteria and can photosynthesize like algae. These microorganisms are a natural part of aquatic ecosystems, but, under the right conditions (e.g., heavy rains followed by hot, sunny days), these organisms can rapidly increase to form HABs. Climate change is leading to more frequent, more intense rainstorms that drive run-off pollutants into waterways, coupled with more hot days that increase the water temperature, creating the ideal environment for HABs to proliforate.  In recent years, HABs have begun to appear in more places, earlier in the summer.

[caption id="attachment_13363" align="aligncenter" width="1230"]Nutrient sources of HABs. Illustration created by USGS. Nutrient sources of HABs. Illustration created by USGS. Click image to enlarge.[/caption]  

HABs can cause significant water quality issues in lakes and ponds, often forming a visible and sometimes odorous scum on the surface of the water. They can produce toxins that are incredibly harmful (even deadly) to humans, aquatic organisms, and animals, including livestock.


Mitigating Livestock Exposure to HABs

The health impacts and symptoms can vary depending on the size and type of animal, how an animal is exposed to the cyanotoxin, how long they were exposed, which type of toxin was present, and how much toxin was present.

Symptoms of cyanotoxin exposure in animals includes: vomiting, profuse salivation, fatigue, unsteady gait, labored breathing, convulsions, and liver malfunction. When animals bathe or swim in waters with even low concentrations of cyanotoxins, it may cause skin rashes, ear/throat infections, and gastrointestinal distress. In severe cases, especially when contaminated water is ingested, HAB poisoning can prove fatal.

When HABs are present in a waterbody that is accessible to and utilized by livestock, it's important to immediately restrict access to the contaminated water. If a potential exposure to cyanotoxins has occurred, NRCS recommends:

  1. Washing animals with clean water and monitoring for symptoms of exposure to cyanotoxins.
  2. Isolating any animals exhibiting symptoms and seeking veterinary care as soon as possible.
  3. Providing animals with an alternative source of fresh, safe drinking water.
  4. Contacting the appropriate state agency for sampling and testing guidance to test the water source for HABs and cyanotoxins. Please note: It is not safe for landowners to sample the water themselves without proper personal protective equipment and procedures.
  5. Visiting the CDC website for further information, or contacting your state/county health department.

In its newly released fact sheet, NRCS also provides a number of ideas for segregating livestock from tainted waters, reducing the risk of livestock exposure to HABs, and providing alternate water sources, including:

  1. Installing protective fencing (Conservation Practice 382)
  2. Constructing purposeful ponds (Conservation Practice 378)
  3. Implementing access control measures (Conservation Practice 472)
  4. Establishing reliable water wells (Conservation Practice 642)
  5. Designing effective watering facilities (Conservation Practice 614)
To download the USDA NRCS fact sheet, click below:

To minimize the risk of future HABs, it's important to stay informed, routinely monitor waterbodies, take actions to reduce harmful effects, and adopt conservation practices that prevent nutrient loading to waterbodies.

Princeton Hydro is regionally recognized for its HABs expertise, having provided management recommendations and services for 100+ lakes and ponds in the Northeast, including Lake Hopatcong, New Jersey’s largest lake. To learn more about our lake management and HABs prevention services, click here. For additional HABs resources from the USDA NRCS, click here.

[post_title] => HABs Awareness: Impact on Livestock & Steps to Ensure Safety [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => habs-awareness-livestock [to_ping] => [pinged] => [post_modified] => 2023-08-14 17:10:24 [post_modified_gmt] => 2023-08-14 17:10:24 [post_content_filtered] => [post_parent] => 0 [guid] => https://princetonhydro.com/?p=13345 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [6] => WP_Post Object ( [ID] => 13315 [post_author] => 1 [post_date] => 2023-07-27 16:44:27 [post_date_gmt] => 2023-07-27 16:44:27 [post_content] =>

Exciting changes have unfolded at Kol Emet, a Reconstructionist Congregation in Yardley, Bucks County, Pennsylvania. The campus’ exterior lands have undergone a remarkable transformation, blossoming into an enchanting and peaceful place for community member gatherings, and a wildflower meadow.

Princeton Hydro partnered with Congregation Kol Emet to design and implement the synagogue's 10-acre campus transformation. The Princeton Hydro team provided green infrastructure engineering, landscape architecture, and construction services aimed at enhancing the usability and welcoming atmosphere of the synagogue, and creating a sustainable outdoor solution in the event of future pandemics, and a place to connect with the natural environment that surrounds the property. The design provides a net positive impact by reducing flooding in the community and improves water quality by augmenting stormwater management and biodiversity throughout the property.

"Our vision surpassed mere construction of a gathering space," said Geoffrey M. Goll P.E., President of Princeton Hydro, a congregant of Kol Emet, Executive Board Member, and point person for the project. "We wanted to create a harmonious union between the synagogue campus and the surrounding preserved woodlands, cultivating a serene haven where congregants can unite, celebrate, and worship, while also enhancing the ecological functionality and biodiversity of the landscape. This was a realization of the vision of the Founders of Kol Emet and the labor and financial support of many members of the Board, past and present, and a generous donation by a longtime supporter of the community. The outdoor sanctuary was named in honor and memory of a founding member and former President, Geri Shatz, who was a staunch supporter of the Jewish community and advocate for the mission of Kol Emet. She lived the ideals of community and contribution. I am proud of the extraordinary transformation that’s been achieved."


About the Congregation of Kol Emet

The Kol Emet Reconstructionist Congregation, is a 501(c)3 religious organization, founded in 1984. While a center of worship for its members, it is much more than that. Kol Emet is a community of people who care about improving the world around them through social action and environmental protection.

The sentiment of "Tikkun Olam" is embodied by Kol Emet and the committee that spearheaded the project, working directly with the Princeton Hydro team to bring the project goals to fruition. The modern interpretation of the Hebrew phrase “Tikkun Olam,” is “action intended to repair and improve the world.” The campus restoration project brings the concept of “Tikkun Olam” to life.


About the Restoration Project

Princeton Hydro Landscape Architect Cory Speroff, PLA, ASLA, CBLP is the project’s lead designer. The project included landscape design and planting that incorporates native and sustainable trees and shrubs; significant upgrades to the existing stormwater management basin, including the conversion of low-flow channels, impervious surfaces, and turf-covered areas to native grassland and wildflower habitat; and the development of the “Geri Shatz Outdoor Contemplative Space."

Cory’s design inspiration for the Geri Shatz Outdoor Contemplative Space is modeled after the Hebrew term “etz chaim” or “Tree of Life.” In Judaism, the Tree of Life has a number of meanings, both literal and figurative. In the Kabbalah, the Tree of Life represents the connection between heaven and earth, wisdom and knowledge, and the interconnectedness of all living things. It is visually represented as a diagram that looks much like a tree with 10 nodes and 22 lines. Cory’s design for the community space uses strategically placed trees to mimic the Tree of Life and aims to promote community connection and a connection to the surrounding natural landscape.

 

The contemplative space consists of a bimah, seating to accommodate at least 80 people, and a beautiful array of native trees and flowering shrubs, including black gum, silver birch, and Virginia sweetspire.

[gallery link="none" columns="2" ids="13138,13073"] [gallery link="none" columns="2" ids="13117,13071"]

Cory’s design for the land surrounding the contemplative space improves flood resilience; controls stormwater runoff volume and promotes groundwater recharge; boosts safety features of the campus; and enhances habitat for pollinators, native plants, and other important species. The wildflower meadow was seeded with a variety of native plants, including purple love grass, common milkweed, wild bergamot, and blue wild indigo.

[gallery link="none" columns="2" ids="13055,13081"] [gallery columns="2" link="none" ids="13042,13044"]

“During the height of the COVID-19 pandemic, it felt like the only way to see our loved ones was to be outside, and during these backyard and front porch gatherings many people re-discovered their love for the outdoors,” said Cory. “In talking with the Committee, there was a desire to create an outdoor sanctuary where the congregation could gather and continue that re-discovery. I believe that through the careful consideration of symbolic elements and thoughtful design choices, we’ve created a space that can inspire introspection, connection, and a sense of harmony with both nature and faith.”


The Generosity that Made the Project Possible

Funding for the project came from the Congregation Kol Emet’s “Our Heart. Our Home” capital campaign, a $750,000 campaign focused on upgrading four key aspects of the synagogue: social hall, HVAC upgrades, indoor sanctuary, outside school, and the new outdoor sanctuary. The outdoor sanctuary and ecological uplift to the 10-acre campus is a primary piece of the campaign and was made possible by the generous donations of several Kol Emet members.

Stan Shatz bestowed a bounteous donation in memory of Geri Shatz, which made possible the creation of the “Geri Shatz Outdoor Contemplative Space.”

The following families also contributed to the funding of the Geri Shatz Outdoor Contemplative Space: Laurel & Kevin Bloch, Barbara & Debra Fogel and Family, Jill & David Gordon, Annie & Ryan Kubanoff and Family, and Teddi & Josh Matisoff and Family.

The Princeton Hydro team is honored to have worked with Kol Emet on this important and inspirational project.


Enjoying and Celebrating the New Space

Congregation Kol Emet came together on Sunday, June 4, 2023 for a celebration and ribbon-cutting ceremony to mark the completion of the outdoor sanctuary project. Here are a few photos from the joyous event:

[gallery link="none" ids="13125,13116,13130"]

Princeton Hydro is an expert in engineering, ecological restoration, and landscape architecture, and we’ve been incorporating green stormwater infrastructure and nature-based solutions into our designs for decades. Click here to read about the landscape restoration and stormwater management project we designed and implemented in Thompson Park, a 675-acre recreation area in Middlesex County, New Jersey.

[post_title] => From Turf to Biodiverse Outdoor Space: The Remarkable Transformation of Congregation Kol Emet’s 10-Acre Campus [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => transforming-kol-emet-campus [to_ping] => [pinged] => [post_modified] => 2023-07-27 16:44:27 [post_modified_gmt] => 2023-07-27 16:44:27 [post_content_filtered] => [post_parent] => 0 [guid] => https://princetonhydro.com/?p=13315 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [7] => WP_Post Object ( [ID] => 13006 [post_author] => 1 [post_date] => 2023-07-26 15:03:21 [post_date_gmt] => 2023-07-26 15:03:21 [post_content] =>

In a momentous occasion for environmental conservation, a dam removal on Bushkill Creek is underway, building upon a new era for this cherished limestone stream.

This dam removal marks another important milestone in restoring Bushkill Creek back to its natural, free-flowing state; connecting migratory fish species like alewife and American shad with upstream spawning grounds; and helping to revitalize ecologically-beneficial freshwater mussels colonies and populations of trout and other residential fish species.


Freeing Bushkill Creek One Dam at a Time

Bushkill Creek begins at the foot of Blue Mountain in Bushkill Township and flows 22 miles before its confluence with the Delaware River. The limestone stream flows through agricultural and suburban areas, as well as Easton, and supports a large wild brown trout population. It is designated as a “high quality, cold-water fishery” and treasured by anglers and the surrounding community as an important resource in an urban environment.

In 2022, Wildlands Conservancy contracted Princeton Hydro to design, permit, and oversee construction for the removal of four dams along Bushkill Creek. The Crayola Dam, also called Dam #4, was the first of the four dam removal projects to be completed.

The map below shows the location of the next three Bushkill Creek dams being removed:

[caption id="attachment_13253" align="aligncenter" width="571"] Created by Wildlands Conservancy, Contributed by Kurt Bresswein of The Star Ledger[/caption]  

The demolition and removal of Dam #1 commenced on July 7, 2023 and is scheduled for completion in August. The site labeled as Dam #3 is scheduled for demolition and removal later this year. And, the site labeled as Dam #2, is scheduled for removal in the summer of 2024.

Removing nonfunctional, outdated dams from the Bushkill and allowing the creek to return to a natural, free-flowing state will have myriad ecological benefits.


Removing the Bushkill’s First Barrier

Dam #1, the first barrier on the Bushkill, is located directly upstream from the Creek’s confluence with the Delaware River. Previous to this removal process, Dam #1 was the upstream limit for migratory fish like alewife, striped bass, and shad.

Dam #1 is owned by Lafayette College in Easton, Pennsylvania. It spans an impressive length of 90 feet, width of 14 feet, and stands 4-feet high. Having been constructed in 1793, the dam had fallen into a state of disrepair, with crumbling concrete impacting the integrity of the streambank retaining wall. Consequently, the dam and associated impoundment have had detrimental effects on the creek's ecosystem, obstructing fish passage, exacerbating local flooding, and degrading water quality. Professors and students of the College have tried for years to effectuate Bushkill Creek dam removals to improve the aquatic environment.

[caption id="attachment_13174" align="aligncenter" width="694"] View of the Bushkill Dam #1, located in the City of Easton, before the construction crew takes the first notch.[/caption]   [gallery link="none" columns="2" ids="13188,13187"]

By removing the dam, the project team aims to improve water quality, restore the creek back to its natural flowing state, reconnect river habitats that benefit fish and wildlife, and significantly increase biodiversity for the surrounding watershed. The project work also includes stabilizing the streambank, expanding riparian buffers, planting native trees and shrubs to filter runoff, and installing in-stream structures to restore fish habitat, which has numerous and far-reaching ecological benefits. It is important to note that the project's scope involves minimal disturbance, impacting less than one acre of land surrounding the dam.

Watch as the construction team makes the first notch in Dam #1: [embed]https://youtu.be/73Jrssb75pE[/embed] The removal of this specific dam holds profound promise, heralding a transformative era for the ecological well-being of Bushkill Creek. Signs of improvement were immediately visible as the construction team worked to notch out Dam #1: [gallery columns="2" link="none" ids="13177,13171"]   [caption id="attachment_13180" align="aligncenter" width="692"] This photo taken on July 12, 2023 (just 5 days after the first notch) shows great progress being made on the Bushkill Dam removal effort.[/caption] [gallery link="none" columns="2" ids="13265,13264"]

Collaborative Efforts Yield Success

The continued effort to restore Bushkill Creek with the removal of Barrier #1, which has been 10-years in the making, serves as a testament to the unwavering dedication displayed by a diverse array of 20+ stakeholders, including Delaware River Basin Commission, Lafayette College, Pennsylvania Department of Environmental Protection, National Fish and Wildlife Foundation (NFWF), Pennsylvania Department of Conservation and Natural Resources, and Princeton Hydro.

According to the Wildlands Conservancy, the initial natural resource damage assessment funding came following a fly ash spill from the Martins Creek Power Plant in 2005. The settlement, which was reached in 2016, totaled $1.3 million, with $902,150 going to the Delaware River Basin Commission for dam removal projects and $50,000 going to the Commission to manage mussel restoration. Additional funding for the overall project came from NFWF's Delaware Watershed Conservation Fund ($2,049,200), and Northampton County's Livable Landscapes program ($100,000).


Princeton Hydro has designed, permitted, and overseen the reconstruction, repair, and removal of 80+ small and large dams in the Northeast. For over a decade, Princeton Hydro has partnered with Wildlands Conservancy to remove dams in the Lehigh River Valley. To learn more about our fish passage and dam removal engineering services, click here. To learn more about Wildlands Conservancy, click here.

[post_title] => Revitalizing Bushkill Creek: Dam Removal is Underway! [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => revitalizing-bushkill-creek-dam-removal-is-underway [to_ping] => [pinged] => [post_modified] => 2023-08-09 11:52:37 [post_modified_gmt] => 2023-08-09 11:52:37 [post_content_filtered] => [post_parent] => 0 [guid] => https://princetonhydro.com/?p=13006 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [8] => WP_Post Object ( [ID] => 12943 [post_author] => 1 [post_date] => 2023-07-18 21:20:43 [post_date_gmt] => 2023-07-18 21:20:43 [post_content] =>

We are proud to announce that Princeton Hydro's Headquarters has been chosen as a winner of the 2023 New Good Neighbor Award for our role in revitalizing Trenton's historic Roebling Carpentry Shop located in the city's Wirerope District.

Presented by New Jersey Business & Industry Association and its flagship publication New Jersey Business Magazine, the New Good Neighbor Award recognizes commercial development projects throughout New Jersey that contribute to economic growth while being aesthetically pleasing and promoting sustainably.

Preserving History, Building for the Future

Princeton Hydro chose the historic Roebling Carpentry Shop (Building 110) as the location for its new headquarters office. The building restoration project, which began in 2021, was constructed by Trenton-based Hx2 Development and designed by Trenton-based Architecture and Planning firm, Clarke Caton Hintz. We received enormous support and encouragement from the City of Trenton and Greater Trenton due to its job creation, architectural merit, economic benefit, and Princeton Hydro’s commitment to community involvement.

"Trenton has welcomed us with open arms, and we are grateful to be part of this community. We are honored to be selected for the New Good Neighbor Award and hope to inspire other businesses to join us here in Trenton," said Geoffrey M. Goll, PE, President of Princeton Hydro.

The historic building, an old industrial wireworks factory, was transformed, under a historic preservation permit, into a unique, state-of-the-art office space. The design highlights the space’s historic architectural elements – heavy timber beams, huge windows and skylights, and original brick walls – while incorporating modern design and sustainability.

Creating a Space for Community

"We aimed to create a space that was inspiring yet functional for our staff, and what we didn't realize was that we ended up creating a new meeting space for the community too," expressed Goll. "As a misson-driven firm, it is within Princeton Hydro's core values to foster stewardship in our communities and support organizations who are working to make the world a better place."

[gallery columns="4" ids="13216,13226,13211,13213"]

Since opening our doors in April 2022, we have donated the use of our space for a variety of nonprofit organization events, including the Passage Theatre's “Trenton Makes Heroes” Fundraiser, Trenton Historical Society's Annual Stop The Wrecking Ball, New Jersey Environmental Lobby's Annual Award Dinner, and Revolutionary Trenton's Launch Event. We held donation drives here too to support local nonprofit organizations working in Trenton. For our our Holiday Employee Virtual Giving Event in 2022, we donated 115 items valued over $1,700 to Children’s Home Society of New Jersey. During our Spring 2023 Staff Donation Drive, we collected 208 pounds of shelf-stable food items for Arm In Arm, a Trenton-based nonprofit organization that addresses food and housing insecurity in the city and surrounding areas.

Inspiring the Next Generation in STEM

Inspiring local youth to pursue a pathway in the STEM (science, technology, engineering, math) fields is also a priority for our firm. Since moving to Trenton, we've volunteered our time to support community programs such as the Outdoor Equity Alliance's Careers in Conservation Internship and NJDEP's Youth Inclusion Initiative.  Bringing youth out into the field and showing them how our ecosystems function is one if the best ways to engage them. Our greatest hope is that one of the local students that we have taught during these programs will pursue a career in science or engineering and come work for us in Trenton!

The Transformation

[gallery columns="2" link="none" ids="10040,12947"]  

In every aspect of the design, construction and planning, the team made an active effort to source local and renewable resources. The relocation of Princeton Hydro’s headquarters from Ringoes, NJ to Trenton, NJ results in the relocation of 30+ jobs to Trenton, brings to life a building that has been vacant for more than 25 years, and adapts the building’s use from industrial to a transit-oriented, modern office space.

  [gallery columns="2" link="none" ids="10039,10900"] [gallery columns="4" ids="13246,13214,13225,13229"]  

2023 New Good Neighbor Awards

15 total development projects received the New Good Neighbor Award this year. As noted in the press release announcement from NJBIA, “the winning projects, participating in our 63rd Annual New Good Neighbor Awards program, have created more than $346 million in capital improvements, more than 2,200 construction jobs and nearly 5,500 permanent jobs, providing valuable assets and generating tremendous economic activity.”

For a full list of award winners and details about each of their projects, click here. For more information about the New Good Neighbor Award nomination and selection process, click here. And, to see more photos of the Trenton Headquarters transformation process, click here.

  [post_title] => Princeton Hydro's Headquarters Earns 2023 New Good Neighbor Award [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => 2023-new-good-neighbor-award [to_ping] => [pinged] => [post_modified] => 2023-07-28 18:25:20 [post_modified_gmt] => 2023-07-28 18:25:20 [post_content_filtered] => [post_parent] => 0 [guid] => https://princetonhydro.com/?p=12943 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [9] => WP_Post Object ( [ID] => 12939 [post_author] => 1 [post_date] => 2023-07-17 22:15:33 [post_date_gmt] => 2023-07-17 22:15:33 [post_content] =>

Welcome to the latest edition of our Client Spotlight series, which provides an inside look at our collaboration, teamwork, and accomplishments with one of our client partners.

Today, we’re shining the spotlight on Citizens United to Protect the Maurice River and Its Tributaries, known commonly as CU Maurice River, a 501(c)3 nonprofit membership organization dedicated to protecting the Maurice River Watershed’s natural integrity and cultural heritage.

The Maurice River, located in south-central New Jersey, was designated a National Wild and Scenic River by Congress in 1993. It draws from a drainage area of 385 square miles and meanders south for 50 miles, through Southern New Jersey primarily in Cumberland County. Headwaters are in parts of Gloucester, Salem, and Atlantic Counties, emptying into the main stem of the Maurice; from there it flows into Delaware Bay. The major tributaries of the river are Scotland Run, Muddy Run, Menantico Creek, Muskee Creek, and the Manumuskin River. There are about 20 small lakes in the watershed, the largest of which is Union Lake at 950 acres.

As South Jersey’s leading watershed organization, CU Maurice River engages in fieldwork, advocacy, research, and education initiatives generating and contributing to a greater understanding of the local environment and wildlife.

For this Client Spotlight, we spoke with CU Maurice River Executive Director Karla Rossini via Zoom:

Q. Tell us a little about CU Maurice River and what makes it unique?

A:

[embed]https://youtu.be/iahd-_hbgPU[/embed]  

"CU Maurice River is a very grassroots, very local organization. One of our core strengths is community involvement. In everything we do, we try to invite the largest section of community that we possibly can. Whether that’s to participate in educational opportunities or participate in volunteerism or become an advocate of our local resources, we really make it our goal to develop and foster stewardship within the community."


Q. What are some exciting things your organization is working on right now?

A:

"We're very excited about the work we're doing with the WheatonArts & Cultural Center, a nonprofit 501(c)(3) organization with a mission to engage artists and audiences in an evolving exploration of creativity.

Over the years, CU Maurice River has worked with WheatonArts to design and implement various best management practices throughout its 45-acre campus. We’ve installed vernal pools, purple martin gourds, a blue bird trail, a nature trail, and a massive rain garden. The projects support water resources on site and beyond, revitalize and preserve natural habitats, and provide an invaluable community resource for promoting eco-friendly land management, stewardship, and nature exploration.

WheatonArts and CU Maurice River also launched a four-week nature journaling course, which will take place on Wednesdays and Thursdays, from August 3 to August 25 (2023). Kids get to spend time outdoors while growing their science knowledge, appreciation for nature, and artistic ability. Nature journaling is a way to creatively connect and build a deep, lasting relationship with the natural world.

The CU Maurice River team does the scientific teachings, and the WheatonArts team does the art teachings. So for example, CU Maurice River will teach about the anatomy of a tree, how a tree functions, why an Oak tree produces acorns, and the ecosystem services a tree provides. And, WheatonArts teaches the kids how to draw and paint a tree, how to make an acorn look round, and how to get the shades of the brown tree trunk just right.

Another interesting aspect of the program is that it also highlights the history of communication in nature exploration. Darwin had to draw his pictures to describe his findings. Mary Treat had to draw her discoveries. Audubon had to illustrate his birds. And, let’s face it, most of the best ID books aren’t photo books, they’re illustrated books. So, this program focuses on the importance of art in science."


Q. Can you talk a little about the CU Maurice and Princeton Hydro partnership: 

A:

"The first time I encountered Princeton Hydro was at a Musconetcong River event where Princeton Hydro was presenting on dam removal and the restoration of trout habitat on the Musconetcong. Then, later that year, at the Annual Delaware River Watershed Forum, I met Dana Patterson (Princeton Hydro's Director of Marketing and Communications). We got to talking about a variety of different projects we could explore together, and it's been a really great partnership ever since. I’m pretty sure I've given Dana and Christiana Pollock (Princeton Hydro's Director of Restoration and Resilience) some wacky ideas to figure out, but Princeton Hydro has always been very supportive AND realistic.

Since then, we’ve contracted with Princeton Hydro to do a feasibility study on the Centerton Dam removal. We’re also working with Princeton Hydro to do an ArcGIS StoryMap of the Paddle Trails in the Maurice River Watershed. And, we've got some other exciting things in the works that I'm not at liberty to discuss publicly today, but stay tuned for more great things as a result of CU Maurice River's collaboration with the Princeton Hydro team.

Princeton Hydro has really provided a lot of support and guidance, and I am eternally grateful for their partnership."


Q. How can people get involved in and help support the important work CU Maurice River is doing?

A:

[embed]https://youtu.be/9WY0D21EFeo[/embed]

For more CU Maurice River volunteer opportunities and upcoming events, click here.


Q. Do you have anything else you'd like to share with our blog readers about CU Maurice River or yourself?

A:

[embed]https://youtu.be/Kb1l8Qfxe4c[/embed]

A big thanks to Karla and CU Maurice River for taking part in our Client Spotlight Series!

To learn more about CU Maurice River, we invite you to visit their website and subscribe to their newsletter.

Click below to check out the previous edition of our Client Spotlight Series featuring George Jackman, PhD, Senior Habitat Restoration Manager for Riverkeeper:

[post_title] => Client Spotlight: CU Maurice River [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => client-spotlight-cu-maurice-river [to_ping] => [pinged] => [post_modified] => 2023-07-19 19:21:47 [post_modified_gmt] => 2023-07-19 19:21:47 [post_content_filtered] => [post_parent] => 0 [guid] => https://princetonhydro.com/?p=12939 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [10] => WP_Post Object ( [ID] => 12875 [post_author] => 1 [post_date] => 2023-07-13 12:23:00 [post_date_gmt] => 2023-07-13 12:23:00 [post_content] =>

We are thrilled to extend a warm welcome to three interns who have recently joined our team! Each intern is passionately contributing to a wide range of projects that align with their professional interests and areas of study. They are also benefiting from the guidance of experienced mentors from Princeton Hydro, as they gain valuable hands-on experience with our small business consulting firm. Our firm remains resolutely dedicated to enhancing our ecosystems, improving the quality of life, and creating thriving communities. We are excited to collaborate with these interns and continue our mission of making a positive impact.

Let's meet them!


Jeremy Goll, GIS Intern

Jeremy Goll headshotIn the Fall, Jeremy will begin his senior year at Moravian University and will earn his B.S. in Computer Science. During his internship with Princeton Hydro, Jeremy aims to get a better understanding of the workflow process and gain more experience with ArcGIS, a GIS mapping and analysis tool.

When not working and studying, Jeremey enjoys playing video games. During the school season, he throws shot-put and discus for the Moravian track and field team.

 

Jackson Tilves, Aquatics Intern

Jackson is a recent graduate of Stockton University, where he obtained a B.S. in Environmental Science with concentrations in Wildlife Management and Forestry. He studied water quality parameters as well as fisheries and forest management techniques in the unique ecosystems found in the New Jersey Pinelands. Before joining Princeton Hydro, he worked with a river restoration company that focused on dam removals, stream morphology, and in-stream habitat creation for native species.

During his internship, he will support the Aquatics Team and is excited to expand his knowledge of aquatic systems and the management of them; help create the most natural systems in areas that people can still enjoy; and help preserve these ecosystems for future generations.

In his free time, Jackson enjoys fishing and trap shooting, working on his boat, and participating in bass tournaments.

 

Mikhail Velez, Communications Intern

Mikhail Velez joins Princeton Hydro as a Communications Intern. With her B.A. in Fine Arts and 2-D Animation from the School of Visual Arts, she built her career as a freelancer, working on animated projects and illustrations for a number of clients and companies. She now hopes to share her expertise and learn more about what it takes to manage, curate, and navigate social media for an water resources engineering firm.

When not working, Mikhail enjoys playing games, spending time with friends, and pursuing different creative endeavors with new artistic projects.

 
To learn more about our team, go here! [post_title] => Join Us in Welcoming Three Interns to Our Team! [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => welcome-interns-2023 [to_ping] => [pinged] => [post_modified] => 2023-07-27 18:25:32 [post_modified_gmt] => 2023-07-27 18:25:32 [post_content_filtered] => [post_parent] => 0 [guid] => https://princetonhydro.com/?p=12875 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) ) [post_count] => 11 [current_post] => -1 [in_the_loop] => [post] => WP_Post Object ( [ID] => 13340 [post_author] => 1 [post_date] => 2023-09-06 14:26:37 [post_date_gmt] => 2023-09-06 14:26:37 [post_content] => We are proud to announce the addition of two new team members! Join us in welcoming them as we provide a glimpse into their backgrounds and expertise. Their unique skills and perspectives promise to enrich our company culture and contribute to the innovative solutions we provide to our clients.

Angelica Diaz, Landscape Designer

Angelica is a recent graduate of Temple University, where she obtained her Master Degree in landscape architecture with a focus on ecological restoration. She received the 2023 American Society of Landscape Architects Merit Award for her academic work, which culminated in a graduate thesis that explored and integrated creative solutions to flood  resilience in New Castle, Delaware. This work unlocked a desire to discover the unique ways in which landscape architecture can be realized through the lens of ecology and sustainability.

Before joining Princeton Hydro, Angelica was employed at a small-scale landscape architecture firm focusing on public and residential design. She had the opportunity to use her previous experience in invasive management to help ensure longevity by developing long-term maintenance manuals for clients. Through this work, she also gained invaluable experience in design development, preparation of proposals and construction documentation packages, and client communication.

In her free time, Angelica loves to paint, read, bake bread, and maintain her tiny Philadelphia backyard.


Lexie Seifert, Staff Engineer

Lexie received a B.S. in Environmental Engineering with a concentration in Air Quality from Rutgers University. During her studies, she was part of the Rutgers Water Resources Program where she helped design and construct rain gardens to address flooding and stormwater runoff impacts. After graduation, Lexie began her professional career in the wastewater engineering sector designing decentralized wastewater treatment plants.

During her free time, Lexie enjoys hiking, exercising, and being outside. When the weather is bad, she likes making rugs and trying out new recipes.


Our staff is composed of individuals with academic training and extensive project experience in stormwater management, geotechnical investigation, hydrology and hydrogeology, aquatic and wetland ecology, fishery biology, population and community ecology dynamics, GIS, environmental design, and landscape architecture. Click here to read more about the Princeton Hydro team.

[post_title] => Employee Spotlight: Meet Our New Landscape Architecture and Engineering Team Members [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => employee-spotlight-august-2023 [to_ping] => [pinged] => [post_modified] => 2023-09-11 16:49:49 [post_modified_gmt] => 2023-09-11 16:49:49 [post_content_filtered] => [post_parent] => 0 [guid] => https://princetonhydro.com/?p=13340 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [comment_count] => 0 [current_comment] => -1 [found_posts] => 338 [max_num_pages] => 31 [max_num_comment_pages] => 0 [is_single] => [is_preview] => [is_page] => [is_archive] => [is_date] => [is_year] => [is_month] => [is_day] => [is_time] => [is_author] => [is_category] => [is_tag] => [is_tax] => [is_search] => [is_feed] => [is_comment_feed] => [is_trackback] => [is_home] => 1 [is_privacy_policy] => [is_404] => [is_embed] => [is_paged] => [is_admin] => [is_attachment] => [is_singular] => [is_robots] => [is_favicon] => [is_posts_page] => 1 [is_post_type_archive] => [query_vars_hash:WP_Query:private] => d62d2cbe592bbb144bf43b0bfc30813d [query_vars_changed:WP_Query:private] => 1 [thumbnails_cached] => [allow_query_attachment_by_filename:protected] => [stopwords:WP_Query:private] => [compat_fields:WP_Query:private] => Array ( [0] => query_vars_hash [1] => query_vars_changed ) [compat_methods:WP_Query:private] => Array ( [0] => init_query_flags [1] => parse_tax_query ) )

Blog

archive
 
Topics
Select Topics