We’re committed to improving our ecosystems, quality of life, and communities for the better.
Our passion and commitment to the integration of innovative science and engineering drive us to exceed on behalf of every client.
WP_Query Object ( [query] => Array ( [page] => [pagename] => blog ) [query_vars] => Array ( [page] => 0 [pagename] => blog [error] => [m] => [p] => 0 [post_parent] => [subpost] => [subpost_id] => [attachment] => [attachment_id] => 0 [name] => [page_id] => 0 [second] => [minute] => [hour] => [day] => 0 [monthnum] => 0 [year] => 0 [w] => 0 [category_name] => natural-resource-management [tag] => [cat] => 10 [tag_id] => [author] => [author_name] => [feed] => [tb] => [paged] => 1 [meta_key] => [meta_value] => [preview] => [s] => [sentence] => [title] => [fields] => [menu_order] => [embed] => [category__in] => Array ( [0] => 10 ) [category__not_in] => Array ( ) [category__and] => Array ( ) [post__in] => Array ( ) [post__not_in] => Array ( ) [post_name__in] => Array ( ) [tag__in] => Array ( ) [tag__not_in] => Array ( ) [tag__and] => Array ( ) [tag_slug__in] => Array ( ) [tag_slug__and] => Array ( ) [post_parent__in] => Array ( ) [post_parent__not_in] => Array ( ) [author__in] => Array ( ) [author__not_in] => Array ( ) [search_columns] => Array ( ) [posts_per_page] => 11 [ignore_sticky_posts] => [suppress_filters] => [cache_results] => 1 [update_post_term_cache] => 1 [update_menu_item_cache] => [lazy_load_term_meta] => 1 [update_post_meta_cache] => 1 [post_type] => [nopaging] => [comments_per_page] => 5 [no_found_rows] => [order] => DESC ) [tax_query] => WP_Tax_Query Object ( [queries] => Array ( [0] => Array ( [taxonomy] => category [terms] => Array ( [0] => 10 ) [field] => term_id [operator] => IN [include_children] => ) ) [relation] => AND [table_aliases:protected] => Array ( [0] => ph_term_relationships ) [queried_terms] => Array ( [category] => Array ( [terms] => Array ( [0] => 10 ) [field] => term_id ) ) [primary_table] => ph_posts [primary_id_column] => ID ) [meta_query] => WP_Meta_Query Object ( [queries] => Array ( ) [relation] => [meta_table] => [meta_id_column] => [primary_table] => [primary_id_column] => [table_aliases:protected] => Array ( ) [clauses:protected] => Array ( ) [has_or_relation:protected] => ) [date_query] => [queried_object] => WP_Post Object ( [ID] => 6 [post_author] => 1 [post_date] => 2021-01-18 12:51:43 [post_date_gmt] => 2021-01-18 12:51:43 [post_content] => [post_title] => Blog [post_excerpt] => [post_status] => publish [comment_status] => closed [ping_status] => closed [post_password] => [post_name] => blog [to_ping] => [pinged] => [post_modified] => 2021-01-18 12:51:43 [post_modified_gmt] => 2021-01-18 12:51:43 [post_content_filtered] => [post_parent] => 0 [guid] => https://princetonhydro.com/?page_id=6 [menu_order] => 0 [post_type] => page [post_mime_type] => [comment_count] => 0 [filter] => raw ) [queried_object_id] => 6 [request] => SELECT SQL_CALC_FOUND_ROWS ph_posts.ID FROM ph_posts LEFT JOIN ph_term_relationships ON (ph_posts.ID = ph_term_relationships.object_id) WHERE 1=1 AND ( ph_term_relationships.term_taxonomy_id IN (10) ) AND ((ph_posts.post_type = 'post' AND (ph_posts.post_status = 'publish' OR ph_posts.post_status = 'acf-disabled'))) GROUP BY ph_posts.ID ORDER BY ph_posts.menu_order, ph_posts.post_date DESC LIMIT 0, 11 [posts] => Array ( [0] => WP_Post Object ( [ID] => 16054 [post_author] => 1 [post_date] => 2024-12-06 15:02:02 [post_date_gmt] => 2024-12-06 15:02:02 [post_content] => We are thrilled to announce that Dr. Fred Lubnow, Senior Technical Director of Ecological Services at Princeton Hydro, has been honored with the prestigious Peter Homack Award by the American Water Resources Association, New Jersey Section (NJ-AWRA). The award was presented during NJ-AWRA’s annual meeting in December, recognizing Fred’s outstanding contributions to the multi-disciplinary understanding and management of New Jersey’s water resources. The Peter Homack Award, established in 1987, commemorates the late Peter Homack, a former NJ-AWRA president and distinguished New Jersey engineer. The award celebrates individuals who exemplify Homack’s legacy of advancing water resource management through collaboration and innovation. Fred’s selection for this honor is a testament to his decades-long dedication to the restoration and protection of water resources. Since Princeton Hydro’s founding in 1998, Fred has played a pivotal role in the study and restoration of hundreds of lakes across New Jersey and the Mid-Atlantic region. His work at Lake Hopatcong, in particular, stands as a shining example of his commitment. For over 30 years, Fred has partnered with Lake Hopatcong stakeholders to implement comprehensive restoration plans, develop best management practices, and achieve milestones toward the lake’s water quality goals. Beyond his work at Princeton Hydro, Fred has enriched the field of water resource management through education and stewardship. He teaches watershed management at Delaware Valley University and freshwater ecology at Villanova University, inspiring the next generation of environmental stewards. Fred has contributed to NJ-ARWA over the last five years through a variety of presentations on harmful algal blooms (HABs) and watershed planning. Additionally, he has held leadership roles in the North American Lake Management Society (NALMS) and the Pennsylvania Lake Management Society. Selected as a member of the New Jersey Department of Environmental Protection’s HAB Expert Team, Fred has been instrumental in shaping the HAB advisory and alert systems we rely on today. His contributions have advanced our understanding of the factors driving cyanobacterial blooms in New Jersey’s lakes, offering valuable insights to improve the prediction, prevention, and management of these blooms. Although Fred could not attend the award ceremony in person, he joined virtually via Zoom as his colleague Michael Hartshorne, Princeton Hydro’s Director of Aquatics, accepted the award on his behalf. During Michael's acceptance speech, he said: “I’ve worked with Fred since I started at Princeton Hydro in 2006. He’s a humble leader, a dedicated mentor, and an overall fantastic person. Fred’s enthusiasm for lake ecology, particularly algae, is truly infectious. It’s a rare skill to make others genuinely excited about such a niche topic, but Fred has a remarkable way of doing just that. Fred truly embodies the spirit of the Peter Homack Award, and it’s an honor to receive this on his behalf.” Fred’s passion, expertise, and collaborative spirit have left an indelible mark on water resource management in New Jersey and beyond. Princeton Hydro congratulates him on this well-deserved recognition and looks forward to his continued contributions to the field. Earlier this year, Fred wrote a piece on "Preparing for Potential Harmful Algal Blooms: An Urgent Call to Action for NJ’s Lakes and Reservoirs." Click here to read it and learn more about his work to address the challenges posed by HABs and protect the integrity of our water bodies. [gallery link="none" ids="16058,4919,2956"] [post_title] => Princeton Hydro’s Dr. Fred Lubnow Receives NJ-AWRA's Peter Homack Award [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => princeton-hydros-dr-fred-lubnow-receives-nj-awras-peter-homack-award [to_ping] => [pinged] => [post_modified] => 2024-12-07 15:03:38 [post_modified_gmt] => 2024-12-07 15:03:38 [post_content_filtered] => [post_parent] => 0 [guid] => https://princetonhydro.com/?p=16054 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [1] => WP_Post Object ( [ID] => 15865 [post_author] => 1 [post_date] => 2024-11-12 10:07:45 [post_date_gmt] => 2024-11-12 10:07:45 [post_content] => Lake Hopatcong, New Jersey's largest freshwater lake, spans 2,600 acres and stretches over six miles, forming part of the border between Sussex and Morris counties in the state’s northern Highlands region. Just 40 miles from Manhattan, its proximity to the city, combined with its scenic beauty, recreational appeal, and rich biodiversity, has long made it a desirable destination for visitors, residents, and businesses alike. The lake’s waters and surrounding habitats support diverse wildlife, including aquatic plants, animals, birds, and other terrestrial species. Increased residential and commercial development, along with the impacts of climate change, have placed growing pressures on the lake’s ecosystem. Managing these pressures is vital to preserving water quality and protecting the biodiversity of both the lake and its watershed. The Lake Hopatcong Foundation (LHF) and Lake Hopatcong Commission (LHC) are dedicated to protecting the lake and balancing development with environmental stewardship. Through thoughtful planning, long-term sustainability initiatives, and strategic partnerships, they have worked to safeguard the lake’s ecological, economic, and recreational value. Princeton Hydro, a long-standing partner in this effort, has been involved in restoring the lake and managing its watershed for over 30 years. Our work has focused on reducing pollutant loads, managing stormwater runoff, addressing invasive aquatic plants and nuisance algal blooms, and enhancing habitat quality. Together with LHF, LHC, and funding partners, we have implemented a variety of projects designed to protect the lake and the communities that rely on it. As a key partner, the New Jersey Highlands Council (Highlands Council) has provided essential funding for many of these critical projects, ensuring they come to fruition. These efforts reflect the Council’s commitment to safeguarding Lake Hopatcong’s future while upholding the Highlands Act’s mission to protect natural resources and foster sustainable community growth. These collaborations are vital to the initiatives that preserve the lake’s water quality, restore habitats, and promote the long-term health of the region. Showcasing Success at the New Jersey Highlands Council 20th Anniversary Event In celebration of its 20th anniversary, the Highlands Council hosted a special event, which featured a “Lake Hopatcong Exhibit,” highlighting many of the successful projects that it funded. Representatives from LHC, LHF, Highlands Council, and Princeton Hydro, were on hand to discuss the significance of these projects and their contributions to the long-term health of the lake and surrounding communities. The exhibit included a variety of interactive experiences, including informative posters and maps detailing project efforts. Participants were able to examine Lake Hopatcong water samples under microscopes with guidance from Dr. Fred S. Lubnow, Princeton Hydro Senior Technical Director of Ecological Services. By highlighting both the challenges faced and the progress made, the exhibit offered attendees a deeper understanding of the lake’s critical role in the region’s environmental and economic sustainability as well as the ongoing efforts to maintain the lake's water quality and protect its ecological health. [gallery link="none" columns="2" ids="15868,15871,15869,15872"] Lake Hopatcong Success Stories Funded by the New Jersey Highlands Council Through funding from the Council, a variety of partners including LHF, LHC, Princeton Hydro, and local government agencies have been able to implement a myriad of projects. From stormwater management systems to watershed restoration efforts, these initiatives are designed to address issues like nutrient pollution, invasive species, and habitat degradation. These projects are helping to protect the lake’s water quality and ensure its healthy future: Upper Musconetcong Watershed Implementation Plan (WIP): $109,000 to LHC In 2021, the Upper Musconetcong River Watershed Restoration Plan was updated to a 9-element WIP. This revision re-evaluated existing conditions, integrated green infrastructure, and incorporated emerging technologies. The WIP has since facilitated funding for projects such as biochar installation, alum treatments to reduce phosphorus, and stormwater management improvements. 25% of the WIP ($27,250) was used as match toward a National Fish and Wildlife Foundation (NFWF) grant ($485,650). This effort led to NJDEP 319 (h) Stormwater Grant for Biofiltration at Lakeside Fields ($239,000). Restoration Plan for Memorial Beach and Park in the Borough of Mount Arlington: $60,000 to Borough of Mount Arlington A restoration plan was developed for the watershed that directly flows to Memorial Beach through the park. A series of stormwater management measures were recommended and subsequent funding was secured. This effort led to community-funded project for the dredging of Memorial Pond ($277,000) and a slope stabilization with native plantings at Memorial Pond via a NJ Department of Environmental Protection 319(h) grant. $70,500 was also used as match for NFWF Glen Brook Project (Total Project - Glen, Muscy, Witten - $485,650) Preliminary Feasibility Assessment & Data Collection for Beneficial Reuse of Sediment in Landing Channel: $47,650 to Roxbury Township Erosion of Floating Island, which located in Lake Hopatcong’s Landing Channel, contributed to significant sediment accumulation. A preliminary feasibility study conducted by Princeton Hydro explored dredging and habitat restoration options. The proposed beneficial reuse/dredging project would rehabilitate the island and lead to reduced phosphorus in the lake, increased beneficial wetland habitat, and improved water quality. The next phase of the project includes engineering design, permitting, and implementation. Feasibility Study Update for Sewering Jefferson Township Section of Lake Hopatcong Watershed: $100,000 to Jefferson Township A 25+ year-old feasibility study was updated to lay the groundwork for the the installation of sanitary sewers along the lakefront area of Jefferson Township, which is currently using septic systems. This marked the first step in addressing one of largest sources of phosphorus entering Lake Hopatcong and a pivotal milestone in the ongoing efforts to safeguard water quality and mitigate the risk of harmful algal blooms (HABs) on Lake Hopatcong. These efforts led to a Community Funded Project from Congresswoman Sherill’s Office ($750,000). Design of a Bank Stabilization and Planting Project along the Musconetcong River: $89,500 to Roxbury Township A bank stabilization design and planting plan was completed for a popular fishing location along the Musconetcong River between Lakes Hopatcong and Musconetcong. The project, led by the LHC with technical assistance from Princeton Hydro, aims to reduce sediment and nutrient levels in Lake Musconetcong by improving the condition of a key section of the Musconetcong River. The Highlands Council grant to Roxbury Township provided the critical first step in this long-term, multifaceted project. Oxygenation Feasibility Study: $80,300 to Morris County Princeton Hydro completed a feasibility study for the design of an oxygenation system for Lake Hopatcong. It aimed to address the lake’s internal phosphorus load that contributes toward the nuisance HABs over the summer months. Since the widespread occurrence of HABs in 2019, the LHF and the LHC have been actively exploring solutions to reduce their frequency. Oxygenation systems help prevent stagnation of water, increasing circulation, disrupting thermal stratification which provides “through-column” mixing, and minimizes the occurrence of HABs. The results of this study will be used to move the project forward into the permitting and implementation phases. Design of a Regenerative Stormwater Conveyance System for Witten Park: $54,000 to Borough of Hopatcong A planting plan and regenerative stormwater conveyance system design was completed to aid in the mitigation of stormwater in Witten Park. A new system will help to manage and treat stormwater within the park, reducing erosion and sediment that flows into Lake Hopatcong. The system will also restore the floodplain, wetlands, and streams, and improve the ecological health of the area. The funding from the Council was also used by LHC as in-kind match for a NFWF grant award ($353,000) for the permitting & implementation phases. Three Year Trout Habitat Study at Lake Hopatcong: $130,000 to Jefferson Township One of the most significant recreational draws to Lake Hopatcong is its trout fishery, recognized regionally by anglers and established as an important component of the local economy. Data collected over the past 30 years at the lake was analyzed and showed increasing surface water temperatures, a trend that may suggest that the trout carryover habitat is being negatively impacted. The LHC, in cooperation with the LHF and the Knee-Deep Club, initiated a three-year trout tagging study. The study focused on the introduction of larger trout to assess the long-term population dynamics of those stocked fish and the general health of the fishery. Revitalization of Two Stormwater Basins in Roxbury Township: $98,100 to Roxbury Township Planning documents, a hydraulic & hydrologic analysis, and an engineering report were prepared for the construction of two stormwater basin retrofits. The stormwater basin retrofit project aims to minimize runoff and reduce pollutants flowing into Lake Hopatcong, thus protecting water quality. The reconstruction of the basins is critical in managing stormwater effectively, preventing erosion, and reducing nutrient loads that contribute to harmful algal blooms. By improving these basins, the project plays a key role in safeguarding the lake's ecosystem and ensuring the long-term health of its water resources. Development of Plans for Catch Basins at Shore Hills Beach Club: $42,500 to Morris County A field assessment, survey, and engineering design was completed for the installation of stormwater treatment devices at each of the outfall systems at the Shore Hills Beach Club property, which is located at the southern most tip of Lake Hopatcong. The primary goal of the project is to reduce phosphorus loads entering the lake, which can lead to nuisance weed growth, reduced water quality, and the proliferation of HABs. This funding from the Council enabled the project's next phase: construction. As we celebrate the 20th anniversary of the New Jersey Highlands Council and its vital contributions to Lake Hopatcong, it’s clear that the future of this treasured resource relies on ongoing collaboration among stakeholders, local communities, and environmental organizations. By implementing innovative solutions and promoting sustainable practices, we can ensure that Lake Hopatcong continues to thrive as both an ecological haven and a recreational hub. This collective effort not only enhances the lake’s water quality and biodiversity but also strengthens the economic vitality of the surrounding communities, fostering a legacy of environmental stewardship for generations to come. [post_title] => Collaborating for a Sustainable Future & Celebrating Lake Hopatcong Success Stories [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => collaborating-for-a-sustainable-future-celebrating-lake-hopatcong-success-stories [to_ping] => [pinged] => [post_modified] => 2024-11-13 19:36:15 [post_modified_gmt] => 2024-11-13 19:36:15 [post_content_filtered] => [post_parent] => 0 [guid] => https://princetonhydro.com/?p=15865 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [2] => WP_Post Object ( [ID] => 15575 [post_author] => 1 [post_date] => 2024-09-18 19:51:52 [post_date_gmt] => 2024-09-18 19:51:52 [post_content] => The South Cape May Meadows Preserve, owned and managed by The Nature Conservancy (TNC), is a jewel among New Jersey's protected landscapes. Spanning over 200 acres adjacent to Cape May State Park, the preserve is celebrated for its diverse habitats, including beaches, dunes, freshwater wetlands, and fields. As a crucial stopover along the Atlantic Flyway, it offers refuge to rare and endangered shorebirds as well as native and migratory birds, making it a globally renowned paradise for birders. It also supports a wide variety of terrestrial species year-round. The Preserve also has a variety of features aimed at enhancing visitor experience, promoting sustainability, and supporting its diverse wildlife. These features include a welcome shed with a green roof, a rain garden, purple martin houses, a raised wildlife viewing platform, an osprey platform with a streaming camera, benches, interpretive signs, and an 80-foot bird blind. [gallery link="none" columns="4" ids="15545,15582,15554,15566"] With its rich biodiversity, scenic beauty and unique features, the South Cape May Meadows Preserve is a site of high public interest and use, attracting approximately 90,000 visitors each year. To accommodate the high level of public interest and improve accessibility, TNC contracted Princeton Hydro to upgrade the existing path network to make it more physically accessible and to create new pathways that open up previously unreachable areas of the Preserve. Given that much of the site is composed of freshwater wetlands, creating accessible pathways without disturbing these sensitive areas presented a unique challenge that required innovative solutions. To address this, the centerpiece of the project was the construction of an elevated boardwalk trail in the western area of the preserve. Slated for completion in September 2024, the new boardwalk will add 2,675 linear feet of elevated walking paths throughout the preserve, along with a 480-square-foot elevated viewing platform. The boardwalk will wind through previously inaccessible wetland areas and is designed to comply with ADA standards, ensuring that visitors of all abilities can explore and enjoy the preserve's unique maritime landscape. Led by TNC, the Princeton Hydro team was responsible for designing, permitting, and overseeing construction for the project, with Renova serving as the primary construction partner. The images below are renderings and a mapped layout of the project site created by Landscape Architect Cory Speroff, PLA, ASLA, CBLP of Princeton Hydro, the lead project designer and project manager: [gallery columns="2" link="none" ids="15568,15569"] Sustainable Construction Practices & Accessibility Enhancements To minimize environmental impact during construction, the boardwalk is being installed using a top-down construction method. This approach required finding a product that could meet all design requirements while supporting the necessary equipment for construction from above. The project team selected GreenWalk™, a proprietary structure system manufactured by IDEAL Foundation Systems. GreenWalk™ is a highly engineered, modular, zero-maintenance boardwalk system that meets all of the project criteria while ensuring minimal disturbance to the wetland. This video provides a behind-the-scenes look at the boardwalk installation process and the intricate work involved in bringing this accessible pathway to life. Watch now to see how we're making nature more accessible for everyone: https://youtu.be/wSJeYM8ajPE In addition to the boardwalk, the Princeton Hydro team designed and permitted several site improvements to enhance accessibility and visitor experience: Existing trail surface types were assessed for sturdiness, and cost-effective measures were implemented to enhance accessibility. This included leveling the existing gravel and sandy portions of the Main and East trails and replacing them with a firmer, more stable surface. [gallery link="none" ids="15581,15578,15580"] Equipped with safety railing, handrails, seated observation areas, and educational signs in both braille and English print, the boardwalk is designed to provide support for people with accessibility considerations. [gallery link="none" ids="15542,15535,15579"] The existing parking lot was upgraded to include formal ADA spaces. One-third of the original stone parking lot was converted to concrete to improve accessibility. These efforts ensure that the South Cape May Meadows Preserve remains an inclusive and ecologically sensitive destination, allowing all visitors to fully appreciate the natural beauty and biodiversity of this unique maritime landscape. [gallery columns="2" link="none" ids="15567,15526"] Speroff emphasized that the boardwalk is more than just a pathway through nature; it symbolizes a collective commitment to protecting and celebrating the environment: “It stands as a reminder that we can create spaces that are both beautiful and functional, without compromising the health of our planet. By choosing sustainable materials and practices, we have set a standard for future projects in our community and beyond. Moreover, this boardwalk represents our pledge to inclusivity, going above and beyond the minimum standards for ADA compliance. We created a space where everyone, regardless of physical abilities, can enjoy the beauty of our natural surroundings—a place where families can come together, individuals can find solitude, and nature can be experienced by all.” Celebrating a New Chapter in Visitor Experience On Sunday, August 4, TNC hosted a ribbon-cutting ceremony at the South Cape May Meadows Preserve to unveil the new boardwalk trail and site enhancements. The event highlighted the significant strides made in increasing the preserve’s accessibility and offered attendees a preview of the new features, including four metal plaques with tactile elements and braille, showcasing nature themes like the life cycle of a butterfly and frog, turtle shells, and dragonflies. [gallery columns="2" link="none" ids="15576,15546"] Speeches were given by Barbara Brummer, State Director of The Nature Conservancy in New Jersey; Paulo Rodriguez Heyman, President of Renova; Mark Gallagher, Vice President of Princeton Hydro; and both the father and grandmother of Julian Tao Knipper. The Knipper family generously donated to the project in memory of Julian, who dearly loved Cape May and tragically passed away at the age of three. The project also honored Pat and Clay Sutton, esteemed educators, authors, naturalists, photographers, lecturers, nature tour leaders, and long-time champions for the protection of Cape May’s rich biodiversity. The new trail was officially dedicated to Julian, Pat and Clay. [gallery columns="4" link="none" ids="15551,15559,15541,15536"] Speroff expressed deep appreciation for the donors, stating, “The belief in this project and the willingness to invest in this vision made it possible to create a space that is accessible to all and harmonious with our natural surroundings. These contributions are not just financial; they are investments in the future of the Cape May community and our planet.” It is essential to also acknowledge the invaluable contributions of those who made this project possible, creating a space where people of all abilities can enjoy nature, reflect, and find peace. Special thanks go to The Nature Conservancy, particularly Barbara Brummer, Eric Olsen, Damon Noe, Elliot Nagele, and the TNC project staff. The Renova Team's hard work and dedication were instrumental in bringing the one-of-a-kind boardwalk to life. Additionally, the design team, including IDEAL Foundation Systems, Bedford, L2A, and JBCI, played a crucial role in the project’s success. And, members of the Princeton Hydro team, especially Cory Speroff, PLA, ASLA, CBLP; Geoffrey M. Goll, P.E.; Ryan Eno, EIT; Ivy Babson; and Casey Pantaleo, P.E. [gallery link="none" ids="15563,15544,15560,15547,15549,15552,15548,15562,15550"] A Legacy of Collaboration The Nature Conservancy and Princeton Hydro have a storied history of working on impactful projects together, from removing obsolete dams and opening up miles of river for fish passage to eradicating invasive species right here on this property. A few years ago, we designed the removal of Columbia Lake Dam, which reconnected 20 miles of stream, with American Shad returning to their native spawning grounds upstream just months after it was removed. And now, as this South Cape May Meadows Preserve project nears completion, we celebrate a project that offers everyone the chance to experience its natural beauty and biodiversity. This collaboration between Princeton Hydro and TNC underscores the importance of creating inclusive spaces that honor and protect our natural world. Within the next few weeks, stay tuned for more updates and photos as we near completion on this exciting project, ensuring that the South Cape May Meadows Preserve remains a cherished destination for all who visit. [post_title] => Enhancing Accessibility and Preserving Nature at South Cape May Meadows Preserve [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => enhancing-accessibility-and-preserving-nature-at-south-cape-may-meadows-preserve [to_ping] => [pinged] => [post_modified] => 2024-09-18 22:05:06 [post_modified_gmt] => 2024-09-18 22:05:06 [post_content_filtered] => [post_parent] => 0 [guid] => https://princetonhydro.com/?p=15575 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [3] => WP_Post Object ( [ID] => 15503 [post_author] => 1 [post_date] => 2024-09-05 07:26:46 [post_date_gmt] => 2024-09-05 07:26:46 [post_content] => Mercer County Park, spanning over 2,500 acres across the Townships of West Windsor, Hamilton, and Lawrence, is a treasured natural resource. Like many waterbodies throughout New Jersey, some of the lakes within Mercer County Park have been increasingly affected by harmful algal blooms (HABs) in recent years. In response to the growing frequency, duration, and severity of these blooms, the Mercer County Park Commission (MCPC) has intensified its efforts to enhance the overall health of its lakes. To address these challenges, the County of Mercer tasked the MCPC with developing a comprehensive Lake and Watershed Management Plan. The ultimate goal is to ensure the health, stability, and sustainability of the park's aquatic ecosystems, thereby enhancing the recreational experience for park users. In this endeavor, the MCPC has partnered with Princeton Hydro to bridge gaps in the existing data and create a thorough management plan. The plan documents the current conditions of waterbodies within the park, including Mercer Lake, which is the largest, and its surrounding watershed; identifies and prioritizes existing and potential water quality challenges; and provides targeted recommendations for treatment and restoration. Princeton Hydro conducted a detailed analysis of the lakes' ecological health, including water quality monitoring, bathymetric mapping, and assessment of hydrologic and pollutant budgets. These comprehensive efforts have culminated in a robust management plan designed to protect and improve the lakes' ecological balance and recreational value. Expanding the Initiative Across Mercer County While Mercer Lake is a key focus, Princeton Hydro's commitment extends beyond this single waterbody. Recognizing the interconnected nature of the county's aquatic ecosystems, the team conducted similar analysis and developed Lake and Watershed Management Plans for three additional lakes in other parks within Mercer County. These lakes are:
We are thrilled to announce that Dr. Fred Lubnow, Senior Technical Director of Ecological Services at Princeton Hydro, has been honored with the prestigious Peter Homack Award by the American Water Resources Association, New Jersey Section (NJ-AWRA). The award was presented during NJ-AWRA’s annual meeting in December, recognizing Fred’s outstanding contributions to the multi-disciplinary understanding and management of New Jersey’s water resources.
The Peter Homack Award, established in 1987, commemorates the late Peter Homack, a former NJ-AWRA president and distinguished New Jersey engineer. The award celebrates individuals who exemplify Homack’s legacy of advancing water resource management through collaboration and innovation.
Fred’s selection for this honor is a testament to his decades-long dedication to the restoration and protection of water resources. Since Princeton Hydro’s founding in 1998, Fred has played a pivotal role in the study and restoration of hundreds of lakes across New Jersey and the Mid-Atlantic region. His work at Lake Hopatcong, in particular, stands as a shining example of his commitment. For over 30 years, Fred has partnered with Lake Hopatcong stakeholders to implement comprehensive restoration plans, develop best management practices, and achieve milestones toward the lake’s water quality goals.
Beyond his work at Princeton Hydro, Fred has enriched the field of water resource management through education and stewardship. He teaches watershed management at Delaware Valley University and freshwater ecology at Villanova University, inspiring the next generation of environmental stewards. Fred has contributed to NJ-ARWA over the last five years through a variety of presentations on harmful algal blooms (HABs) and watershed planning. Additionally, he has held leadership roles in the North American Lake Management Society (NALMS) and the Pennsylvania Lake Management Society. Selected as a member of the New Jersey Department of Environmental Protection’s HAB Expert Team, Fred has been instrumental in shaping the HAB advisory and alert systems we rely on today. His contributions have advanced our understanding of the factors driving cyanobacterial blooms in New Jersey’s lakes, offering valuable insights to improve the prediction, prevention, and management of these blooms.
Although Fred could not attend the award ceremony in person, he joined virtually via Zoom as his colleague Michael Hartshorne, Princeton Hydro’s Director of Aquatics, accepted the award on his behalf. During Michael's acceptance speech, he said:
“I’ve worked with Fred since I started at Princeton Hydro in 2006. He’s a humble leader, a dedicated mentor, and an overall fantastic person. Fred’s enthusiasm for lake ecology, particularly algae, is truly infectious. It’s a rare skill to make others genuinely excited about such a niche topic, but Fred has a remarkable way of doing just that. Fred truly embodies the spirit of the Peter Homack Award, and it’s an honor to receive this on his behalf.”
Fred’s passion, expertise, and collaborative spirit have left an indelible mark on water resource management in New Jersey and beyond. Princeton Hydro congratulates him on this well-deserved recognition and looks forward to his continued contributions to the field.
Lake Hopatcong, New Jersey's largest freshwater lake, spans 2,600 acres and stretches over six miles, forming part of the border between Sussex and Morris counties in the state’s northern Highlands region. Just 40 miles from Manhattan, its proximity to the city, combined with its scenic beauty, recreational appeal, and rich biodiversity, has long made it a desirable destination for visitors, residents, and businesses alike. The lake’s waters and surrounding habitats support diverse wildlife, including aquatic plants, animals, birds, and other terrestrial species.
Increased residential and commercial development, along with the impacts of climate change, have placed growing pressures on the lake’s ecosystem. Managing these pressures is vital to preserving water quality and protecting the biodiversity of both the lake and its watershed.
The Lake Hopatcong Foundation (LHF) and Lake Hopatcong Commission (LHC) are dedicated to protecting the lake and balancing development with environmental stewardship. Through thoughtful planning, long-term sustainability initiatives, and strategic partnerships, they have worked to safeguard the lake’s ecological, economic, and recreational value.
Princeton Hydro, a long-standing partner in this effort, has been involved in restoring the lake and managing its watershed for over 30 years. Our work has focused on reducing pollutant loads, managing stormwater runoff, addressing invasive aquatic plants and nuisance algal blooms, and enhancing habitat quality. Together with LHF, LHC, and funding partners, we have implemented a variety of projects designed to protect the lake and the communities that rely on it.
As a key partner, the New Jersey Highlands Council (Highlands Council) has provided essential funding for many of these critical projects, ensuring they come to fruition. These efforts reflect the Council’s commitment to safeguarding Lake Hopatcong’s future while upholding the Highlands Act’s mission to protect natural resources and foster sustainable community growth. These collaborations are vital to the initiatives that preserve the lake’s water quality, restore habitats, and promote the long-term health of the region.
In celebration of its 20th anniversary, the Highlands Council hosted a special event, which featured a “Lake Hopatcong Exhibit,” highlighting many of the successful projects that it funded. Representatives from LHC, LHF, Highlands Council, and Princeton Hydro, were on hand to discuss the significance of these projects and their contributions to the long-term health of the lake and surrounding communities.
The exhibit included a variety of interactive experiences, including informative posters and maps detailing project efforts. Participants were able to examine Lake Hopatcong water samples under microscopes with guidance from Dr. Fred S. Lubnow, Princeton Hydro Senior Technical Director of Ecological Services.
By highlighting both the challenges faced and the progress made, the exhibit offered attendees a deeper understanding of the lake’s critical role in the region’s environmental and economic sustainability as well as the ongoing efforts to maintain the lake's water quality and protect its ecological health.
Through funding from the Council, a variety of partners including LHF, LHC, Princeton Hydro, and local government agencies have been able to implement a myriad of projects. From stormwater management systems to watershed restoration efforts, these initiatives are designed to address issues like nutrient pollution, invasive species, and habitat degradation. These projects are helping to protect the lake’s water quality and ensure its healthy future:
In 2021, the Upper Musconetcong River Watershed Restoration Plan was updated to a 9-element WIP. This revision re-evaluated existing conditions, integrated green infrastructure, and incorporated emerging technologies. The WIP has since facilitated funding for projects such as biochar installation, alum treatments to reduce phosphorus, and stormwater management improvements. 25% of the WIP ($27,250) was used as match toward a National Fish and Wildlife Foundation (NFWF) grant ($485,650). This effort led to NJDEP 319 (h) Stormwater Grant for Biofiltration at Lakeside Fields ($239,000).
A restoration plan was developed for the watershed that directly flows to Memorial Beach through the park. A series of stormwater management measures were recommended and subsequent funding was secured. This effort led to community-funded project for the dredging of Memorial Pond ($277,000) and a slope stabilization with native plantings at Memorial Pond via a NJ Department of Environmental Protection 319(h) grant. $70,500 was also used as match for NFWF Glen Brook Project (Total Project - Glen, Muscy, Witten - $485,650)
Erosion of Floating Island, which located in Lake Hopatcong’s Landing Channel, contributed to significant sediment accumulation. A preliminary feasibility study conducted by Princeton Hydro explored dredging and habitat restoration options. The proposed beneficial reuse/dredging project would rehabilitate the island and lead to reduced phosphorus in the lake, increased beneficial wetland habitat, and improved water quality. The next phase of the project includes engineering design, permitting, and implementation.
A 25+ year-old feasibility study was updated to lay the groundwork for the the installation of sanitary sewers along the lakefront area of Jefferson Township, which is currently using septic systems. This marked the first step in addressing one of largest sources of phosphorus entering Lake Hopatcong and a pivotal milestone in the ongoing efforts to safeguard water quality and mitigate the risk of harmful algal blooms (HABs) on Lake Hopatcong. These efforts led to a Community Funded Project from Congresswoman Sherill’s Office ($750,000).
A bank stabilization design and planting plan was completed for a popular fishing location along the Musconetcong River between Lakes Hopatcong and Musconetcong. The project, led by the LHC with technical assistance from Princeton Hydro, aims to reduce sediment and nutrient levels in Lake Musconetcong by improving the condition of a key section of the Musconetcong River. The Highlands Council grant to Roxbury Township provided the critical first step in this long-term, multifaceted project.
Princeton Hydro completed a feasibility study for the design of an oxygenation system for Lake Hopatcong. It aimed to address the lake’s internal phosphorus load that contributes toward the nuisance HABs over the summer months. Since the widespread occurrence of HABs in 2019, the LHF and the LHC have been actively exploring solutions to reduce their frequency. Oxygenation systems help prevent stagnation of water, increasing circulation, disrupting thermal stratification which provides “through-column” mixing, and minimizes the occurrence of HABs. The results of this study will be used to move the project forward into the permitting and implementation phases.
A planting plan and regenerative stormwater conveyance system design was completed to aid in the mitigation of stormwater in Witten Park. A new system will help to manage and treat stormwater within the park, reducing erosion and sediment that flows into Lake Hopatcong. The system will also restore the floodplain, wetlands, and streams, and improve the ecological health of the area. The funding from the Council was also used by LHC as in-kind match for a NFWF grant award ($353,000) for the permitting & implementation phases.
One of the most significant recreational draws to Lake Hopatcong is its trout fishery, recognized regionally by anglers and established as an important component of the local economy. Data collected over the past 30 years at the lake was analyzed and showed increasing surface water temperatures, a trend that may suggest that the trout carryover habitat is being negatively impacted. The LHC, in cooperation with the LHF and the Knee-Deep Club, initiated a three-year trout tagging study. The study focused on the introduction of larger trout to assess the long-term population dynamics of those stocked fish and the general health of the fishery.
Planning documents, a hydraulic & hydrologic analysis, and an engineering report were prepared for the construction of two stormwater basin retrofits. The stormwater basin retrofit project aims to minimize runoff and reduce pollutants flowing into Lake Hopatcong, thus protecting water quality. The reconstruction of the basins is critical in managing stormwater effectively, preventing erosion, and reducing nutrient loads that contribute to harmful algal blooms. By improving these basins, the project plays a key role in safeguarding the lake's ecosystem and ensuring the long-term health of its water resources.
A field assessment, survey, and engineering design was completed for the installation of stormwater treatment devices at each of the outfall systems at the Shore Hills Beach Club property, which is located at the southern most tip of Lake Hopatcong. The primary goal of the project is to reduce phosphorus loads entering the lake, which can lead to nuisance weed growth, reduced water quality, and the proliferation of HABs. This funding from the Council enabled the project's next phase: construction.
As we celebrate the 20th anniversary of the New Jersey Highlands Council and its vital contributions to Lake Hopatcong, it’s clear that the future of this treasured resource relies on ongoing collaboration among stakeholders, local communities, and environmental organizations. By implementing innovative solutions and promoting sustainable practices, we can ensure that Lake Hopatcong continues to thrive as both an ecological haven and a recreational hub. This collective effort not only enhances the lake’s water quality and biodiversity but also strengthens the economic vitality of the surrounding communities, fostering a legacy of environmental stewardship for generations to come.
The South Cape May Meadows Preserve, owned and managed by The Nature Conservancy (TNC), is a jewel among New Jersey's protected landscapes. Spanning over 200 acres adjacent to Cape May State Park, the preserve is celebrated for its diverse habitats, including beaches, dunes, freshwater wetlands, and fields. As a crucial stopover along the Atlantic Flyway, it offers refuge to rare and endangered shorebirds as well as native and migratory birds, making it a globally renowned paradise for birders. It also supports a wide variety of terrestrial species year-round.
The Preserve also has a variety of features aimed at enhancing visitor experience, promoting sustainability, and supporting its diverse wildlife. These features include a welcome shed with a green roof, a rain garden, purple martin houses, a raised wildlife viewing platform, an osprey platform with a streaming camera, benches, interpretive signs, and an 80-foot bird blind.
With its rich biodiversity, scenic beauty and unique features, the South Cape May Meadows Preserve is a site of high public interest and use, attracting approximately 90,000 visitors each year. To accommodate the high level of public interest and improve accessibility, TNC contracted Princeton Hydro to upgrade the existing path network to make it more physically accessible and to create new pathways that open up previously unreachable areas of the Preserve.
Given that much of the site is composed of freshwater wetlands, creating accessible pathways without disturbing these sensitive areas presented a unique challenge that required innovative solutions. To address this, the centerpiece of the project was the construction of an elevated boardwalk trail in the western area of the preserve. Slated for completion in September 2024, the new boardwalk will add 2,675 linear feet of elevated walking paths throughout the preserve, along with a 480-square-foot elevated viewing platform. The boardwalk will wind through previously inaccessible wetland areas and is designed to comply with ADA standards, ensuring that visitors of all abilities can explore and enjoy the preserve's unique maritime landscape.
Led by TNC, the Princeton Hydro team was responsible for designing, permitting, and overseeing construction for the project, with Renova serving as the primary construction partner. The images below are renderings and a mapped layout of the project site created by Landscape Architect Cory Speroff, PLA, ASLA, CBLP of Princeton Hydro, the lead project designer and project manager:
To minimize environmental impact during construction, the boardwalk is being installed using a top-down construction method. This approach required finding a product that could meet all design requirements while supporting the necessary equipment for construction from above. The project team selected GreenWalk™, a proprietary structure system manufactured by IDEAL Foundation Systems. GreenWalk™ is a highly engineered, modular, zero-maintenance boardwalk system that meets all of the project criteria while ensuring minimal disturbance to the wetland.
This video provides a behind-the-scenes look at the boardwalk installation process and the intricate work involved in bringing this accessible pathway to life. Watch now to see how we're making nature more accessible for everyone:
In addition to the boardwalk, the Princeton Hydro team designed and permitted several site improvements to enhance accessibility and visitor experience:
Existing trail surface types were assessed for sturdiness, and cost-effective measures were implemented to enhance accessibility. This included leveling the existing gravel and sandy portions of the Main and East trails and replacing them with a firmer, more stable surface.
Equipped with safety railing, handrails, seated observation areas, and educational signs in both braille and English print, the boardwalk is designed to provide support for people with accessibility considerations.
The existing parking lot was upgraded to include formal ADA spaces. One-third of the original stone parking lot was converted to concrete to improve accessibility.
These efforts ensure that the South Cape May Meadows Preserve remains an inclusive and ecologically sensitive destination, allowing all visitors to fully appreciate the natural beauty and biodiversity of this unique maritime landscape.
Speroff emphasized that the boardwalk is more than just a pathway through nature; it symbolizes a collective commitment to protecting and celebrating the environment: “It stands as a reminder that we can create spaces that are both beautiful and functional, without compromising the health of our planet. By choosing sustainable materials and practices, we have set a standard for future projects in our community and beyond. Moreover, this boardwalk represents our pledge to inclusivity, going above and beyond the minimum standards for ADA compliance. We created a space where everyone, regardless of physical abilities, can enjoy the beauty of our natural surroundings—a place where families can come together, individuals can find solitude, and nature can be experienced by all.”
On Sunday, August 4, TNC hosted a ribbon-cutting ceremony at the South Cape May Meadows Preserve to unveil the new boardwalk trail and site enhancements. The event highlighted the significant strides made in increasing the preserve’s accessibility and offered attendees a preview of the new features, including four metal plaques with tactile elements and braille, showcasing nature themes like the life cycle of a butterfly and frog, turtle shells, and dragonflies.
Speeches were given by Barbara Brummer, State Director of The Nature Conservancy in New Jersey; Paulo Rodriguez Heyman, President of Renova; Mark Gallagher, Vice President of Princeton Hydro; and both the father and grandmother of Julian Tao Knipper. The Knipper family generously donated to the project in memory of Julian, who dearly loved Cape May and tragically passed away at the age of three. The project also honored Pat and Clay Sutton, esteemed educators, authors, naturalists, photographers, lecturers, nature tour leaders, and long-time champions for the protection of Cape May’s rich biodiversity. The new trail was officially dedicated to Julian, Pat and Clay.
Speroff expressed deep appreciation for the donors, stating, “The belief in this project and the willingness to invest in this vision made it possible to create a space that is accessible to all and harmonious with our natural surroundings. These contributions are not just financial; they are investments in the future of the Cape May community and our planet.”
It is essential to also acknowledge the invaluable contributions of those who made this project possible, creating a space where people of all abilities can enjoy nature, reflect, and find peace. Special thanks go to The Nature Conservancy, particularly Barbara Brummer, Eric Olsen, Damon Noe, Elliot Nagele, and the TNC project staff. The Renova Team's hard work and dedication were instrumental in bringing the one-of-a-kind boardwalk to life. Additionally, the design team, including IDEAL Foundation Systems, Bedford, L2A, and JBCI, played a crucial role in the project’s success. And, members of the Princeton Hydro team, especially Cory Speroff, PLA, ASLA, CBLP; Geoffrey M. Goll, P.E.; Ryan Eno, EIT; Ivy Babson; and Casey Pantaleo, P.E.
The Nature Conservancy and Princeton Hydro have a storied history of working on impactful projects together, from removing obsolete dams and opening up miles of river for fish passage to eradicating invasive species right here on this property. A few years ago, we designed the removal of Columbia Lake Dam, which reconnected 20 miles of stream, with American Shad returning to their native spawning grounds upstream just months after it was removed. And now, as this South Cape May Meadows Preserve project nears completion, we celebrate a project that offers everyone the chance to experience its natural beauty and biodiversity. This collaboration between Princeton Hydro and TNC underscores the importance of creating inclusive spaces that honor and protect our natural world.
Within the next few weeks, stay tuned for more updates and photos as we near completion on this exciting project, ensuring that the South Cape May Meadows Preserve remains a cherished destination for all who visit.
Mercer County Park, spanning over 2,500 acres across the Townships of West Windsor, Hamilton, and Lawrence, is a treasured natural resource. Like many waterbodies throughout New Jersey, some of the lakes within Mercer County Park have been increasingly affected by harmful algal blooms (HABs) in recent years. In response to the growing frequency, duration, and severity of these blooms, the Mercer County Park Commission (MCPC) has intensified its efforts to enhance the overall health of its lakes.
To address these challenges, the County of Mercer tasked the MCPC with developing a comprehensive Lake and Watershed Management Plan. The ultimate goal is to ensure the health, stability, and sustainability of the park's aquatic ecosystems, thereby enhancing the recreational experience for park users. In this endeavor, the MCPC has partnered with Princeton Hydro to bridge gaps in the existing data and create a thorough management plan.
The plan documents the current conditions of waterbodies within the park, including Mercer Lake, which is the largest, and its surrounding watershed; identifies and prioritizes existing and potential water quality challenges; and provides targeted recommendations for treatment and restoration.
Princeton Hydro conducted a detailed analysis of the lakes' ecological health, including water quality monitoring, bathymetric mapping, and assessment of hydrologic and pollutant budgets. These comprehensive efforts have culminated in a robust management plan designed to protect and improve the lakes' ecological balance and recreational value.
While Mercer Lake is a key focus, Princeton Hydro's commitment extends beyond this single waterbody. Recognizing the interconnected nature of the county's aquatic ecosystems, the team conducted similar analysis and developed Lake and Watershed Management Plans for three additional lakes in other parks within Mercer County.
Each of these lakes, like Mercer Lake, faces unique challenges related to maintaining water quality, protecting ecological balance, and mitigating HABs. By applying a comprehensive approach tailored to the specific conditions and needs of each lake, Princeton Hydro aims to enhance the overall health of these vital resources.
Let's dive into the details of Mercer Lake's plan!
The first crucial step in developing Mercer County Park's comprehensive lake management plan involved a thorough review of historical data obtained from various sources, including the County, New Jersey Department of Environmental Protection (NJDEP), New Jersey Department of Transportation (NJDOT), and U.S. Geological Survey (USGS). This review was essential for capitalizing on established water quality trends, identifying recurring problems, and evaluating the success of previous restoration efforts.
The historical data review spanned an impressive range of years from 1963 to 2016, though it did contain some significant gaps. Despite these gaps, the long-term data provided invaluable insights into the lake's ecological history. By integrating reliable data from past studies, the team could complement their field efforts with supplemental information.
Princeton Hydro examined data on Mercer Lake, a key focus of the management plan initiative, and on all streams within each watershed that feed into the lake. This included any available surface water data from the USGS, a standard approach in aquatic system studies. By analyzing these data, the team identified trends in water quality, highlighted persistent issues, and assessed the effectiveness of past restoration efforts.
This comprehensive historical data review set the stage for a robust watershed assessment, ensuring that the management plan would be informed by a solid foundation of past knowledge.
A bathymetric survey is a scientific method used to map the depths and topography of waterbodies, providing detailed information about the underwater terrain and the distribution of sediments. This survey is crucial for understanding various aspects of a lake's ecosystem, including sediment thickness, water volume, and potential areas for dredging. The data gathered from a bathymetric survey helps in making informed decisions regarding the restoration and protection of lakes.
Princeton Hydro conducted the bathymetric survey using a calibrated sounding rod for shallow areas and a dual-frequency echo sounder with GPS for deeper regions. The sounding rod was employed in areas with water depths of 12 inches or less and where sediment composition hindered echo sounding. The echo sounder, a Knudsen Engineering model 1612, used high and low frequencies to distinguish the top and bottom of sediment layers. Data points were collected along predetermined transects spaced 150 feet apart, running from shoreline to shoreline in a north-south direction.
Once fieldwork was completed, the collected data was processed using Hypack Max software. This involved editing the raw sounder data to correct errors such as double reflections and interference from aquatic vegetation. The cleaned data was exported to ArcGIS for further analysis and mapping.
The results of the bathymetric survey revealed that Mercer Lake, a key focus of the lake management plan, covers a surface area of approximately 287 acres and is primarily an oval-shaped impoundment. The lake receives inflow from Assunpink Creek and its tributaries and discharges water westward, eventually reaching the Delaware River, Delaware Bay, and the Atlantic Ocean.
Mercer Lake was found to be relatively shallow, with a mean depth of 8.9 feet and a maximum depth of 18.5 feet. The total volume of water in the lake was estimated at around 2,560 acre-feet, or 834.2 million gallons. The survey also indicated significant sediment deposition in the eastern portion of the lake, with a total sediment volume of approximately 855,325 cubic yards. This pattern is likely due to the lake's role as a settling area for sediment carried by tributary inflows and stormwater discharges, which transport debris, leaf litter, and other materials into the lake.
Below is an image of the Bathymetric Survey that provides a detailed view of the sediment thickness contours measured in feet throughout Mercer Lake:
By establishing a detailed understanding of Mercer Lake's depth and sediment distribution, the bathymetric survey provides a robust foundation for the comprehensive lake management plan, informing long-term management decisions. The bathymetric data collected is also essential for evaluating the need for dredging, understanding aquatic plant colonization patterns, and predicting the lake's response to incoming nutrients, helping to guide restoration and protection efforts.
Hydrologic and Pollutant Loading Analysis is crucial for identifying the sources and impacts of pollutants entering a waterbody. It involves delineating watersheds, assessing hydrologic data, and evaluating nutrient loads.
For Mercer Lake, Princeton Hydro conducted an extensive analysis using tools such as USGS StreamStats and Stroud Research Center’s Model My Watershed®. This study provided a detailed understanding of the water and pollutant dynamics within the Mercer Lake watershed. The map below offers an aerial view of the watershed, illustrating the various types of land cover present within the area:
Runoff varied considerably between different sub-watersheds due to factors like land cover types, land-use consumption, impervious surfaces, and topography. Variations in elevation change also determine the impact runoff has on soil erosion, with steeper slopes causing higher erosion rates, especially if little vegetation is present. The chart below shows the various types of soil coverage in areas throughout the Mercer Lake watershed:
Princeton Hydro also assessed other pollutant sources, including groundwater seepage, streambank erosion, and contributions from residential septic systems. Additionally, the impact of waterfowl, particularly Canada Goose, was evaluated using nutrient loading coefficients. The presence of these birds significantly contributes to phosphorus and nitrogen levels.
The hydrologic budget, representing the water balance of the lake, was calculated by considering inputs such as direct precipitation, overland runoff, tributary inflow, and groundwater seepage. This data is vital for conducting trophic state analyses and determining the feasibility of various in-lake restoration techniques. Internal loading of phosphorus, which occurs when anoxic conditions in the lake's bottom sediments release bound phosphorus into the water, was also analyzed.
Results of the analysis revealed that Mercer Lake, covering 287.1 acres, is influenced by a watershed area of 20,551.4 acres, predominantly consisting of cropland and forested areas. The lake's shallow nature coupled with significant sediment deposition in the eastern portion, underscores the importance of managing both external and internal nutrient loads.
Understanding the hydrologic and pollutant dynamics through this detailed analysis allows for the development of a lake management plan that helps to prioritize management efforts, target the primary sources of pollution, and effectively address HABs.
Monitoring water quality is essential for understanding the existing chemistry of a lake, identifying trends, pinpointing problems, and assessing nutrient levels. It provides critical data that informs management decisions and helps maintain the health and stability of aquatic ecosystems.
For Mercer Lake, Princeton Hydro conducted thorough water quality monitoring from 2021 to 2023. This involved analyzing in-situ, discrete, and plankton data collected over three growing seasons. The monitoring focused on various parameters, including hypolimnetic anoxia and associated phosphorus dynamics, which are key contributors to HABs. The data collected offered a current assessment of the lake’s trophic state and plankton community, providing a baseline to document shifts in water quality in response to future management measures.
The Princeton Hydro team performed 13 sampling events at two consistent stations in Mercer Lake: a deep water station near the dam (ML-1) and a mid-lake station (ML-2). Various parameters were monitored, including water temperature, dissolved oxygen (DO), pH, specific conductivity, chlorophyll a, and phycocyanin, using an In-Situ AquaTROLL 500 meter.
Water samples were collected at both in-lake stations at the surface (0.5 meters) and near the bottom (0.5 meters above the sediment) using a Van Dorn water sampler. Samples were preserved appropriately and transported to the NJDEP-certified laboratory Environmental Compliance Monitoring (ECM) for analysis. The samples were analyzed for total phosphorus (TP), soluble reactive phosphorus (SRP), total dissolved phosphorus (TDP), nitrate-N, nitrite-N, ammonia-N, total suspended solids (TSS), and turbidity. Surface samples were also analyzed for alkalinity, chloride, and hardness.
Additionally, samples were collected for zooplankton and phytoplankton analysis, including species composition, dominant organisms, and relative density. Cyanobacteria (blue-green algae) genera were quantified to estimate cell counts, providing an approximate concentration of cyanobacteria cells per milliliter of water. Samples were also analyzed for the cyanotoxin microcystins using the Abraxis field testing methodology.
The team also evaluated local climatic conditions during the 2021 - 2023 seasons compared to the long-term average. These conditions, including temperature and precipitation, can have significant effects on water quality. The combination of increased precipitation and an increase in temperatures sets the stage for HABs proliferation. The charts below the monthly mean temperatures and monthly precipitation from 2021 – 2023 and the 30-year average; ‘normal’ refers to the monthly average over the 30-year period from 1991 – 2020.
The Water Quality Monitoring analysis revealed several key insights about Mercer Lake's water quality, and indicated that cropland runoff was the most significant source of phosphorus, a key driver of HABs. Hypolimnetic anoxia (the bottom layer of the lake becomes devoid of oxygen) was observed during all three field sampling seasons, contributing to internal phosphorus loading. The water quality monitoring also provided valuable information on the lake’s trophic state and plankton community.
Trophic State Modeling is a method used to assess the productivity of a lake by measuring the levels of nutrients, such as phosphorus, and the resulting biological activity. This assessment helps determine the lake's overall health and informs management strategies. The Trophic State Index (TSI) is a common tool used in this process, calculating index values based on phosphorus concentrations, chlorophyll a levels, and Secchi depths.
For MCPC, Princeton Hydro, utilizing data collected in the field and through lake and watershed modeling, estimated the nutrient status and biological activity of Mercer Lake. Here are a few examples of the models the team utilized:
By leveraging these sophisticated models, Princeton Hydro was able to gain a detailed understanding of Mercer Lake's nutrient dynamics and productivity. Many models were run twice: once for the watershed-based phosphorus load and once for the total combined load. This allowed for a comprehensive assessment of both external and internal nutrient contributions.
To mitigate pollutant loading issues, the Lake and Watershed Management plan outlines a series of Best Management Practices (BMPs) recommendations for implementation throughout the watershed, which include bioretention systems, wetland buffers, riparian buffers, and lakefront aquascaping. Such measures are designed to reduce nutrient loads, improve water quality, and enhance the overall ecological health of the lake and its watershed. By addressing the root causes of nutrient loading and implementing targeted management strategies, the MCPC is continuing their commitment to providing a sustainable and enjoyable recreational experience for park users while safeguarding the lake's ecological integrity.
Stay tuned for more updates as we continue to work with the MCPC on implementing the Mercer Lake and Watershed Management Plan, ensuring the watershed remains a vibrant and healthy resource for generations to come.
Regional watershed planning is crucial for maintaining the health and sustainability of interconnected waterbodies. By considering entire watersheds rather than individual lakes, we can develop more effective and comprehensive strategies to manage water quality, control pollution, and enhance ecological resilience. This holistic approach ensures that all elements within the watershed are addressed, leading to more long-lasting improvements.
Princeton Hydro’s efforts in developing and implementing management plans for Mercer Lake, Curlis Lake, Rosedale Lake, and Spring Lake demonstrate the power of coordinated, science-based planning. By leveraging detailed data and advanced modeling techniques, our team is able to create tailored solutions that meet the specific needs of each lake while contributing to the overall health of the region's aquatic ecosystems.
To read about another project we’re working on in Mercer County, check out our blog about Miry Run Dam Site 21. Through a blend of engineering and ecological enhancements, we are working with MCPC to revitalize 279 acres. With each phase, we edge closer to a vibrant, inclusive space that harmonizes nature and community.
After 129 years, the Paulina Lake Dam in Warren County is in the final stages of demolition. This project, led by The Nature Conservancy's New Jersey Chapter, is hailed by local advocates as a significant environmental victory. The complete removal of the dam, scheduled from July through September 2024, is the second of three phases of river restoration, and signifies a major milestone in the rehabilitation of the Paulins Kill River, New Jersey’s third-largest tributary to the Delaware River.
On November 24, 2023, a crucial step in the restoration journey was taken with the first notching of the Paulina Dam. This initial step set the stage for the next phase of the dam removal, which is now in full swing. The project, a successful collaboration under the leadership of The Nature Conservancy, funded by NJDEP Division of Fish and Wildlife, and designed and implemented by Princeton Hydro and RiverLogic-Renova Joint Venture, respectively, is progressing toward its goal. The third and final phase will occur in 2025 for adaptive management to complete the finishing touches, including the installation of habitat features to further enhance the biodiversity of this river segment.
Click below to watch a new video showcasing the project's progress. The drone footage captures the project team in action, demolishing the dam, removing sediment upriver, and strategically placing rock check dam to control the flow of sediment as the removal process continues.
Blairstown’s original power source for electricity, the Paulina Lake Dam, located in bucolic Warren County, NJ, has long posed challenges to the river’s health and surrounding communities. Originally constructed to produce hydropower, it has not functioned in that capacity for over 50 years. Its removal is crucial not only for mitigating risks to life and property but also for restoring the natural habitat for native species like brook trout and migratory fish.
Located in bucolic Warren County, New Jersey, The Paulina Lake Dam, Blairstown’s original power source for electricity, has long posed challenges to the river’s health and, after the dam ceased its use as a power source, became a financial and safety liability to Blairstown Township. Its removal is crucial not only for mitigating risks to life and property but also for restoring the natural habitat for native species like brook trout and migratory fish.
This initiative aims to:
The removal of the Paulina Lake Dam is part of a larger restoration plan initiated in 2013 by The Nature Conservancy, which includes the removal of multiple dams along the Paulins Kill River, planting thousands of trees in its riparian zone, and restoration of its headwater Hyper Humus, a glacially created peat bog. This comprehensive effort, involving wetland restoration, land protection, and floodplain reforestation, aims to rejuvenate and sustain the river ecosystem.
Princeton Hydro’s President, Geoffrey M. Goll, PE, highlights the broader impact of these efforts: “The removal of Paulina Lake Dam is not just about dismantling a structure and removing a safety hazard, but paving the way for a renewed riverine landscape, where the flow of life returns to its natural course.”
As we celebrate this major milestone, we look forward to witnessing the continued transformation of the Paulins Kill. This project stands as a testament to the power of collaboration, environmental stewardship, and the unwavering dedication of communities and organizations committed to preserving and restoring our natural landscapes.
Stay tuned for more updates as we continue this exciting journey towards a restored and thriving river ecosystem this fall, and then the finishing touches in 2025! Click here to learn more about the Paulina Lake Dam removal and the broader restoration efforts.
Nestled at the foot of the Blue Ridge Mountains, Smith Mountain Lake is the largest lake entirely within the Commonwealth of Virginia. Spanning over 20,000 acres with 500 miles of shoreline, the lake's northern and eastern boundary is marked by Bedford County, while Franklin and Pittsylvania counties define its southern and western edges. Created in 1963 by impounding the Roanoke River with the Smith Mountain Dam, the lake serves multiple purposes, including hydroelectric power, public water supply, and recreation.
Throughout the 1960s and 1970s, the area surrounding Smith Mountain Lake was predominantly rural farmland. In the 1980s, however, the lake's natural beauty, recreational appeal, and proximity to Roanoke and Lynchburg began to draw increased attention. This surge in interest sparked a boom in residential and commercial development, transforming Smith Mountain Lake into a vibrant and bustling community.
Today, Smith Mountain Lake not only provides electricity and drinking water, it is also home to 21,000 residents and stands as a premier recreational resource. Thousands flock to Smith Mountain Lake each year to enjoy boating, swimming, fishing, and other water activities. The lake's shores are now dotted with resorts, condominiums, year-round residences, and outdoor industry businesses. The lake's waters and shoreline also provide vital habitats for aquatic plants, animals, birds, and other terrestrial wildlife.
The rapid growth of this pristine lake community underscores the importance of effective environmental management to preserve water quality, strengthen the shoreline, manage stormwater runoff, and protect the local native biodiversity of the lake and its watershed.
The lake is fed by two main tributaries—the Blackwater River and the Roanoke River. The Roanoke River, the larger of the two, drains a watershed that includes the Roanoke Metropolitan area, while the Blackwater River flows through mostly rural and agricultural land.
In 2023, a significant outbreak of harmful algal blooms (HABs) in the Blackwater River subwatershed raised concerns for the Smith Mountain Lake Association (SMLA). These blooms, primarily driven by agricultural runoff, led to swimming advisories and highlighted the need for a comprehensive approach to managing and mitigating these environmental threats.
Recognizing the urgency of the situation, SMLA sought the expertise of Princeton Hydro. The mission: to investigate conditions that cause HABs, protect the lake from future outbreaks, and ensure the long-term health of this vital freshwater resource.
The project team’s approach began with a thorough review of historical water quality data. Collaborating with SMLA and regulatory bodies including the Virginia Department of Environmental Quality (VDEQ), U.S. Geological Survey (USGS), and U.S. Army Corps of Engineers (USACE), Princeton Hydro compiled a comprehensive dataset. This historical context was crucial for understanding past trends and informing the 2024 Watershed Assessment. SMLA and Ferrum College contributed over 38 years of data through their Volunteer Water Quality Monitoring Program, documenting crucial indicators such as nutrient levels, bacterial counts, and algal blooms. This extensive dataset has been essential in informing effective lake management practices and shaping strategies to address current environmental challenges.
Employing the MapShed model, the team carried out a comprehensive hydrologic and nutrient loading analysis of the Blackwater River subwatershed. They evaluated critical factors, including phosphorus, nitrogen, and sediment levels, to identify and prioritize areas requiring targeted nutrient and sediment management strategies.
To describe its basic function, the MapShed model applies pollutant loading rates to different land cover types, like low-density development or forested wetlands, based on their area. It then uses weather data, soil characteristics, and slopes to adjust these results. The model simulates daily pollutant loads over 30 years using actual climate records, providing monthly and annual outputs. Users can adjust various inputs, like septic system efficiency and population density, to see how the changes affect pollutant loads and water flow.
This analysis laid the foundation for determining effective, focused interventions to curb nutrient runoff and mitigate future HABs.
In March 2024, an Overwintering Incubation Study was conducted to understand cyanobacteria behavior. Sediment and water samples were taken from six nearshore locations known for high cyanobacteria counts in Summer 2023. At each site, the team also documented temperature, dissolved oxygen, specific conductivity, pH, chlorophyll-a, phycocyanin (PC), and phycoerythrin (PE).
The map below identifies the locations of each of the six sampling sites:
For each sample, the lake water was filtered and then incubated with respective sediments to determine the presence and what types of algae may be overwintering. The water and sediment samples were incubated over a period of 15 days at a temperature of approximately 77 degrees Fahrenheit and a light intensity of 2800 lux.
After eight days, the water and sediment samples were removed from the incubator, slightly stirred and then in-situ measurements for PC and PE were collected. These two supplemental pigments are almost exclusively produced by cyanobacteria. While PC is associated with primarily planktonic genera, PE is more associated with benthic genera. Thus, measuring the concentration of these pigments can be used to estimate cyanobacteria biomass as well as provide guidance on the monitoring and management of HABs (planktonic vs. benthic).
After 15 days, the samples were again removed from the incubator, slightly stirred, and then measured for PC and PE to identify and count any overwintering cyanobacteria and determine all the types of algae present.
This study offered critical insights into the conditions that enable cyanobacteria to endure winter and proliferate during warmer months. By understanding the connection between overwintering cyanobacteria and HABs in the lake, we can enhance predictive capabilities and develop more effective management strategies. Two particularly notable findings from the study include:
Beyond the initial assessment on the Blackwater River, ongoing monitoring of Smith Mountain Lake’s water quality is crucial for understanding and managing the conditions that trigger HABs. SMLA’s Water Quality Monitoring Program developed and managed by Ferrum College continues the work of tracking the trophic state of the lake. Algal community composition, tributary sampling, and bacterial monitoring are part of this comprehensive 38-year effort. Consistent sampling and water quality monitoring can help identify cyanobacteria and akinetes, the dormant spores that lead to bloom formation.
Because the VDEQ budget historically contains no funding for inland waterway HAB research and response, SMLA actively lobbied the Virginia General Assembly for the allocation of $150,000 for the creation of a watershed study. This request was included in the State budget signed in March of 2024 and the work to develop the objectives and scope of the study is underway now.
Community involvement is also vital for maintaining Smith Mountain Lake as a cherished resource. To this end, SMLA has launched "Dock Watch," a new community science volunteer program designed to monitor HAB activity. Beginning in May of 2024, volunteers have been collecting water samples at select docks around the lake and are examining them to better understand cyanobacteria activity levels and trends. All of the water quality data collected at the lake is from main channel locations. The primary recreational contact with the lake water by residents is at their docks. This data is uploaded to NOAA's Phytoplankton Monitoring Network, contributing to a national database used for HAB research. This collective effort ensures rapid identification and tracking of HAB activity, benefiting both the local community and environmental research on a national level.
“This project exemplifies a holistic approach to lake management and environmental stewardship, integrating historical data, advanced modeling, and community engagement to prioritize and implement innovative strategies that effectively mitigate HABs and protect water quality,” said Chris L. Mikolajczyk, Princeton Hydro’s Senior Manager of Aquatics and Client Manager for Smith Mountain Lake. “This ongoing work highlights the importance of science-based interventions in preserving our precious natural resources.”
The Smith Mountain Lake Association is a 501(c)3 nonprofit with the mission to keep Smith Mountain Lake clean and safe. Founded in 1969, SMLA is the longest serving advocate for the Smith Mountain Lake community, and its focused efforts help to retain the pristine beauty of the lake and the vibrant local economy. Click here to learn more and get involved.
Over the last two decades, the Princeton Hydro team has improved water quality in hundreds of ponds and lakes, restored many miles of rivers, and enhanced thousands of acres of ecosystems in the Northeast. From species surveys to water quality monitoring, our professionals perform comprehensive assessments in order to understand the landscape. Using tools like ArcGIS, we can map and model the watershed and arrive at holistic solutions for resource management. Our natural resources and lake management experts are complemented by our field team who utilize amphibious vehicles for mechanical invasive species removal, install aeration systems to improve water quality, and conduct natural lake treatments to manage algal blooms. We have secured millions of dollars in grant funding for watershed and ecological restoration projects on behalf of our clients.
Click here to learn about the Watershed Management Program in Somerset County, for which we recently helped secure grant funding from the New Jersey Highlands Water Protection and Planning Council.
July is Lakes Appreciation Month, an annual celebration dedicated to highlighting the value and wonder of our lakes and reservoirs. Established by the North American Lake Management Society (NALMS) in 1998, this initiative aims to foster a greater appreciation for these vital water bodies and encourage action to safeguard them. Join us this year as we explore three exciting and meaningful ways to engage with, enjoy, and protect our lakes.
Dive into Lakes Appreciation Month by soaking up the beauty of your local lakes. Whether you’re a bird-watching enthusiast, a kayaking adventurer, a fishing fanatic, or a nature lover who enjoys serene walks, getting outdoors for some lakeside enjoyment is the perfect way to show your appreciation for these natural treasures.
While you're out enjoying your community lakes, participate in the NALMS "Show Your Lakes Appreciation" Photo Contest Challenge! Throughout July, share a #lakeselfie or photos of your friends, family and pets, enjoying or working on a lake or reservoir. Post your pictures on Facebook, Twitter, or Instagram with a fun or informative caption, the name of the lake, and the hashtag #LakesAppreciation. Be sure to tag NALMS in your post for a chance to win exciting prizes. The contest runs from July 1st to 31st, with winners announced on August 2nd.
Always remember to respect nature by following Leave No Trace principles, ensuring our lakes stay pristine and beautiful for everyone to enjoy.
Monitoring the health of our lakes is essential for preserving their ecological balance and ensuring they remain vibrant, safe, and enjoyable.
You can contribute to this effort by joining the annual Secchi Dip-In, a citizen science project where volunteers across North America measure water clarity using a Secchi disk. This event, organized by NALMS, helps track changes in water quality over time. By participating, you contribute valuable data to support lake conservation efforts. It's simple to get involved: obtain a Secchi disk, measure the transparency of your lake, and submit your findings online. Check out our instruction video for more info:
In addition to measuring water clarity, keep an eye out for harmful algal blooms (HABs). HABs can produce toxins that negatively impact water quality and aquatic life. To track and report HABs consider using the bloomWatch app, a crowdsourced citizen-science tool that allows you to take photos of possible blooms and submit them through the app, sending the information to relevant state officials for further action. Monitoring and reporting HABs is a crucial step in protecting our lakes.
Volunteering for lake cleanups is a rewarding way to contribute to environmental stewardship, protect water quality, and enhance recreational spaces. Gather friends, family, or community members to spend a day picking up trash and debris around your favorite lake. This not only improves the health and beauty of the lake but also fosters a sense of community pride and collective responsibility. Many lake associations and environmental groups host regular cleanup events, so check their calendars or consider starting your own initiative.
For Lake Hopatcong, New Jersey's largest lake, the Lake Hopatcong Foundation, a long-time client partner of Princeton Hydro, offers a "Lake Hopatcong Water Scout" volunteer program. Water Scouts are responsible for identifying and removing instances of the invasive water chestnut species. Volunteers survey their assigned areas at least once between mid-June and mid-July. You can choose your preferred location to volunteer by reviewing the available areas on their website map. Reach out to your local lake association to find similar opportunities for cleanup and lake stewardship activities.
By raising awareness, fostering collaboration, and implementing effective strategies, we can work towards safeguarding the health and sustainability of our freshwater ecosystems. Let's come together this July to celebrate, protect, and cherish our lakes, ensuring they remain healthy and vibrant for future generations. For more ideas on how to celebrate Lakes Appreciation Month and to learn about NALMS, visit their website. For more information on Princeton Hydro's expansive lake and natural resource management services, go here.
Get ready to explore the hidden wonders of nature right in the heart of Flemington, New Jersey!
We are thrilled to announce BioBlitz 2024, an exciting 24-hour event dedicated to discovering and documenting the diverse species that call Flemington Borough home.
Mark your calendars for this immersive citizen science experience starting on Saturday, June 22nd at 11 AM and concluding on Sunday, June 23rd at 12 PM, hosted by Flemington DIY, with experts from Princeton Hydro and Hunterdon County Queer Birders.
A BioBlitz is a community-driven event where volunteers and scientists come together to identify and record as many species as possible within a designated area over a short period. Unlike traditional scientific surveys that typically must be implemented by licensed professionals, a BioBlitz invites people of all ages and backgrounds to participate, fostering a connection between the community and its local environment. The goal is to create a snapshot of biodiversity, providing valuable data for ecological studies and conservation efforts.
Discover Local Wildlife: Whether you're a seasoned naturalist or just curious about nature, this event offers a unique opportunity to explore Flemington's urban and natural landscapes. You'll have the chance to observe a variety of plants, animals, and other organisms, some of which you may have never noticed before.
Contribute to Science: By documenting species using the iNaturalist app, your observations will contribute to a growing database that helps scientists and researchers understand and protect local biodiversity. Your findings can make a difference in ongoing conservation efforts.
Connect with the Community: BioBlitz 2024 is a chance to meet fellow nature enthusiasts, learn from experts, and work together towards a common goal. It's a fun, educational experience for families, students, teachers, and anyone interested in the natural world.
Located in the watershed of the South Branch of the Raritan River and home to sections of watershed attached to Prescott Brook, Bushkill Creek, Walnut Brook, and the First Neshanic River, Flemington's diverse environments offer a unique setting for this event. Residents of the Borough are highly encouraged to document the wildlife in their own backyards as part of the event.
Participating in the BioBlitz will help create a comprehensive baseline species list that can be compared with future studies and historical data. This information is crucial for understanding how local biodiversity changes over time and for making informed decisions about environmental conservation.
The idea for Flemington’s BioBlitz was inspired by Princeton Hydro Aquatic Ecologist Jesse Smith. Jesse’s vision of engaging the community in a collaborative effort to explore local biodiversity led to this inaugural event, hosted by Flemington DIY.
“My idea to do this BioBlitz came from an interest in knowing more about what was present in Flemington, with a hope that this event will help others become more interested in the natural world in their backyard,” said Jesse Smith, event coordinator, Flemington DIY volunteer, and Aquatic Ecologist at Princeton Hydro.
This event will span 24 hours in order to provide participants an opportunity to document species that are more active at dusk, dawn, and at night. The event is free and open to all ages. Children under 18 must be accompanied by an adult.
Location: Flemington DIY, 26 Stangl Road, Flemington, NJ
Start Date & Time: Plan to arrive at Flemington DIY on Saturday, June 22 at 11 AM to check-in and review important event details.
BioBlitz Timeframe:The documentation phase kicks off on June 22 at noon and wraps up on June 23 at noon. Although the event spans a full 24 hours, participants are not expected to be actively documenting the entire time. You can choose the times that best fit your schedule within this 24-hour window.
End Date & Time: Return to Flemington DIY on 6/23 at 12pm for the conclusion of the BioBlitz to review collected data and celebrate our findings!
What to Bring: Download the iNaturalist app on your smartphone for species identification. No prior expertise is required, and field guides will be provided. Wear comfortable shoes and bring rain gear just in case.
Whether you’re passionate about birds, plants and insects, curious about the natural world, or looking for a fun excuse to get outside, BioBlitz 2024 is the perfect opportunity to immerse yourself in Flemington’s rich biodiversity. Let’s come together to discover, learn, and contribute to our community’s natural heritage. For more information and to register for the event, please visit Flemington DIY's BioBlitz page.
Did you know that New York State is home to a rich tapestry of natural waterbodies, including over 7,600 freshwater lakes, ponds, and reservoirs? Our team recently journeyed to Lake George, New York, to participate in the 41st annual conference of the New York State Federation of Lake Associations (NYSFOLA).
This year’s conference, themed “It Takes a Community to Protect a Watershed,” brought together environmental experts, lake management professionals, students, recreation enthusiasts, watershed advocates, and lake community members to advance the best available information and techniques for protecting and restoring New York’s watersheds. The two-day program featured a diverse exhibitor hall, networking events, a silent auction, a student poster session and a variety of presentations and workshops that combined science, policy, practical applications, and tangible resources.
Princeton Hydro, a proud sponsor of the conference, led two presentations during the “Climate Resilience and Your Lake" segment of the educational program:
Michael Hartshorne, Director of Aquatics, delivered an insightful presentation titled "Impacts of Climate Change on Lake Ecology," which delved into the significant role of climate change in shaping lake ecosystems. During the session, Michael highlighted key factors such as rising water temperatures, heightened frequency and severity of rainfall, depletion of dissolved oxygen, fluctuating patterns of algal blooms, and the migration of invasive species due to changing latitudinal conditions. His presentation underscored the necessity for evolving approaches to lake management in response to these profound ecological shifts.
Dr. Fred Lubnow, Senior Technical Director of Ecological Services, presented "A Survey of the Ecology of Select Lakes and Ponds in Central Park, NYC," which provided an insightful overview of Princeton Hydro's water quality and ecological monitoring efforts conducted across lakes and ponds of Central Park from 2020 to 2023 for the Central Park Conservancy. These assessments revealed elevated nutrient levels driving planktonic algae, filamentous mat algae and in some cases high densities of aquatic plants, prompting the Central Park Conservancy and Princeton Hydro to collaborate on a tailored Management Plan. Fred’s presentation spotlighted the distinct ecological profiles of key sites, addressed the impact of cyanobacteria on both ecological dynamics and recreational usage, and provided practical management methods and techniques.
Additional educational session topics included, Environmental Justice and New York Lakes, Community Leadership for Healthy Lakes in New York State, and iMap Invasive Species Workshop. Click here to view the complete agenda.
Founded in 1983, NYSFOLA is a not-for-profit coalition of lake associations, individuals, and corporate members dedicated to the protection and restoration of New York lakes. Princeton Hydro is the industry leader in lake restoration and watershed management. We have conducted diagnostic studies and have developed management and restoration plans for over 300+ lakes and watersheds throughout the country. Our long-standing partnership with NYSFOLA as a corporate member, annual conference sponsor, and active participant highlights our unwavering commitment to collaborative initiatives aimed at safeguarding our water resources. To learn more about our lake and natural resource management services and how we're contributing to a healthier environment, click here.
Nestled within the New Jersey townships of Hamilton, Robbinsville, and West Windsor lies Miry Run Dam Site 21—an expansive 279-acre parcel with a rich history dating back to its acquisition by Mercer County in the late 1970s. Originally earmarked for flood mitigation and recreation, this hidden gem is on the cusp of a remarkable transformation, poised to unveil its true potential as a thriving public park.
Central to the revitalization efforts is a comprehensive Master Plan, meticulously crafted by Mercer County Park Commission in partnership with Simone Collins Landscape Architecture and Princeton Hydro. This visionary roadmap encompasses a spectrum of engineering and ecological uplift initiatives, including:
The Master Plan serves as a long-term vision for improvements to the property and will be implemented over multiple phases. In 2021, it was recognized with the Landscape Architectural Chapter Award from the New Jersey Chapter American Society of Landscape Architects, which underscores its innovative and impactful approach to landscape design.
Now, Dam Site 21’s revitalization has begun with a crucial endeavor: the dredging of its 50-acre lake. This process, spearheaded by Mercer County Park Commission in collaboration with Princeton Hydro, aims to rejuvenate the water body by removing accumulated debris, sediment, and invasive vegetation—a vital step towards restoring its ecological balance. Beyond the aesthetic and ecological improvements, dredging enhances accessibility for recreational activities that provide an opportunity to create a deeper connection between the park’s visitors and its beautiful natural landscape.
Based on the bathymetric assessment, which the Princeton Hydro team completed as part of the Master Plan, the dredging efforts are focused on three primary areas: Area 1 is located in the main body of the lake just downstream of Line Road and will generate approximately 34,000 cubic yards of dredged material; Area 2, which has approximately 4,900 cubic yards of accumulated sediment is located in the northeast cove, just north of Area 1; and Area 3, the northwestern cove, entails the removal of approximately 7,300 cubic yards of accumulated sediment.
Before the dredging work could begin, the Princeton Hydro team was responsible for providing a sediment sampling plan, sample collection and laboratory analysis, engineering design plan, preparation and submission of all NJDEP regulatory permitting materials, preparation of the technical specifications, and bid administration. Currently, our team is providing construction administration and oversight for the project.
The journey towards Dam Site 21's revival has been marked by meticulous planning, design, and community engagement spanning several years. With the commencement of dredging operations, the project's vision is gradually materializing—a testament to the dedication of all stakeholders involved. As the first phase unfolds, anticipation mounts for the realization of a vibrant, inclusive public space that honors both nature and community.
As Dam Site 21 undergoes its metamorphosis, it symbolizes not just a physical restoration, but a renewal of collective vision and commitment. Ultimately, Dam Site 21 isn't just a park—it's a testament to the enduring legacy of conservation, community, and the transformative power of restoration.
The significance of Dam Site 21's transformation extends far beyond its recreational appeal. It embodies a commitment to environmental stewardship, with measures aimed at bolstering flood resilience, improving water quality, and nurturing diverse wildlife habitats. By blending conservation with recreation, the project strikes an important balance between creating access for community members to enjoy the space and ecological preservation that puts native plants, critical habitat, and wildlife at the forefront.
To learn more about the restoration initiative and view the Final Master Plan, visit the Mercer County Park Commission’s website. Click here to learn about another one of Princeton Hydro’s recent restoration efforts. And, stay tuned here for more Mercer County Park Commission project updates!
In recognition of World Water Day on March 22, it's important to acknowledge and explore the challenges affecting our freshwater ecosystems. In this blog post, we explore one of those said challenges: Harmful Algal Blooms (HABs).
HABs, characterized by rapid overgrowths of cyanobacteria, have increasingly drawn attention due to their detrimental effects on water quality and aquatic ecosystems. With the onset of spring, rising temperatures create favorable conditions for cyanobacteria growth, setting the stage for potential bloom occurrences in the months ahead. Over recent summers, lakes and freshwater bodies across the nation have faced closures and health advisories due to HAB outbreaks, underscoring the urgent need to address this issue.
Cyanobacteria, often referred to as blue-green algae, are naturally occurring microorganisms in aquatic environments. However, under specific conditions—such as warm temperatures and nutrient-rich waters—these organisms can proliferate rapidly, forming blooms that pose risks to the health of humans, wildlife and aquatic species, local economies and overall ecological balance.
The interplay between climate change and HABs is undeniable: Rising temperatures and altered precipitation patterns create favorable conditions for cyanobacteria growth, exacerbating bloom occurrences. The absence of snow cover and early ice melt further accelerates this process, allowing cyanobacteria to flourish earlier in the year. Over the past few summers, lakes and fresh-waterbodies across the nation experienced closures and health advisories as a result of HAB outbreaks, emphasizing the urgency of addressing this issue.
In light of these challenges, proactive measures are crucial for mitigating the impacts of HABs. Early sampling efforts, initiated as early as March or April, enable the detection of cyanobacteria and akinetes, dormant spores that contribute to bloom formation. Additionally, reducing nutrient inputs, particularly phosphorus, into waterways is essential for preventing HABs.
As we reflect on the significance of water resources on World Water Day, it’s imperative to recognize the importance of addressing threats such as HABs. By raising awareness, fostering collaboration, and implementing effective strategies, we can work towards safeguarding the health and sustainability of our freshwater ecosystems.
In this spirit, we invite you to join the conversation at the Harmful Algal Bloom Summit 2024, hosted by the New Jersey Department of Environmental Protection. This virtual seminar, taking place on March 27, is free to attend and offers a platform for stakeholders to exchange insights, discuss best practices, and explore innovative solutions for managing HABs.
This year's Summit, which is titled “Unlocking the Puzzle of Harmful Algal Blooms," includes a keynote address and three educational sessions - "Growth Through Reflection: Lessons Learned," "Innovative Tools and Applications," and "Beyond the Numbers" - each featuring a variety of expert presentations. Princeton Hydro Senior Technical Director of Ecological Services Dr. Fred Lubnow is presenting on "Quantifying Overwintering Cyanobacteria and How They May Impact the Monitoring and Management of HABs."
Get more information and register here.
As we commemorate World Water Day 2024, let us reflect on the interconnectedness of water and life. Small actions taken today can have a profound impact on preserving water quality for future generations. Join us in making a commitment to promote and do our part to support a sustainable future for our freshwater ecosystems.
Your Full Name * Phone Number * Your Email * Organization Address Message *
By EmailBy Phone
Submit
Δ
Couldn’t find a match? Check back often as we post new positions throughout the year.