We’re committed to improving our ecosystems, quality of life, and communities for the better.
Our passion and commitment to the integration of innovative science and engineering drive us to exceed on behalf of every client.
WP_Query Object ( [query] => Array ( [page] => [pagename] => blog ) [query_vars] => Array ( [page] => 0 [pagename] => blog [error] => [m] => [p] => 0 [post_parent] => [subpost] => [subpost_id] => [attachment] => [attachment_id] => 0 [name] => [page_id] => 0 [second] => [minute] => [hour] => [day] => 0 [monthnum] => 0 [year] => 0 [w] => 0 [category_name] => natural-resource-management [tag] => [cat] => 10 [tag_id] => [author] => [author_name] => [feed] => [tb] => [paged] => 1 [meta_key] => [meta_value] => [preview] => [s] => [sentence] => [title] => [fields] => [menu_order] => [embed] => [category__in] => Array ( [0] => 10 ) [category__not_in] => Array ( ) [category__and] => Array ( ) [post__in] => Array ( ) [post__not_in] => Array ( ) [post_name__in] => Array ( ) [tag__in] => Array ( ) [tag__not_in] => Array ( ) [tag__and] => Array ( ) [tag_slug__in] => Array ( ) [tag_slug__and] => Array ( ) [post_parent__in] => Array ( ) [post_parent__not_in] => Array ( ) [author__in] => Array ( ) [author__not_in] => Array ( ) [search_columns] => Array ( ) [posts_per_page] => 11 [ignore_sticky_posts] => [suppress_filters] => [cache_results] => 1 [update_post_term_cache] => 1 [update_menu_item_cache] => [lazy_load_term_meta] => 1 [update_post_meta_cache] => 1 [post_type] => [nopaging] => [comments_per_page] => 5 [no_found_rows] => [order] => DESC ) [tax_query] => WP_Tax_Query Object ( [queries] => Array ( [0] => Array ( [taxonomy] => category [terms] => Array ( [0] => 10 ) [field] => term_id [operator] => IN [include_children] => ) ) [relation] => AND [table_aliases:protected] => Array ( [0] => ph_term_relationships ) [queried_terms] => Array ( [category] => Array ( [terms] => Array ( [0] => 10 ) [field] => term_id ) ) [primary_table] => ph_posts [primary_id_column] => ID ) [meta_query] => WP_Meta_Query Object ( [queries] => Array ( ) [relation] => [meta_table] => [meta_id_column] => [primary_table] => [primary_id_column] => [table_aliases:protected] => Array ( ) [clauses:protected] => Array ( ) [has_or_relation:protected] => ) [date_query] => [queried_object] => WP_Post Object ( [ID] => 6 [post_author] => 1 [post_date] => 2021-01-18 12:51:43 [post_date_gmt] => 2021-01-18 12:51:43 [post_content] => [post_title] => Blog [post_excerpt] => [post_status] => publish [comment_status] => closed [ping_status] => closed [post_password] => [post_name] => blog [to_ping] => [pinged] => [post_modified] => 2021-01-18 12:51:43 [post_modified_gmt] => 2021-01-18 12:51:43 [post_content_filtered] => [post_parent] => 0 [guid] => https://princetonhydro.com/?page_id=6 [menu_order] => 0 [post_type] => page [post_mime_type] => [comment_count] => 0 [filter] => raw ) [queried_object_id] => 6 [request] => SELECT SQL_CALC_FOUND_ROWS ph_posts.ID FROM ph_posts LEFT JOIN ph_term_relationships ON (ph_posts.ID = ph_term_relationships.object_id) WHERE 1=1 AND ( ph_term_relationships.term_taxonomy_id IN (10) ) AND ((ph_posts.post_type = 'post' AND (ph_posts.post_status = 'publish' OR ph_posts.post_status = 'acf-disabled'))) GROUP BY ph_posts.ID ORDER BY ph_posts.menu_order, ph_posts.post_date DESC LIMIT 0, 11 [posts] => Array ( [0] => WP_Post Object ( [ID] => 13535 [post_author] => 1 [post_date] => 2023-08-25 15:21:48 [post_date_gmt] => 2023-08-25 15:21:48 [post_content] => The New Jersey Department of Environmental Protection (NJDEP) has launched its third annual Youth Inclusion Initiative. The program hopes to enrich young participants, who may not have the opportunity to explore open spaces in their community, with hands-on environmental field experience under the tutelage of NJDEP professionals and mentors. This year’s youth consists of 47 participants from ages 16-20 that hail from five different community-based organizations. These partners include Neighborhood Improvement Association (Trenton), Rutgers-Camden, Groundwork Elizabeth, Ironbound Community Corporation (Newark), and The Work Group (Camden). [caption id="attachment_13546" align="aligncenter" width="1230"] The youth program participants gather together with their certificates for a final group photo.[/caption] Over the course of this six week program, the youth participated in a curriculum that showcased career pathways in the water resources and natural resources management fields. Participants learned through classroom instruction and by receiving some in-field experience across sectors regulated by NJDEP such as touring an air monitoring station, visiting a trout hatchery, conducting stream assessments, and practicing proper tool and equipment recognition at a state park. After their time with the initiative is through, they will have nurtured the skills to pursue these job opportunities and develop a deeper appreciation for our environment. Princeton Hydro representatives Mark Gallagher, Dana Patterson, and Michael Rehman, CERP, PWS led one of the mentorships. This is the second year NJDEP’s Division of Land Resource Protection Mitigation Unit invited Princeton Hydro to teach a portion of the program. The goal in participating was to educate the youth about the importance of restoring native landscapes and explore the job responsibilities of environmental scientists, water resource engineers, geologists, ecologists, pesticide applicators, and regulatory compliance specialists, while building upon and cultivating fascination with nature. The Abbott Marshlands in Trenton, New Jersey The program kicked off with a presentation in Mercer County Park Commission’s Tulpehaking Nature Center located in John A. Roebling Park. After learning about the history of the site from representatives from Mercer County and Friends of the Abbott Marshlands, Princeton Hydro discussed opportunities for careers in conservation and gave a brief overview of the restoration efforts in the park to eradicate the invasive Common Reed (Phragmites australis). Prior to heading out to explore the Abbott Marshlands, the northernmost freshwater tidal wetlands on the Delaware River, the Princeton Hydro team went through a health and safety briefing, a very important part of our job, to make sure everyone was aware of the potential risks and exposures. [gallery link="none" ids="13543,13540,13552"] Princeton Hydro team members and NJDEP’s Environmental Specialist Jessica Klein led the participants through the park. Right away, the first group witnessed one of nature’s marvels when they spotted a Northern Red-bellied Cooter (Pseudemys rubriventris) laying her eggs along the side of the main road. Participants learned of the marshland and surrounding upland’s rich cultural significance. On their trek through this natural oasis, they followed in the footsteps of the Lenape, a tribe of Native Americans who regularly visited and eventually settled in the area at least 13,000 years ago. These early nomadic people relied on the land for food, fuel, and other readily available resources until they were displaced due to European settlement along the Delaware River. Learn more about the Abbott Marshland cultural history here. Eventually, the group made it to the area of the restoration site. Here, the students gained a better understanding of the harsh effects that invasive species have on an ecosystem. The 3000-acre freshwater tidal marsh provides habitat to many rare and endangered species, but it has experienced a significant amount of degradation due to monoculture of the invasive Common Reed. In order to improve the area’s biodiversity and elevate visitors’ recreational experience, Princeton Hydro implemented a restoration plan that aimed to eradicate the aggressive non-native plants within a 40-acre stretch of the marsh and enable native plants like Wild Rice (Zizania aquatica) to flourish. Learn more about this project. NJDEP Commissioner Shawn LaTourette surprised the Rutgers-Camden group with his joyful presence. After giving a zealous speech to the class, he accompanied them on their journey to the marshland. [caption id="attachment_11299" align="aligncenter" width="1230"] NJDEP Commissioner Shawn LaTourette joins the class.[/caption] Overall, participants had fun learning how to use a field guide to identify invasive species found within the area. They were taught how to differentiate them with native flora like sensitive fern, poison ivy, and wild rice. With a wide survey of the marshland, the youth were taught about wetland delineation and got a peek into the process of using a hand auger and a Munsell Soil Color Book to identify wetland soils. Utilizing binoculars, the last group was lucky to spot a Northern Harrier, an uncommon visitor for the marshland, soaring circles in the sky in search of prey. The rare sighting led to the successful end of the final tour. [gallery link="none" ids="13538,13541,13545,13590,13592,13595,13596,13597,13594"] The NJDEP Youth Inclusion Initiative began on July 6 and culminated on August 16 with a graduation and NJDEP Career Day where students had the opportunity to meet and discuss career options with various organizations who tabled at the event, including Princeton Hydro. To learn more about the NJDEP education program, click here. If you’re interested in learning more about Princeton Hydro’s ecological restoration services, click here. [post_title] => Another Successful Year Mentoring Participants from NJDEP's Youth Inclusion Initiative [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => njdep-youth-inclusion-initiative-2023 [to_ping] => [pinged] => [post_modified] => 2023-08-28 19:50:30 [post_modified_gmt] => 2023-08-28 19:50:30 [post_content_filtered] => [post_parent] => 0 [guid] => https://princetonhydro.com/?p=13535 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [1] => WP_Post Object ( [ID] => 13468 [post_author] => 1 [post_date] => 2023-08-18 06:00:22 [post_date_gmt] => 2023-08-18 06:00:22 [post_content] => A wetland is a unique ecosystem that is permanently or seasonally saturated by water, including swamps, marshes, bogs, vernal pools, and similar areas. They provide water quality improvement, flood protection, shoreline erosion control, food for humans and animals, and critical habitat for thousands of species of aquatic and terrestrial plants, aquatic organisms, and wildlife. [gallery link="none" ids="13477,13487,13472"] Princeton Hydro is regionally recognized for its capabilities in the restoration of freshwater and saltwater wetland ecosystems. Our ecologists also regularly conduct wetland delineations. A wetland delineation, a requirement of most permitting efforts, is the field work conducted to determine the boundary between the upper limit of a wetland and the lower limit of an upland thus identifying the approximate extent and location of wetlands on a requested site. For this edition of our “A Day in the Life” blog series, we join Environmental Scientist Ivy Babson and Regulatory Compliance & Wildlife Surveys Project Manager Emily Bjorhus, PWS out in the field for a wetland delineation. To Delineate a Wetland We Must First Define It Most commonly, wetlands are delineated based on the Routine Onsite Determination Method set forth in the Federal Manual Identifying and Delineating Jurisdictional Wetlands (FICWD 1989) with supplemental information provided by the applicable United States Army Corps of Engineers’ (USACE) regional supplement manual. USACE’s “three-parameter” approach defines an area as a wetland if it exhibits, under normal circumstances, all the following characteristics: The land supports a dominance of hydrophytic vegetation; The substrate is hydric soil; and The soil/substrate is at least periodically saturated or inundated during a portion of the growing season. Step 1: Prepare for Delineation Day Ivy and Emily begin by coordinating with the client to ensure they’ve been granted site access approval. They then perform a comprehensive desktop analysis of the project site, identifying existing features like wetlands, open waters (streams, lakes), and potential hydric soils. This involves utilizing resources like USFWS's National Wetland Inventory Mapper, the U.S. Geological Survey's SSURGO Soils Survey, and, for New Jersey-based delineations, NJDEP's GeoWeb. The desktop review also allows Ivy and Emily to assemble the proper safety gear and create a Model Health & Safety Plan (HASP). A HASP must always be prepared before the field work begins. Then, the field-day packing begins; the following items are a requirement for any wetland delineation: Field notebook and writing utensils Soil auger (for examining soil profiles) Munsell soil color chart book (for assessing soil types) High-vis flagging and pin flags Hi-vis surveyors or wetland delineator’s vest Muck boots or waders (depending on the type of environment and existing features) Field map, usually an up-to-date aerial, showing the boundaries of the site Sunscreen and bug spray (ticks are a common occurrence) Plenty of water and food - wetland delineations can be quite strenuous, especially in the summer Appropriate clothing - wetland delineations can be conducted year-round Step 2: Set the Game Plan & Review HASP It's always important to make a plan for the project. If we are delineating a large property, it might take several days to traverse, and each day, the weather might be different. So planning ahead, but also being prepared for unexpected changes, will make the day go that much smoother. And, as part of the HASP, we must identify important points of contact and know where the closest hospital is in case of a serious emergency. So, reviewing this information and planning ahead prior to heading into the field is a very important step in the process. Step 3: Perform the Three-Parameter Wetland Delineation While wetland delineations can be conducted any time of the year, they are best conducted during the “growing season” when soil temperatures are above the biologic zero and vegetation is easily identifiable by leaves, inflorescence, or other unique identifying characteristics that would otherwise be difficult to identify during the winter months. Ivy and Emily begin by locating known (mapped) wetland or waterbody features and writing a list of all plants observed on-site. They maintain the plant list throughout the day. If, during the desktop review, they find a mapped wetland or stream, they walk there first to determine if wetlands are actually present. Even if a wetland is mapped on a database, it may not actually exist for various reasons. On the flip side, even if a site is not mapped as containing wetlands, the site could very well contain them. As such, the wetland delineation determines exactly what is on-site and supplements the desktop review. As mentioned above, a wetland delineation considers three determining factors: 1) vegetation, 2) soils, and 3) hydrology. While on site, Ivy and Emily must identify hydrophytic vegetation, take soil borings, and look for wetland hydrology to identify whether a wetland is present or not. Parameter 1: Vegetation Wetlands are dominated by hydrophytes which are plants that can grow in water or on a substrate that is at least periodically deficient in oxygen because of excessive water content and depleted soil oxygen levels. The USACE and NJDEP definition of hydrophytes is based on the USFWS classification system. In general, any plant species that is found growing in wetlands more than 50% of the time is considered a hydrophyte. These plants include those classified by the USFWS as “facultative," “facultative wetland," or “obligate." As a wetland delineator, it is important to possess strong plant identification skills and an eye for recognizing various ecological plant communities, which are groups of plants that share a common environment and environmental requirements. They are often defined by dominant plant species. Once Ivy and Emily identify the hydrophytic plant community, they determine what type of ecological community they are in (e.g., freshwater forested wetland, estuarine scrub-shrub wetland, or freshwater tidal emergent marsh). Today, they are in a freshwater forested wetland, which means Ivy and Emily must now assess each stratum of the forested wetland by writing down the species and associated percent species cover. [gallery link="none" ids="13448,13450,13475"] To accurately describe the vegetation at each sampling point, we collect data on each horizontal strata or layer. Vegetative strata for which dominants are determined include (1) tree (> 5.0 inches diameter at breast height (DBH) and 20 feet or taller); (2) sapling (0.4 to <5.0 inches DBH and <20 feet tall); (3) shrub (usually 3 to 20 feet tall including multi-stemmed, bushy shrubs); (4) woody vine; and (5) herb (herbaceous plants including graminoids, forbs, ferns, fern allies, herbaceous vines, and tree seedlings). They repeat this process for each representative wetland. Next, Ivy and Emily look for the upland plant community that is directly upslope of the wetland and make note of the proximity to the wetland, repeating the same vegetation documentation process. Parameter 2: Soils Ivy and Emily must determine whether the soils within the hydrophytic plant community are hydric. Hydric soils are defined as soils that are saturated, flooded, or ponded long enough during the growing season to develop anaerobic conditions in the upper part. Hydric soil indicators are features in the soil that predominantly form by biogeochemical processes in a saturated and anaerobic environment and result in the accumulation of loss of iron, manganese, sulfur, or carbon compounds. Emily uses a soil auger to collect a sample of the first 6 - 12 inches of soil where the most significant parts of a hydric soil would be occurring. Once Ivy and Emily identify that the soil is indeed hydric, Ivy uses her Munsell soil color book to determine the value of the soil and each hydric soil indicator. [gallery link="none" columns="2" ids="13489,13485"] They also document additional characteristics of each soil layer: Is it loam, silty loam, sand, sandy loam, silt, muck, clay, clayey loam, etc.? What is the percentage of rocks, plant roots, or other organic matter in each layer? What is the percentage of redoximorphic features of each layer and are they faint or prominent? Each layer of the soil profile, which is typically documented to a depth of at least 18 inches, is sectioned out and thoroughly described. Parameter 3: Hydrology The identification of positive indicators of wetland hydrology includes direct observation of indicator groups, such as the observation of surface water or saturated soils, evidence of recent inundation, evidence of current or recent soil saturation, and evidence from other site conditions or data. Each group contains several indicators, which are classified into categories known as “primary” or “secondary” indicators. To positively identify the area as being a wetland, at least one primary wetland indicator (from any group) or at least two secondary wetland indicators (from any group) must be present. Additionally, for an area to be designated as a wetland, the area must have the presence of water for a week or more during the growing season. Areas with wetland hydrology characteristics are those where the presence of water has an overriding influence on characteristics of vegetation and soils due to anaerobic and reducing conditions, respectively. [caption id="attachment_13488" align="aligncenter" width="483"] This red maple developed morphologic adaptations in the form of buttressed roots.[/caption] Today, Emily and Ivy observe a depression (secondary) along with a few inches of standing water (primary), water-stained leaves (primary), frogs hopping around (primary), and moss trim lines on the tree trunks (secondary). All signs point to a forested wetland; however, there is more to consider. Ivy and Emily’s soil boring assessment showed that the soils within the top 12 inches of the soil surface were saturated (primary) and bright orange streaks were visible along the plant roots, which they documented as oxidized rhizospheres along living roots (primary). Because they identified more than one primary and two secondary wetland indicators, they can confidently delineate the wetland. Step 4: Delineate Between the Wetland and Upland Now that Ivy and Emily established that a wetland is present, they must find the boundary of the upland. They are now looking for the absence of hydrophytic vegetation, hydric soils, and positive indicators of wetland hydrology as well as the dominance of upland ecological plant communities. The same analysis and documentation process they completed for the wetland area is also required for the upland area. Once they locate the boundary, they flag the wetland line, labeling the flagging with the wetland nomenclature and either hanging it or pinning it into the ground. While the description sounds relatively simple, finding the boundary between a wetland and upland can be tricky and time consuming. For example, there may be some hydrophytic vegetation growing within an upland and there may be one secondary positive indicator of wetland hydrology, but hydric soils are missing. To positively classify an area as a wetland, a slam dunk on all three parameters is required. [caption id="attachment_13513" align="aligncenter" width="639"] Marked up image indicating the upland, wetland, and stream. The red line marks the boundary between a wetland and an upland. The blue line marks the boundary between a stream and the wetlands on either side of the stream’s banks.[/caption] Step 5: Delineate Waterbodies Ivy and Emily must also delineate waterbodies concurrent with wetlands. Waterbodies may include, but are not limited to, streams, rivers, lakes, and ponds. To delineate a waterbody, they hang labeled flagging along the waterbody’s top of bank or its ordinary high water mark. Throughout this process, they take pictures to document the existing waterbody conditions. [gallery link="none" ids="13457,13460,13455"] Step 6: Post-Delineation Wrap-up Once the wetland delineation is complete, Ivy and Emily draw out a field sketch that depicts the approximate extent and location of the wetland and waterbody boundaries with their respective nomenclature. Depending on the project scope, the field sketch is either submitted to a Professional Licensed Surveyor who will then visit the site to survey each wetland and waterbody flag, or Ivy and Emily will return to the site to survey each flag with a survey-grade GPS. Once the survey is complete, Ivy and Emily will conduct a final review of the plans to ensure accuracy. If requested, they will also prepare a wetland delineation report, which outlines the delineation method, findings, results, and thorough description of each wetland and its soils, hydrology, and vegetation. “Wetland delineations aren’t for the faint of heart,” said Ivy. “At the end of the day, you might emerge from a dense stand of Phragmites garnering strange looks from passersby with muck smeared on your face, sticks and leaves poking out of your hair, a belly full of mosquitos that you might have accidentally swallowed, and fingernails stuffed with dirt. However, there isn’t any other type of field that I would rather be in. As a wetland delineator, I can access environments that most people would steer clear of and, as a result, I get to see things that I wouldn’t get to see anywhere else. I get to improve my plant identification skills and expand my knowledge of how wetlands function as an ecosystem.” [caption id="attachment_13478" align="aligncenter" width="566"] Ivy standing in a tidal marsh at Spring Creek North in Brooklyn and Queens, New York. "This wetland delineation is one of my favorite delineating experiences yet. And, I'm looking forward to many more to come!"[/caption] A big thanks to Ivy and Emily for taking us out in the field for a wetland delineation! Emily Bjorhus is a Project Manager that specializes in environmental regulatory compliance, ecological services and wildlife surveys. She leads federal, state and local environmental permitting processes, NEPA compliance and documentation, Endangered Species Act Section 7 consultations, and Clean Water Act Section 404(b)1 analyses. Mrs. Bjorhus is a certified Professional Wetland Scientist. As an Environmental Scientist, Ivy Babson regularly conducts wetland delineations and monitoring, flora/fauna surveys, water quality sampling, fishery surveys, permitting, and regulatory compliance for a series of projects. She earned her Wetland Delineation Certification from Rutgers University. Ivy graduated from the University of Vermont in 2019 with a B.S. in Environmental Science with a concentration in Ecological Design, and minor in Geospatial Technologies. To read more about our wetland restoration work, go here: http://bit.ly/PHwetland. If you enjoyed this blog, check out another one from our “A Day in the Life” series, and stay tuned for more. [post_title] => A Day in the Life: Performing a Wetland Delineation [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => a-day-in-the-life-performing-a-wetland-delineation [to_ping] => [pinged] => [post_modified] => 2023-08-18 12:51:54 [post_modified_gmt] => 2023-08-18 12:51:54 [post_content_filtered] => [post_parent] => 0 [guid] => https://princetonhydro.com/?p=13468 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [2] => WP_Post Object ( [ID] => 13355 [post_author] => 1 [post_date] => 2023-08-16 07:03:24 [post_date_gmt] => 2023-08-16 07:03:24 [post_content] => 400 native plants were installed along the western shoreline of Memorial Pond in Mount Arlington, New Jersey. The planting was completed in one day by a team of 20+ volunteers, staff members from Mt. Arlington Department of Public Works (DPW), Lake Hopatcong Foundation, Lake Hopatcong Commission, Princeton Hydro, and a generous community member who volunteered his excavating equipment (and time). The planting initiative aims to prevent shoreline erosion, promote the growth of native species, increase wildlife habitat, and improve the water quality of Memorial Pond and Lake Hopatcong. Funding for this project was secured through a grant from the New Jersey Department of Environmental Protection, awarded to the Lake Hopatcong Commission in partnership with the Lake Hopatcong Foundation. [caption id="attachment_13422" align="aligncenter" width="616"] Photo by Lake Hopatcong Foundation Executive Director Kyle Richter[/caption] Memorial Pond Memorial Pond is a 0.3-acre stormwater runoff basin that gradually releases into Glen Brook, which then flows into Lake Hopatcong. The pond receives sheet flow of stormwater from the adjacent road, which contributes to nutrient and sediment loading, thus locally reducing water quality in Memorial Pond and ultimately the waters of Lake Hopatcong. Memorial Park, which includes Memorial Pond and Glen Brook, was identified by Princeton Hydro and the Lake Hopatcong team as a priority site for improvement, targeting initiatives that reduce pollutants and excessive nutrients entering into Lake Hopatcong. Additionally, the pond’s steeply-sloped shoreline was bare and only stabilized with large rocks at the base of the banks. In the absence of stabilizing vegetation, the pond’s banks were experiencing erosion, and there was some concern about a few mature trees along the shoreline potentially falling into the pond. [gallery link="none" ids="13416,13407,13413"] The photos above were taken in April 2023 before the planting initiative. Shoreline Planting Initiative The plant selection and layout were designed taking into account the steep slope and presence of mature, existing trees as well as focusing on regionally native plant species that will thrive and help stabilize the eroding shoreline. The planting team, led by Princeton Hydro Landscape Architect Jamie Feinstein, RLA and Aquatics Project Manager Pat Rose, was given precise instructions on how to install the plants to eliminate washouts and ensure the root systems can embrace the soil and hold it in place. A variety of native herbaceous plants and shrubs were chosen for the site, including pennsylvania sedge, slender mountain mint, blue flag iris, sweet azalea, smooth hydrangea, and maple-leaved viburnum. [gallery link="none" ids="13427,13421,13428"] The plants will help reduce stormwater flow, absorb excess nutrients, prevent erosion, and ultimately decrease sedimentation to the pond, while creating a visually pleasing addition to the park and providing a habitat for pollinators and birds. Overall, this project promotes a healthier and more balanced ecosystem in Memorial Park. [gallery link="none" ids="13400,13392,13394"] The photos above were taken in July 2023 immediately after the planting initiative. Multi-Faceted Approach to Water Quality Improvements The installation of these beneficial plants is part of a series of water quality initiatives on Lake Hopatcong funded by a NJDEP Freshwater Harmful Algal Bloom (HAB) Prevention & Management Grant and 319(h) Grant awarded to Lake Hopatcong Commission in partnership with the Lake Hopatcong Foundation. Additional initiatives included in the watershed implementation and HABs management plan are, the installation of:
The New Jersey Department of Environmental Protection (NJDEP) has launched its third annual Youth Inclusion Initiative. The program hopes to enrich young participants, who may not have the opportunity to explore open spaces in their community, with hands-on environmental field experience under the tutelage of NJDEP professionals and mentors.
This year’s youth consists of 47 participants from ages 16-20 that hail from five different community-based organizations. These partners include Neighborhood Improvement Association (Trenton), Rutgers-Camden, Groundwork Elizabeth, Ironbound Community Corporation (Newark), and The Work Group (Camden).
Over the course of this six week program, the youth participated in a curriculum that showcased career pathways in the water resources and natural resources management fields. Participants learned through classroom instruction and by receiving some in-field experience across sectors regulated by NJDEP such as touring an air monitoring station, visiting a trout hatchery, conducting stream assessments, and practicing proper tool and equipment recognition at a state park. After their time with the initiative is through, they will have nurtured the skills to pursue these job opportunities and develop a deeper appreciation for our environment.
Princeton Hydro representatives Mark Gallagher, Dana Patterson, and Michael Rehman, CERP, PWS led one of the mentorships. This is the second year NJDEP’s Division of Land Resource Protection Mitigation Unit invited Princeton Hydro to teach a portion of the program. The goal in participating was to educate the youth about the importance of restoring native landscapes and explore the job responsibilities of environmental scientists, water resource engineers, geologists, ecologists, pesticide applicators, and regulatory compliance specialists, while building upon and cultivating fascination with nature.
The program kicked off with a presentation in Mercer County Park Commission’s Tulpehaking Nature Center located in John A. Roebling Park. After learning about the history of the site from representatives from Mercer County and Friends of the Abbott Marshlands, Princeton Hydro discussed opportunities for careers in conservation and gave a brief overview of the restoration efforts in the park to eradicate the invasive Common Reed (Phragmites australis). Prior to heading out to explore the Abbott Marshlands, the northernmost freshwater tidal wetlands on the Delaware River, the Princeton Hydro team went through a health and safety briefing, a very important part of our job, to make sure everyone was aware of the potential risks and exposures.
Princeton Hydro team members and NJDEP’s Environmental Specialist Jessica Klein led the participants through the park. Right away, the first group witnessed one of nature’s marvels when they spotted a Northern Red-bellied Cooter (Pseudemys rubriventris) laying her eggs along the side of the main road. Participants learned of the marshland and surrounding upland’s rich cultural significance. On their trek through this natural oasis, they followed in the footsteps of the Lenape, a tribe of Native Americans who regularly visited and eventually settled in the area at least 13,000 years ago. These early nomadic people relied on the land for food, fuel, and other readily available resources until they were displaced due to European settlement along the Delaware River. Learn more about the Abbott Marshland cultural history here.
Eventually, the group made it to the area of the restoration site. Here, the students gained a better understanding of the harsh effects that invasive species have on an ecosystem. The 3000-acre freshwater tidal marsh provides habitat to many rare and endangered species, but it has experienced a significant amount of degradation due to monoculture of the invasive Common Reed. In order to improve the area’s biodiversity and elevate visitors’ recreational experience, Princeton Hydro implemented a restoration plan that aimed to eradicate the aggressive non-native plants within a 40-acre stretch of the marsh and enable native plants like Wild Rice (Zizania aquatica) to flourish. Learn more about this project.
NJDEP Commissioner Shawn LaTourette surprised the Rutgers-Camden group with his joyful presence. After giving a zealous speech to the class, he accompanied them on their journey to the marshland.
Overall, participants had fun learning how to use a field guide to identify invasive species found within the area. They were taught how to differentiate them with native flora like sensitive fern, poison ivy, and wild rice. With a wide survey of the marshland, the youth were taught about wetland delineation and got a peek into the process of using a hand auger and a Munsell Soil Color Book to identify wetland soils. Utilizing binoculars, the last group was lucky to spot a Northern Harrier, an uncommon visitor for the marshland, soaring circles in the sky in search of prey. The rare sighting led to the successful end of the final tour.
A wetland is a unique ecosystem that is permanently or seasonally saturated by water, including swamps, marshes, bogs, vernal pools, and similar areas. They provide water quality improvement, flood protection, shoreline erosion control, food for humans and animals, and critical habitat for thousands of species of aquatic and terrestrial plants, aquatic organisms, and wildlife.
Princeton Hydro is regionally recognized for its capabilities in the restoration of freshwater and saltwater wetland ecosystems. Our ecologists also regularly conduct wetland delineations. A wetland delineation, a requirement of most permitting efforts, is the field work conducted to determine the boundary between the upper limit of a wetland and the lower limit of an upland thus identifying the approximate extent and location of wetlands on a requested site.
For this edition of our “A Day in the Life” blog series, we join Environmental Scientist Ivy Babson and Regulatory Compliance & Wildlife Surveys Project Manager Emily Bjorhus, PWS out in the field for a wetland delineation.
Most commonly, wetlands are delineated based on the Routine Onsite Determination Method set forth in the Federal Manual Identifying and Delineating Jurisdictional Wetlands (FICWD 1989) with supplemental information provided by the applicable United States Army Corps of Engineers’ (USACE) regional supplement manual.
USACE’s “three-parameter” approach defines an area as a wetland if it exhibits, under normal circumstances, all the following characteristics:
Ivy and Emily begin by coordinating with the client to ensure they’ve been granted site access approval.
They then perform a comprehensive desktop analysis of the project site, identifying existing features like wetlands, open waters (streams, lakes), and potential hydric soils. This involves utilizing resources like USFWS's National Wetland Inventory Mapper, the U.S. Geological Survey's SSURGO Soils Survey, and, for New Jersey-based delineations, NJDEP's GeoWeb. The desktop review also allows Ivy and Emily to assemble the proper safety gear and create a Model Health & Safety Plan (HASP). A HASP must always be prepared before the field work begins.
It's always important to make a plan for the project. If we are delineating a large property, it might take several days to traverse, and each day, the weather might be different. So planning ahead, but also being prepared for unexpected changes, will make the day go that much smoother. And, as part of the HASP, we must identify important points of contact and know where the closest hospital is in case of a serious emergency. So, reviewing this information and planning ahead prior to heading into the field is a very important step in the process.
While wetland delineations can be conducted any time of the year, they are best conducted during the “growing season” when soil temperatures are above the biologic zero and vegetation is easily identifiable by leaves, inflorescence, or other unique identifying characteristics that would otherwise be difficult to identify during the winter months.
Ivy and Emily begin by locating known (mapped) wetland or waterbody features and writing a list of all plants observed on-site. They maintain the plant list throughout the day.
If, during the desktop review, they find a mapped wetland or stream, they walk there first to determine if wetlands are actually present. Even if a wetland is mapped on a database, it may not actually exist for various reasons. On the flip side, even if a site is not mapped as containing wetlands, the site could very well contain them. As such, the wetland delineation determines exactly what is on-site and supplements the desktop review.
As mentioned above, a wetland delineation considers three determining factors: 1) vegetation, 2) soils, and 3) hydrology. While on site, Ivy and Emily must identify hydrophytic vegetation, take soil borings, and look for wetland hydrology to identify whether a wetland is present or not.
Wetlands are dominated by hydrophytes which are plants that can grow in water or on a substrate that is at least periodically deficient in oxygen because of excessive water content and depleted soil oxygen levels.
The USACE and NJDEP definition of hydrophytes is based on the USFWS classification system. In general, any plant species that is found growing in wetlands more than 50% of the time is considered a hydrophyte. These plants include those classified by the USFWS as “facultative," “facultative wetland," or “obligate."
As a wetland delineator, it is important to possess strong plant identification skills and an eye for recognizing various ecological plant communities, which are groups of plants that share a common environment and environmental requirements. They are often defined by dominant plant species.
Once Ivy and Emily identify the hydrophytic plant community, they determine what type of ecological community they are in (e.g., freshwater forested wetland, estuarine scrub-shrub wetland, or freshwater tidal emergent marsh). Today, they are in a freshwater forested wetland, which means Ivy and Emily must now assess each stratum of the forested wetland by writing down the species and associated percent species cover.
To accurately describe the vegetation at each sampling point, we collect data on each horizontal strata or layer. Vegetative strata for which dominants are determined include (1) tree (> 5.0 inches diameter at breast height (DBH) and 20 feet or taller); (2) sapling (0.4 to <5.0 inches DBH and <20 feet tall); (3) shrub (usually 3 to 20 feet tall including multi-stemmed, bushy shrubs); (4) woody vine; and (5) herb (herbaceous plants including graminoids, forbs, ferns, fern allies, herbaceous vines, and tree seedlings). They repeat this process for each representative wetland.
Next, Ivy and Emily look for the upland plant community that is directly upslope of the wetland and make note of the proximity to the wetland, repeating the same vegetation documentation process.
Ivy and Emily must determine whether the soils within the hydrophytic plant community are hydric. Hydric soils are defined as soils that are saturated, flooded, or ponded long enough during the growing season to develop anaerobic conditions in the upper part. Hydric soil indicators are features in the soil that predominantly form by biogeochemical processes in a saturated and anaerobic environment and result in the accumulation of loss of iron, manganese, sulfur, or carbon compounds.
Emily uses a soil auger to collect a sample of the first 6 - 12 inches of soil where the most significant parts of a hydric soil would be occurring.
Once Ivy and Emily identify that the soil is indeed hydric, Ivy uses her Munsell soil color book to determine the value of the soil and each hydric soil indicator.
They also document additional characteristics of each soil layer: Is it loam, silty loam, sand, sandy loam, silt, muck, clay, clayey loam, etc.? What is the percentage of rocks, plant roots, or other organic matter in each layer? What is the percentage of redoximorphic features of each layer and are they faint or prominent?
Each layer of the soil profile, which is typically documented to a depth of at least 18 inches, is sectioned out and thoroughly described.
The identification of positive indicators of wetland hydrology includes direct observation of indicator groups, such as the observation of surface water or saturated soils, evidence of recent inundation, evidence of current or recent soil saturation, and evidence from other site conditions or data. Each group contains several indicators, which are classified into categories known as “primary” or “secondary” indicators.
To positively identify the area as being a wetland, at least one primary wetland indicator (from any group) or at least two secondary wetland indicators (from any group) must be present.
Additionally, for an area to be designated as a wetland, the area must have the presence of water for a week or more during the growing season. Areas with wetland hydrology characteristics are those where the presence of water has an overriding influence on characteristics of vegetation and soils due to anaerobic and reducing conditions, respectively.
Today, Emily and Ivy observe a depression (secondary) along with a few inches of standing water (primary), water-stained leaves (primary), frogs hopping around (primary), and moss trim lines on the tree trunks (secondary). All signs point to a forested wetland; however, there is more to consider.
Ivy and Emily’s soil boring assessment showed that the soils within the top 12 inches of the soil surface were saturated (primary) and bright orange streaks were visible along the plant roots, which they documented as oxidized rhizospheres along living roots (primary). Because they identified more than one primary and two secondary wetland indicators, they can confidently delineate the wetland.
Now that Ivy and Emily established that a wetland is present, they must find the boundary of the upland. They are now looking for the absence of hydrophytic vegetation, hydric soils, and positive indicators of wetland hydrology as well as the dominance of upland ecological plant communities. The same analysis and documentation process they completed for the wetland area is also required for the upland area.
Once they locate the boundary, they flag the wetland line, labeling the flagging with the wetland nomenclature and either hanging it or pinning it into the ground.
While the description sounds relatively simple, finding the boundary between a wetland and upland can be tricky and time consuming. For example, there may be some hydrophytic vegetation growing within an upland and there may be one secondary positive indicator of wetland hydrology, but hydric soils are missing. To positively classify an area as a wetland, a slam dunk on all three parameters is required.
Ivy and Emily must also delineate waterbodies concurrent with wetlands. Waterbodies may include, but are not limited to, streams, rivers, lakes, and ponds. To delineate a waterbody, they hang labeled flagging along the waterbody’s top of bank or its ordinary high water mark. Throughout this process, they take pictures to document the existing waterbody conditions.
Once the wetland delineation is complete, Ivy and Emily draw out a field sketch that depicts the approximate extent and location of the wetland and waterbody boundaries with their respective nomenclature.
Depending on the project scope, the field sketch is either submitted to a Professional Licensed Surveyor who will then visit the site to survey each wetland and waterbody flag, or Ivy and Emily will return to the site to survey each flag with a survey-grade GPS. Once the survey is complete, Ivy and Emily will conduct a final review of the plans to ensure accuracy.
If requested, they will also prepare a wetland delineation report, which outlines the delineation method, findings, results, and thorough description of each wetland and its soils, hydrology, and vegetation.
“Wetland delineations aren’t for the faint of heart,” said Ivy. “At the end of the day, you might emerge from a dense stand of Phragmites garnering strange looks from passersby with muck smeared on your face, sticks and leaves poking out of your hair, a belly full of mosquitos that you might have accidentally swallowed, and fingernails stuffed with dirt. However, there isn’t any other type of field that I would rather be in. As a wetland delineator, I can access environments that most people would steer clear of and, as a result, I get to see things that I wouldn’t get to see anywhere else. I get to improve my plant identification skills and expand my knowledge of how wetlands function as an ecosystem.”
Emily Bjorhus is a Project Manager that specializes in environmental regulatory compliance, ecological services and wildlife surveys. She leads federal, state and local environmental permitting processes, NEPA compliance and documentation, Endangered Species Act Section 7 consultations, and Clean Water Act Section 404(b)1 analyses. Mrs. Bjorhus is a certified Professional Wetland Scientist.
As an Environmental Scientist, Ivy Babson regularly conducts wetland delineations and monitoring, flora/fauna surveys, water quality sampling, fishery surveys, permitting, and regulatory compliance for a series of projects. She earned her Wetland Delineation Certification from Rutgers University. Ivy graduated from the University of Vermont in 2019 with a B.S. in Environmental Science with a concentration in Ecological Design, and minor in Geospatial Technologies.
400 native plants were installed along the western shoreline of Memorial Pond in Mount Arlington, New Jersey. The planting was completed in one day by a team of 20+ volunteers, staff members from Mt. Arlington Department of Public Works (DPW), Lake Hopatcong Foundation, Lake Hopatcong Commission, Princeton Hydro, and a generous community member who volunteered his excavating equipment (and time).
The planting initiative aims to prevent shoreline erosion, promote the growth of native species, increase wildlife habitat, and improve the water quality of Memorial Pond and Lake Hopatcong. Funding for this project was secured through a grant from the New Jersey Department of Environmental Protection, awarded to the Lake Hopatcong Commission in partnership with the Lake Hopatcong Foundation.
Memorial Pond is a 0.3-acre stormwater runoff basin that gradually releases into Glen Brook, which then flows into Lake Hopatcong. The pond receives sheet flow of stormwater from the adjacent road, which contributes to nutrient and sediment loading, thus locally reducing water quality in Memorial Pond and ultimately the waters of Lake Hopatcong.
Memorial Park, which includes Memorial Pond and Glen Brook, was identified by Princeton Hydro and the Lake Hopatcong team as a priority site for improvement, targeting initiatives that reduce pollutants and excessive nutrients entering into Lake Hopatcong.
Additionally, the pond’s steeply-sloped shoreline was bare and only stabilized with large rocks at the base of the banks. In the absence of stabilizing vegetation, the pond’s banks were experiencing erosion, and there was some concern about a few mature trees along the shoreline potentially falling into the pond.
The photos above were taken in April 2023 before the planting initiative.
The plant selection and layout were designed taking into account the steep slope and presence of mature, existing trees as well as focusing on regionally native plant species that will thrive and help stabilize the eroding shoreline. The planting team, led by Princeton Hydro Landscape Architect Jamie Feinstein, RLA and Aquatics Project Manager Pat Rose, was given precise instructions on how to install the plants to eliminate washouts and ensure the root systems can embrace the soil and hold it in place.
A variety of native herbaceous plants and shrubs were chosen for the site, including pennsylvania sedge, slender mountain mint, blue flag iris, sweet azalea, smooth hydrangea, and maple-leaved viburnum.
The plants will help reduce stormwater flow, absorb excess nutrients, prevent erosion, and ultimately decrease sedimentation to the pond, while creating a visually pleasing addition to the park and providing a habitat for pollinators and birds. Overall, this project promotes a healthier and more balanced ecosystem in Memorial Park.
The photos above were taken in July 2023 immediately after the planting initiative.
The installation of these beneficial plants is part of a series of water quality initiatives on Lake Hopatcong funded by a NJDEP Freshwater Harmful Algal Bloom (HAB) Prevention & Management Grant and 319(h) Grant awarded to Lake Hopatcong Commission in partnership with the Lake Hopatcong Foundation.
Additional initiatives included in the watershed implementation and HABs management plan are, the installation of:
floating wetland island (FWI), which are a low-cost, effective green infrastructure solution designed to mimic natural wetlands in a sustainable, efficient, and powerful way. FWIs improve water quality by assimilating and removing excess nutrients; provide valuable ecological habitat for a variety of beneficial species; help mitigate wave and wind erosion impacts; provide an aesthetic element; and add significant biodiversity enhancement within open freshwater environments;
biochar filtration bags, which improve water quality by removing phosphorus from waterbodies. Biochar can be placed in floatation balls, cages, or sacks, which are then tethered along the shoreline and in critical locations throughout the waterbody; and
nanobubble aeration system, which increases the concentrations of dissolved oxygen in the water, prevents stagnation of water, increases circulation, disrupts thermal stratification which provides “through-column” mixing, and minimizes the occurrence of HABs.
“Paired with biochar filters attached to buoys in the pond and continued monitoring and maintenance of the plantings by the DPW, these steps will set a healthy precedent for what can be achieved through working together with funders, local partners, science, and landscape architecture,” said Feinstein, who sourced plant material, provided logistics and co-led the planning and volunteer planting event along with Rose.
Princeton Hydro's Landscape Architect, Cory Speroff PLA, ASLA, CBLP, designed the planting plan, and Will Kelleher and Jackson Tilves from the Aquatics Team participated in the plant installation event with Feinstein.
Princeton Hydro is also authoring and supplying a maintenance manual that provides guidance on seasonal care of the plantings, when to remove the herbivory protection fencing, pruning, watering, and other activities that support the long term success of the planting initiative.
“This collaborative effort to enhance water quality serves as a prime example of how seemingly simple actions can have a meaningful impact on safeguarding our water resources for the benefit of future generations,” said the Lake Hopatcong Foundation.
The photos above from left to right: June 2023 before the planting; July 2023 during the planting (photo by Lake Hopatcong Foundation Executive Director Kyle Richter); and July 2023 immediately after the planting.
Princeton Hydro has been working on Lake Hopatcong, New Jersey’s largest Lake, for 30+ years, restoring the lake, managing the watershed, reducing pollutant loading, and addressing invasive aquatic plants and nuisance algal blooms. To read about some of the other projects we’ve recently worked on at Lake Hopatcong, click here.
When we hear about harmful algal bloom (HAB) outbreaks, like those recently spotted in New Jersey, the first thoughts that come to mind usually involve discolored waters, environmental disruption, closed beaches, and potential human health hazards. Yet, a crucial aspect that often escapes the spotlight is the impact of these blooms on animals, including pets, wildlife, and livestock.
As HABs proliferate due to factors like excess nutrients and warming waters, the impacts ripple across a wide spectrum of living things, encompassing everything from aquatic species to humans to our animal companions, working animals, and livestock. Animals are most at risk because they may bathe/swim in affected water, drink contaminated water, or ingest it when cleaning algae from fur/hair coat, and the symptoms of HABs toxicity can go unnoticed for a period of time.
The U.S. Department of Agriculture (USDA) Natural Resources Conservation Service (NRCS) released a new factsheet that specifically provides an array of information and techniques to safeguard livestock from the dangers of HABs.
In this blog, we provide links to the USDA NRCS's newly released informational resources, shed light on the often-unseen consequences of HABs, and outline steps to protect the four-legged members of our agricultural communities.
HABs are rapid, large overgrowths of cyanobacteria. Cyanobacteria, also known as blue-green algae, aren’t actually algae, they are prokaryotes, single-celled aquatic organisms that are closely related to bacteria and can photosynthesize like algae. These microorganisms are a natural part of aquatic ecosystems, but, under the right conditions (e.g., heavy rains followed by hot, sunny days), these organisms can rapidly increase to form HABs. Climate change is leading to more frequent, more intense rainstorms that drive run-off pollutants into waterways, coupled with more hot days that increase the water temperature, creating the ideal environment for HABs to proliforate. In recent years, HABs have begun to appear in more places, earlier in the summer.
HABs can cause significant water quality issues in lakes and ponds, often forming a visible and sometimes odorous scum on the surface of the water. They can produce toxins that are incredibly harmful (even deadly) to humans, aquatic organisms, and animals, including livestock.
The health impacts and symptoms can vary depending on the size and type of animal, how an animal is exposed to the cyanotoxin, how long they were exposed, which type of toxin was present, and how much toxin was present.
Symptoms of cyanotoxin exposure in animals includes: vomiting, profuse salivation, fatigue, unsteady gait, labored breathing, convulsions, and liver malfunction. When animals bathe or swim in waters with even low concentrations of cyanotoxins, it may cause skin rashes, ear/throat infections, and gastrointestinal distress. In severe cases, especially when contaminated water is ingested, HAB poisoning can prove fatal.
When HABs are present in a waterbody that is accessible to and utilized by livestock, it's important to immediately restrict access to the contaminated water. If a potential exposure to cyanotoxins has occurred, NRCS recommends:
In its newly released fact sheet, NRCS also provides a number of ideas for segregating livestock from tainted waters, reducing the risk of livestock exposure to HABs, and providing alternate water sources, including:
To minimize the risk of future HABs, it's important to stay informed, routinely monitor waterbodies, take actions to reduce harmful effects, and adopt conservation practices that prevent nutrient loading to waterbodies.
Princeton Hydro is regionally recognized for its HABs expertise, having provided management recommendations and services for 100+ lakes and ponds in the Northeast, including Lake Hopatcong, New Jersey’s largest lake. To learn more about our lake management and HABs prevention services, click here. For additional HABs resources from the USDA NRCS, click here.
Exciting changes have unfolded at Kol Emet, a Reconstructionist Congregation in Yardley, Bucks County, Pennsylvania. The campus’ exterior lands have undergone a remarkable transformation, blossoming into an enchanting and peaceful place for community member gatherings, and a wildflower meadow.
Princeton Hydro partnered with Congregation Kol Emet to design and implement the synagogue's 10-acre campus transformation. The Princeton Hydro team provided green infrastructure engineering, landscape architecture, and construction services aimed at enhancing the usability and welcoming atmosphere of the synagogue, and creating a sustainable outdoor solution in the event of future pandemics, and a place to connect with the natural environment that surrounds the property. The design provides a net positive impact by reducing flooding in the community and improves water quality by augmenting stormwater management and biodiversity throughout the property.
"Our vision surpassed mere construction of a gathering space," said Geoffrey M. Goll P.E., President of Princeton Hydro, a congregant of Kol Emet, Executive Board Member, and point person for the project. "We wanted to create a harmonious union between the synagogue campus and the surrounding preserved woodlands, cultivating a serene haven where congregants can unite, celebrate, and worship, while also enhancing the ecological functionality and biodiversity of the landscape. This was a realization of the vision of the Founders of Kol Emet and the labor and financial support of many members of the Board, past and present, and a generous donation by a longtime supporter of the community. The outdoor sanctuary was named in honor and memory of a founding member and former President, Geri Shatz, who was a staunch supporter of the Jewish community and advocate for the mission of Kol Emet. She lived the ideals of community and contribution. I am proud of the extraordinary transformation that’s been achieved."
The Kol Emet Reconstructionist Congregation, is a 501(c)3 religious organization, founded in 1984. While a center of worship for its members, it is much more than that. Kol Emet is a community of people who care about improving the world around them through social action and environmental protection.
The sentiment of "Tikkun Olam" is embodied by Kol Emet and the committee that spearheaded the project, working directly with the Princeton Hydro team to bring the project goals to fruition. The modern interpretation of the Hebrew phrase “Tikkun Olam,” is “action intended to repair and improve the world.” The campus restoration project brings the concept of “Tikkun Olam” to life.
Princeton Hydro Landscape Architect Cory Speroff, PLA, ASLA, CBLP is the project’s lead designer. The project included landscape design and planting that incorporates native and sustainable trees and shrubs; significant upgrades to the existing stormwater management basin, including the conversion of low-flow channels, impervious surfaces, and turf-covered areas to native grassland and wildflower habitat; and the development of the “Geri Shatz Outdoor Contemplative Space."
Cory’s design inspiration for the Geri Shatz Outdoor Contemplative Space is modeled after the Hebrew term “etz chaim” or “Tree of Life.” In Judaism, the Tree of Life has a number of meanings, both literal and figurative. In the Kabbalah, the Tree of Life represents the connection between heaven and earth, wisdom and knowledge, and the interconnectedness of all living things. It is visually represented as a diagram that looks much like a tree with 10 nodes and 22 lines. Cory’s design for the community space uses strategically placed trees to mimic the Tree of Life and aims to promote community connection and a connection to the surrounding natural landscape.
The contemplative space consists of a bimah, seating to accommodate at least 80 people, and a beautiful array of native trees and flowering shrubs, including black gum, silver birch, and Virginia sweetspire.
Cory’s design for the land surrounding the contemplative space improves flood resilience; controls stormwater runoff volume and promotes groundwater recharge; boosts safety features of the campus; and enhances habitat for pollinators, native plants, and other important species. The wildflower meadow was seeded with a variety of native plants, including purple love grass, common milkweed, wild bergamot, and blue wild indigo.
“During the height of the COVID-19 pandemic, it felt like the only way to see our loved ones was to be outside, and during these backyard and front porch gatherings many people re-discovered their love for the outdoors,” said Cory. “In talking with the Committee, there was a desire to create an outdoor sanctuary where the congregation could gather and continue that re-discovery. I believe that through the careful consideration of symbolic elements and thoughtful design choices, we’ve created a space that can inspire introspection, connection, and a sense of harmony with both nature and faith.”
Funding for the project came from the Congregation Kol Emet’s “Our Heart. Our Home” capital campaign, a $750,000 campaign focused on upgrading four key aspects of the synagogue: social hall, HVAC upgrades, indoor sanctuary, outside school, and the new outdoor sanctuary. The outdoor sanctuary and ecological uplift to the 10-acre campus is a primary piece of the campaign and was made possible by the generous donations of several Kol Emet members.
Stan Shatz bestowed a bounteous donation in memory of Geri Shatz, which made possible the creation of the “Geri Shatz Outdoor Contemplative Space.”
The following families also contributed to the funding of the Geri Shatz Outdoor Contemplative Space: Laurel & Kevin Bloch, Barbara & Debra Fogel and Family, Jill & David Gordon, Annie & Ryan Kubanoff and Family, and Teddi & Josh Matisoff and Family.
The Princeton Hydro team is honored to have worked with Kol Emet on this important and inspirational project.
Congregation Kol Emet came together on Sunday, June 4, 2023 for a celebration and ribbon-cutting ceremony to mark the completion of the outdoor sanctuary project. Here are a few photos from the joyous event:
Princeton Hydro is an expert in engineering, ecological restoration, and landscape architecture, and we’ve been incorporating green stormwater infrastructure and nature-based solutions into our designs for decades. Click here to read about the landscape restoration and stormwater management project we designed and implemented in Thompson Park, a 675-acre recreation area in Middlesex County, New Jersey.
Liberty State Park is located on the west bank of Upper New York Bay and is one of the most visited state parks in the nation with over 5.1 million visitors. Princeton Hydro was contracted by U.S. Army Corps of Engineers (USACE) in partnership with the New Jersey Department of Environmental Protection (NJDEP) Office of Natural Resource Restoration (ONRR) to design a resilient coastal ecosystem within 235 acres of this highly urbanized setting that provides both ecological and social benefits. This includes the restoration of over 80 acres of tidal and non-tidal wetlands and creation of several thousands of feet of intertidal shoreline and shallow water habitat hydrologically connected to the Upper New York Bay. When constructed, this will be one of the largest ecosystem habitat restoration projects in New Jersey.
NJDEP held an open house on May 24, 2023 at Liberty State Park announcing the next steps for the Revitalization Program. During the open house, Environmental Protection Commissioner Shawn M. LaTourette and USACE Colonel Matthew W. Luzzatto shared details of the multi-phase revitalization program for the park.
The public was presented with a video that showcases detailed engineering design renderings and simulates the expected visitor experience. The video was created using renderings by Princeton Hydro's Landscape Architect Cory Speroff PLA, ASLA, CBLP and produced in-house by our Marketing & Communications Department in collaboration with NJDEP ONRR. Watch it now:
Once constructed, this project will expand public access, improve water quality, restore native plant communities, and improve coastal resilience for urban communities who are vulnerable to storm events. The site design includes a trail network for the park interior that will provide access to the newly established habitat zones and views of the Statue of Liberty and New York City skyline. This trail network will enhance pedestrian connectivity between the existing portion of Liberty State Park, Liberty Science Center, Jersey City, and local public transit hubs.
Project partners for the interior restoration design include USACE, NJDEP ONRR, National Oceanic and Atmospheric Administration, U.S. Fish and Wildlife Service, National Fish and Wildlife Foundation, HDR, and Princeton Hydro.
Over the next year, NJDEP will provide the community with updates on revitalization program activities, which will include multiple points of continued public engagement and opportunities for community input to inform further design work. The initial groundbreaking is anticipated to take place in Fall 2023.
Please stay tuned to our blog for more project updates. To read more about Princeton Hydro’s robust natural resource management and restoration services, click here.
The Horseshoe Mill Dam, built in 1827, served as the first barrier to fish passage on the Weweantic River in Wareham, Massachusetts. For over 150 years, migratory fish were unable to reach their breeding grounds upstream due to this structure. However, thanks to the efforts of the Buzzards Bay Coalition and its project partners, the dam was successfully removed between December 2019 and February 2021. As early as April 2021, migratory fish were seen swimming unimpeded from Buzzards Bay to lay their eggs in freshwater upstream. A true success story!
This blog explores the Horseshoe Mill Dam removal project and celebrates the significant milestone in the recovery of fish populations and the restoration of ecological processes in the Weweantic River.
The Weweantic River winds its way through the picturesque landscapes of southeastern Massachusetts, spanning a length of 17.0 miles. This land is the traditional territory of the Wampanoag/Wôpanâak tribes. Derived from the Wampanoag language, Weweantic means "crooked" or "wandering stream."
Originating from the wetlands in Carver, the river flows in a southerly direction meandering through swampy birch and maple forests in Middleborough and Rochester. Eventually, it empties into a Buzzards Bay estuary near the mouth of the Sippican River in Wareham. The river's watershed covers approximately 18,000 acres, with numerous cranberry bogs situated in its upper sections.
Although the Weweantic River historically teemed with fish, the presence of the Horseshoe Mill Dam posed an obstacle to fish passage. The dam, spanning the Weweantic River at the head-of-tide, was built in 1827 to support a metal forge mill. Although it was once part of the infrastructure that supported Wareham’s economy, it had been decommissioned and left crumbling for decades. The defunct dam restricted to tidal inundation, hindered the migration of important fish species, and impacted riverine ecological processes.
The Weweantic River is the largest tributary to Buzzards Bay and provides 20 percent of all freshwater flow into Buzzards Bay. The meeting of salinity and nutrients through the tidal flow creates a vibrant ecosystem. It supports diverse communities of wetland species and a variety of non-migratory and migratory fish species, including river herring, white perch, and American eel. It is also home to the southernmost population of rainbow smelt in the United States, marking a significant change from a century ago when rainbow smelt were found as far south as the Chesapeake Bay. In the 1960s, smelt populations were even present in the Hudson River in New York.
Further highlighting the ecological significance of the Weweantic River and its surrounding watershed are the unique tidal freshwater wetland plant communities. The wetland areas surrounding the Horseshoe Mill Dam site contained two rare wetland plants, Parker's Pipewort (Eriocaulon parkeri) and Pygmyweed (Crassula aquatica), both of which are designated as priority habitats for rare species.
Additionally, situated along the shore of Buzzards Bay and the Weweantic River is the Cromeset Neck & Mark's Cove Marsh Wildlife Sanctuary. The 47-acre wildlife sanctuary consists of three separate parcels within one mile of each other. Salt marsh comprises most of the wildlife sanctuary, and the property also contains approximately six contiguous acres of coastal woodland.
The Horseshoe Mill Dam removal project involved several phases to achieve its restoration goals.
An inspection of the dam, conducted in 2009, rated its condition as unsatisfactory and noted significant concrete deterioration and erosion. The dam also included a former concrete-walled mill race that was in a state of disrepair, with collapsed walls and obstructed channels. The Buzzards Bay Coalition acquired the 10-acre Horseshoe Mill Dam property in 2012 to preserve it, provide public access, and pursue river restoration.
In 2016, the Buzzards Bay Coalition contracted Princeton Hydro to provide an Alternatives Analysis for the Weweantic River restoration project and a Fish Passage Feasibility Study for the dam. The analysis included a thorough site investigation, historical data review, sediment evaluation, hydrologic and hydraulic analysis, and ecological assessment. The five options considered in the analysis were:
The analysis ultimately helped the Buzzards Bay Coalition determine that a complete dam removal offered the most favorable ecological and economic outcomes.
Princeton Hydro, contracted by the Buzzards Bay Coalition, provided site investigation, engineering design, permitting, and construction oversight services for the dam removal. With funding from the Bouchard 120 Natural Resource Damage Trustee Council and collaboration with various agencies, including the U.S. Fish and Wildlife Service and NOAA, the dam removal commenced in December 2019 and was successfully completed in early 2021. Just months later in April 2021, for the first time in 150+ years, migratory fish were once again spotted swimming unimpeded from Buzzards Bay to lay their eggs in freshwater upstream.
Since the completion of the dam removal, Buzzards Bay Coalition Restoration Ecologist Sara da Silva Quintal has been consistently visiting the site and monitoring the positive changes taking place. Her observations include vegetation changes, signs of migratory fish spawning, and the geomorphic evolution of the landscape. She shared a series of Nearmap images that demonstrate how the landscape is positively adjusting to the barrier removal:
The completion of the Horseshoe Mill Dam removal project marks a significant achievement in the restoration of fish passage and the preservation of ecological function in the Weweantic River. Through the collaborative efforts of the Buzzards Bay Coalition, government agencies, and project partners, migratory fish can now freely swim upstream to their breeding grounds.
The restoration effort rejuvenated more than three miles of the Weweantic River and restored migratory fish passage. The dam removal enhanced riverine, wetland, and tidal habitat critical to a diverse group of aquatic, wildlife and plant species. It allowed for the natural extension of upriver habitat for two rare tidal plant species, ensuring their long-term survival. The restoration work also enhanced public access to the area by increasing walking trails and constructing canoe/kayak launches, promoting recreational opportunities, and fostering a deeper connection between people and the river.
In an article written by Kasey Silvia in November 2021, the Vice President for Watershed Protection at Buzzards Bay Coalition, Brendan Annett, was quoted as saying, “Removing this dam has immediately improved the natural functions of the Weweantic, undoing many years of environmental damage and it has already begun to bring the river back to life.”
The success of this project serves as a testament to the importance of collaborative conservation efforts in safeguarding and restoring our natural resources.
Welcome to the latest edition of our Client Spotlight series, which provides an inside look at our collaboration, teamwork, and accomplishments with one of our client partners.
Today, we’re shining the spotlight on Riverkeeper, a 501(c)3 nonprofit membership organization headquartered in Ossining, New York. The organization is committed to protecting and restoring the Hudson River from source to sea and safeguarding drinking water supplies through advocacy rooted in community partnerships, science, and law.
For this Client Spotlight, we spoke with Riverkeeper’s Senior Habitat Restoration Manager George Jackman, PhD via zoom:
A: We are the first Keeper organization in the world. We began in 1966 as the Hudson River Fishermen’s Association, an environmental watchdog and enforcement organization founded by a group of concerned fishermen. In 1986, we officially changed our name to Riverkeeper. We've helped set worldwide standards for waterway and watershed protection, and continue to serve as the model for more than 300 Keeper programs around the globe.
As New York’s clean water advocate, Riverkeeper is the unique voice in the Hudson Valley that is continually speaking-up to protect the integrity of the water, the creatures that call it home, and our surrounding communities. We are a voice of environmental justice for the people of Hudson Valley, advocating for communities that have often been marginalized or placed in disadvantaged situations that are now at the mercy of climate change. We are always striving for a fishable, swimmable, and drinkable Hudson River and a healthy watershed.
A: We value clean, reliable drinking water and an equitable justice for all people. We value a healthy, ecologically-balanced environment and clean, sustainable forms of energy. We value free-flowing rivers that are resilient and teeming with life. We value stewardship of the Hudson River and its watershed. And, last but not least, we value all of our members, volunteers, partners, supporters, and neighbors who play a primary and vital role in protecting our local environment.
A: I have to tell you, some of the work we do is not incredibly exciting, but it's incredibly important.
We do a lot of work to strengthen the laws and regulations that impact New York’s water resources. We advocate for environmental justice, and we help our fellow community members understand the legislative process and how to get involved in garnering support for legislation that protects our Hudson River, its tributaries, our watershed, wetlands and surrounding areas. Strong environmental policy may not be the most exciting thing, but it is one of the best tools we have.
And, it is very exciting when we win. Riverkeeper has taken on some of the largest corporations on planet Earth - General Electric, General Motors, Exxon - and we've won! The work isn’t easy; sometimes it can be a long, persistent slog. But, you know what? We’ve stayed the course and we've prevailed. Every time we win for the fish, it’s a big win for all of us, and for me that’s incredibly exciting and fulfilling.
The removal of the two defunct dams that George mentions in the video clip – Strooks Felt Dam and Furnace Brook Barrier #1 – marked an important milestone in the Riverkeeper’s journey to “Undam the Hudson River” and restore fish passage between the Hudson and the Atlantic Ocean. Click here to read more.
For more Riverkeeper volunteer opportunities and upcoming events, click here.
A: We have a great citizen science water sampling program; it’s actually one of the first community science initiatives in the world related to sampling water.
It begins every April and volunteers have to commit to 6-months of water quality sampling. The samples are collected from the water’s edge by Riverkeeper-trained community scientists. We test for salinity, oxygen, temperature, suspended sediment, chlorophyll, and Enterococcus (Entero), a fecal indicator bacteria. It’s quite an unprecedented scope for a citizen science sampling initiative. We compile the data into “How’s the Water” reports and tributary watershed reports, and post them to our website.
One of the wonderful things about the citizen science program is that we’re working with younger generations, training them on how to take samples and make observations, and helping them learn about the river. We’re trying to create a deeper connection between the river and its surrounding community members, especially our younger groups, and teach everyone how to be stewards for the river and protect the rivers’ many creatures.
Click here to meet Riverkeeper’s water quality program science partners and supporters, and check out the data findings.
A: I’ll just close by saying, I’ve had a great experience working with Princeton Hydro. And, we look forward to Princeton Hydro bidding on future Riverkeeper projects, and hopefully working with them in the future.
A big thanks to George and Riverkeeper for taking part in our Client Spotlight Series!
To learn more about George and the important work he's doing with Riverkeeper, we invite you to read this article recently published in Planet A Magazine, "Channeling the Flow of Nature."
Click below to check out the previous edition of our Client Spotlight Series featuring Tim Fenchel, Deputy Director of Schuylkill River Greenways National Heritage Area:
In the late 1920s, the U.S. government began allocating funds for road construction in U.S. national forests. This led to hundreds of thousands of culverts being built and installed across the country for the purpose of moving water quickly and efficiently underneath the roadways to prevent flooding, minimize erosion, and provide pathways for stormwater.
However, culverts have had an unintended and significant consequence: they block the migration routes of some fish and aquatic organisms.
Culverts that are undersized, improperly placed, or designed with smooth featureless surfaces can impede or totally block fish and aquatic species from passing. Culverts with extremely high velocity flows make it incredibly difficult for aquatic organisms to navigate upstream, and extremely low velocity flows make it hard for fish to pass in either direction. The high-velocity flows can erode the stream channel immediately downstream of the culvert, which can leave the culvert pipe perched. This elevation above the water channel makes it impossible for organisms to pass through. Debris can also collect in the culvert, not only blocking fish passage, but water as well.
In addition to blocking the upstream passage of fish and other aquatic species, some culverts disrupt the normal stream movements of some macroinvertebrates, which are key components of these stream ecosystems, an important food source to countless species, and play a critical role in the cycling of energy and nutrients throughout stream ecosystems. Disruptions to the movement and dispersal of stream macroinvertebrates can reduce available habitat, lead to genetic isolation of some populations, and cause extirpation of critical species. When populations splinter, it causes a reduction in genetic diversity, which can lead to the spread of more invasive species and many other ecological issues.
While culverts serve an important function in road construction and flood prevention, their impact on aquatic organisms must be taken into consideration. Finding solutions that both allow for efficient water flow and enable safe aquatic migration is crucial in preserving the health of our waterways and their ecosystems.
A shift in the 1980s recognized the importance of redesigning road-stream crossings for several reasons, including restoring aquatic organism passage and maintaining flood resilience. Between 2008 and 2015, U.S. Forest Service (USFS) partnered with more than 200 organizations in the Legacy Roads and Trails Program to replace 1,000+ culverts across the country. The aim of the program was to upgrade culverts to emulate natural streams and to allow fish and wildlife to pass more naturally both upstream and downstream.
Replacing culverts with structures that better facilitate the movement of both water and aquatic organisms has benefits beyond restoring critical ecosystems and improving biodiversity. Ecological restoration creates jobs, stimulates outdoor recreation and local economic activity, and generates long-term economic value.
Princeton Hydro has a strong history in designing connectivity-friendly road-stream crossings and restoring/replacing outdated culverts. Our team of engineers and scientists has been directly involved with hundreds of stream and ecosystem restoration projects throughout the Northeast.
For several years, Princeton Hydro has partnered with NY-NJ Harbor & Estuary Program (HEP) to plan and design for aquatic connectivity through climate-ready infrastructure. Created by the U.S. Environmental Protection Agency (USEPA) at the request of the governors of New York and New Jersey, HEP develops and implements plans that protect, conserve and restore the estuary, and aquatic connectivity is a key focus area for HEP and its partners.
Most recently, HEP partnered with Princeton Hydro to address hydraulic capacity issues at priority road-stream crossings in New Jersey’s South River and Lower Raritan River watersheds. The Princeton Hydro team developed a 30% engineering plan for a priority road-stream crossing – the Birch Street crossing over the Iresick Brook in Old Bridge, NJ.
Iresick Brook is upstream from Duhernal Lake, located at the end of the free-flowing South River, which feeds into the Raritan River, and ultimately flows into Raritan Bay. Duhernal Lake is dammed at the outlet so there is little to no connectivity downstream from the Iresick Brook sub-watershed. The watershed is highly dendritic (meaning the drainage pattern follows a tree-like shape) with many small streams running through it, some of them ephemeral.
The Iresick Brook 5 (IB5) culvert, located in Old Bridge Township, New Jersey, is an undersized double culvert in poor condition with an eroding streambank. This culvert was chosen as a restoration priority primarily due its inadequate sizing (both pipes are only 3-feet in diameter). The outdated infrastructure blocks the passage of fish and other aquatic organisms, and it can only accommodate a 50-year storm event.
Once the IB5 culvert was identified as the priority site, Princeton Hydro completed a site investigation, which included a geomorphic assessment, site observations, and simplified site survey of the channel alignment, profile, and cross sections both upstream and downstream of the culvert.
At the time of the survey, flow was only a couple inches deep in the channel and incredibly slow-moving, especially in the upstream reach. Despite the low flow at the time of the survey, during storm events, the stream experiences extremely high velocities. The undersized culvert creates hydraulic constriction and subsequently a velocity barrier that prevents passage. Additionally, when the high-flow stream water is forced through the small pipes, it creates a firehose effect, which has led to the formation of a 60-foot-long scour hole at the culvert outlet. Substrate from the scour hole has been washed downstream, forming an island of large sand and small gravel.
Approximately 155 feet upstream of the culvert is a channel-spanning v-notch weir comprised of a combination of sheet pile and timber. The weir appears to be a historical stream gauge that is highly degraded and creates an artificially perched channel. The upstream channel also contains woody debris, which gets caught at the culvert, blocking water flow and organism passage.
For the design process, Princeton Hydro used the USFS Stream Simulation Design, an gold-standard ecosystem-based approach for designing and constructing road-stream crossings that provide unimpeded fish and other aquatic organism passage through the structure. The Stream Simulation, a required standard on USFS road projects, integrates fluvial geomorphology concepts and methods with engineering principles to design a road-stream crossing that contains a natural and dynamic channel through the structure so that fish and other aquatic organisms will experience no greater difficulty moving through the structure than if the crossing did not exist.
The design also incorporated utility constraints (gas line, sewer line, drinking water main, and stormwater outlet), a longitudinal profile assessment, channel capacity and slope analysis, and a simplified hydrologic & hydraulic assessment.
Ultimately, Princeton Hydro recommended that HEP replace the existing culvert with a Contech Precast O-321 culvert, or similar alternative. The proposed design increases the culvert opening area and allows for significant increases in flow capacity. This culvert replacement project has the potential to reduce local flood risk and restore aquatic organism passage to the reach of Iresick Brook.
Aquatic connectivity is crucial for improving healthy aquatic ecosystems and managing severe storms and flooding. Increases in rainfall due to climate change makes investing in these improvements even more of a growing priority. With so many culverts in place, it can be difficult to know which culvert restoration projects to prioritize.
We worked with HEP to create a toolkit for addressing problematic road-stream crossings. The easy-to-use matrix helps to prioritize potential projects and identify solutions for problem culverts and relative cost solutions.
The toolkit was just recently released to the public with the hope that it will be used as a template to promote the development of more resilient and environmentally-friendly infrastructure.
Click here to get more info and download.
Our lakes in New Jersey are an invaluable resource for clean drinking water, outdoor recreation, and agriculture and provide habitat for aquatic flora and fauna. Home to about 1,700 lakes, the “Garden State” is also the most densely populated state. Excess nutrients from fertilizers, roadway pollutants, overdevelopment, and failing septic systems can end up in our lakes and impair water quality. Larger rain events can also cause erosion and instability of streams, adding to the influx of more excess nutrients to our lakes and ponds. Changes in hydrology, water chemistry, biology, and/or physical properties in these complex ecosystems can have cascading consequences that can alter water quality and the surrounding ecosystem. For example, excess nutrients can fuel algal and plant growth in lakes and lead to issues like harmful algal blooms (HABs) or fish kills.
In order to ensure that we protect the overall health of our local waterbodies, it’s important that we look beyond just the lake itself. Implementing holistic watershed-based planning is a critical step in managing stormwater runoff, preventing the spread of HABs, and maintaining water quality. A watershed management plan defines and addresses existing or future water quality problems from both point sources and nonpoint sources of pollutants*. This approach addresses all the beneficial uses of a waterbody, the criteria needed to protect the use, and the strategies required to restore water quality or prevent degradation. When developing a watershed plan, we review all the tools in the toolbox and recommend a variety of best management practices to prevent nutrients from entering lakes or streams. Options include short- and long-term solutions such as green stormwater infrastructure, stream bank stabilization, and stormwater basin retrofits.
To reduce nutrient availability in lakes, one innovative tool in our toolbox is floating wetland islands (FWIs). FWIs are a low-cost, effective green infrastructure solution that are designed to mimic natural wetlands in a sustainable, efficient, and powerful way. They improve water quality by assimilating and removing excess nutrients; provide valuable ecological habitat for a variety of beneficial species; help mitigate wave and wind erosion impacts; provide an aesthetic element; and add significant biodiversity enhancement within open freshwater environments. FWIs are also highly effective in a range of waterbodies from big to small, from deep to shallow.
Typically, FWIs consist of a constructed floating mat, usually composed of woven, recycled plastic material, with vegetation planted directly into the material. The islands are then launched into the lake and anchored in place, and, once established, require very little maintenance.
It estimated that one 250-square-foot FWI has a surface area equal to approximately one acre of natural wetland. These floating ecosystems can remove approximately 10 pounds of phosphorus each year. To put that into perspective, one pound of phosphorus can produce 1,100 pounds of algae each year, so each 250-square-feet of FWI can potentially mitigate up to 11,000 pounds of algae.
In addition to removing phosphorus that can feed nuisance aquatic plant growth and algae, FWIs also provide excellent refuge habitat for beneficial forage fish and can provide protection from shoreline erosion.
Princeton Hydro has been working with Lake Hopatcong, New Jersey’s largest Lake, for 30+ years, restoring the lake, managing the watershed, reducing pollutant loading, and addressing invasive aquatic plants and nuisance algal blooms. Back in 2012, Lake Hopatcong became the first public lake in New Jersey to install FWIs. In the summer of 2022, nine more FWIs were installed in the lake with help from staff and volunteers from the Lake Hopatcong Foundation, Lake Hopatcong Commission, and Princeton Hydro. The lake’s Landing Channel and Ashley Cove were chosen for the installations because they are both fairly shallow and prone to weed growth. The installation of these floating wetland islands is part of a series of water quality initiatives on Lake Hopatcong funded by a NJDEP Harmful Algal Bloom Grant and 319(h) Grant awarded to Lake Hopatcong Commission and Lake Hopatcong Foundation.
Princeton Hydro partnered with the Greenwood Lake Commission (GWLC) on a FWI installation in Belcher's Creek, the main tributary of Greenwood Lake. The lake, a 1,920-acre waterbody located in both New Jersey and New York, is a highly valued ecological, economical, and recreational resource. The lake also serves as a headwater supply of potable water that flows to the Monksville Reservoir and eventually into the Wanaque Reservoir, where it supplies over 3 million people with drinking water.
The goal of the FWI Installation was to help decrease total phosphorus loading, improve water quality, and create important habitat for beneficial aquatic, insect, bird, and wildlife species. The project was partially funded by the NJDEP Water Quality Restoration Grants for Nonpoint Source Pollution Program under Section 319(h) of the federal Clean Water Act. GWLC was awarded one of NJDEP’s matching grants, which provided $2 in funding for every $1 invested by the grant applicant.
Measuring 630+ acres, Harveys Lake is the largest natural lake (by volume) in Pennsylvania and is one of the most heavily used lakes in the area. It is classified as a high quality - cold water fishery habitat (HQ-CWF) and is designated for protection under the classification. Since 2002, The Borough of Harveys Lake and Harveys Lake Environmental Advisory Council has worked with Princeton Hydro on a variety of lake management efforts focused around maintaining high water quality conditions, strengthening stream banks and shorelines, and managing stormwater runoff. Five floating wetland islands were installed in Harveys Lake to assimilate and reduce nutrients already in the lake. The islands were placed in areas with high concentrations of nutrients, placed 50 feet from the shoreline and tethered in place with steel cables and anchored. The FWIs were funded by PADEP.
Working with the Deal Lake Commission (DLC), Princeton Hydro designed and installed 12 floating wetland islands at two lakes in Asbury Park, NJ. In order to complete the installation of the floating wetland islands, our team worked with the DLC to train and assist over 30 volunteers to plant plugs in the islands and launch them into the two lakes. Our experts helped disseminate knowledge to the volunteers, not only about how to install the floating wetland islands, but how they scientifically worked to remove excess nutrients from the water. With assistance from Princeton Hydro, DLC acquired the 12 floating islands – six for Wesley Lake and six for Sunset Lake – through a Clean Water Act Section 319(h) grant awarded by NJDEP.
In addition to the direct environmental benefits of FWIs, the planting events themselves, which usually involve individuals from the local lake communities, have long-lasting positive impacts. When community members come together to help plant FWIs, it gives them a deepened sense of ownership and strengthens their connection to the lake. This, in turn, encourages continued stewardship of the watershed and creates a broader awareness of how human behaviors impact the lake and its water quality. And, real water quality improvements begin at the watershed level with how people treat their land.
For more information on watershed planning or installing FWI in your community, click here to contact us. To learn more about ANJEC, go here.
If you've ever observed orange water in a river or stream after a dam has been removed, you may have been surprised by the strange color. This phenomenon is caused by iron oxide floc. But what exactly is iron oxide floc and how does it form?
Iron oxide, also known as rust, is a common compond found in nature. When it is dissolved in water, it takes on a reddish-brown color. Although the color can be alarming, iron oxide floc is relatively harmless and is actually a sign of the waterway returning to a more natural state.
The formation of iron oxide floc begins with the seepage of anaerobic groundwater through the embankment of a dam. The groundwater behind a dam often contains high levels of iron and is anaerobic (low in oxygen) because it is not exposed to the air and therefore does not have access to oxygen. When this anaerobic water reaches the other side of the dam and mixes with the aerobic surface water, the oxygen in the surface water reacts with the iron in the groundwater, forming iron oxide floc.
The orange color of the water is a result of the floc suspending in the water column and/or settling to the bottom of the waterway, creating a layer of orange sediment. In these situations, the iron oxide floc is only a temporary effect of the dam removal, not harmful to the environment, and will eventually be washed away by natural processes. As the waterway adjusts to its new, natural flow, the iron oxide floc will eventually disappear completely.
While the orange color may be surprising to see, it is a sign that the waterway is returning to a more natural state, leading to the water quality and habitat improvements achieved by dam removals. Removing outdated dams and restoring the natural flow of rivers has myriad benefits, including reconnecting river habitats that benefit fish and wildlife; reducing flood risk to surrounding communities; and promoting a healthier and more diverse ecosystem.
Princeton Hydro has designed, permitted, and overseen the removal of dozens of small and large dams throughout the Northeast. Click here to learn more about our dam engineering and removal services. And, if you're interested in reading about some of the dams we've removed in the Lehigh River Valley, click below:
Array ( [0] => stdClass Object ( [year] => 2023 [month] => 9 [posts] => 1 ) [1] => stdClass Object ( [year] => 2023 [month] => 8 [posts] => 5 ) [2] => stdClass Object ( [year] => 2023 [month] => 7 [posts] => 7 ) [3] => stdClass Object ( [year] => 2023 [month] => 6 [posts] => 4 ) [4] => stdClass Object ( [year] => 2023 [month] => 5 [posts] => 3 ) [5] => stdClass Object ( [year] => 2023 [month] => 4 [posts] => 7 ) [6] => stdClass Object ( [year] => 2023 [month] => 3 [posts] => 4 ) [7] => stdClass Object ( [year] => 2023 [month] => 2 [posts] => 5 ) [8] => stdClass Object ( [year] => 2023 [month] => 1 [posts] => 3 ) [9] => stdClass Object ( [year] => 2022 [month] => 12 [posts] => 6 ) [10] => stdClass Object ( [year] => 2022 [month] => 11 [posts] => 3 ) [11] => stdClass Object ( [year] => 2022 [month] => 10 [posts] => 5 ) [12] => stdClass Object ( [year] => 2022 [month] => 9 [posts] => 2 ) [13] => stdClass Object ( [year] => 2022 [month] => 8 [posts] => 3 ) [14] => stdClass Object ( [year] => 2022 [month] => 7 [posts] => 4 ) [15] => stdClass Object ( [year] => 2022 [month] => 6 [posts] => 3 ) [16] => stdClass Object ( [year] => 2022 [month] => 5 [posts] => 7 ) [17] => stdClass Object ( [year] => 2022 [month] => 4 [posts] => 3 ) [18] => stdClass Object ( [year] => 2022 [month] => 3 [posts] => 8 ) [19] => stdClass Object ( [year] => 2022 [month] => 2 [posts] => 1 ) [20] => stdClass Object ( [year] => 2022 [month] => 1 [posts] => 2 ) [21] => stdClass Object ( [year] => 2021 [month] => 12 [posts] => 5 ) [22] => stdClass Object ( [year] => 2021 [month] => 11 [posts] => 2 ) [23] => stdClass Object ( [year] => 2021 [month] => 10 [posts] => 1 ) [24] => stdClass Object ( [year] => 2021 [month] => 9 [posts] => 5 ) [25] => stdClass Object ( [year] => 2021 [month] => 8 [posts] => 2 ) [26] => stdClass Object ( [year] => 2021 [month] => 7 [posts] => 6 ) [27] => stdClass Object ( [year] => 2021 [month] => 6 [posts] => 5 ) [28] => stdClass Object ( [year] => 2021 [month] => 5 [posts] => 2 ) [29] => stdClass Object ( [year] => 2021 [month] => 4 [posts] => 5 ) [30] => stdClass Object ( [year] => 2021 [month] => 3 [posts] => 1 ) [31] => stdClass Object ( [year] => 2021 [month] => 2 [posts] => 7 ) [32] => stdClass Object ( [year] => 2021 [month] => 1 [posts] => 2 ) [33] => stdClass Object ( [year] => 2020 [month] => 12 [posts] => 4 ) [34] => stdClass Object ( [year] => 2020 [month] => 11 [posts] => 3 ) [35] => stdClass Object ( [year] => 2020 [month] => 10 [posts] => 5 ) [36] => stdClass Object ( [year] => 2020 [month] => 9 [posts] => 1 ) [37] => stdClass Object ( [year] => 2020 [month] => 8 [posts] => 3 ) [38] => stdClass Object ( [year] => 2020 [month] => 7 [posts] => 8 ) [39] => stdClass Object ( [year] => 2020 [month] => 6 [posts] => 3 ) [40] => stdClass Object ( [year] => 2020 [month] => 5 [posts] => 2 ) [41] => stdClass Object ( [year] => 2020 [month] => 4 [posts] => 5 ) [42] => stdClass Object ( [year] => 2020 [month] => 3 [posts] => 3 ) [43] => stdClass Object ( [year] => 2020 [month] => 2 [posts] => 3 ) [44] => stdClass Object ( [year] => 2020 [month] => 1 [posts] => 4 ) [45] => stdClass Object ( [year] => 2019 [month] => 12 [posts] => 3 ) [46] => stdClass Object ( [year] => 2019 [month] => 11 [posts] => 3 ) [47] => stdClass Object ( [year] => 2019 [month] => 10 [posts] => 5 ) [48] => stdClass Object ( [year] => 2019 [month] => 9 [posts] => 3 ) [49] => stdClass Object ( [year] => 2019 [month] => 8 [posts] => 6 ) [50] => stdClass Object ( [year] => 2019 [month] => 7 [posts] => 5 ) [51] => stdClass Object ( [year] => 2019 [month] => 6 [posts] => 4 ) [52] => stdClass Object ( [year] => 2019 [month] => 5 [posts] => 5 ) [53] => stdClass Object ( [year] => 2019 [month] => 4 [posts] => 8 ) [54] => stdClass Object ( [year] => 2019 [month] => 3 [posts] => 2 ) [55] => stdClass Object ( [year] => 2019 [month] => 2 [posts] => 2 ) [56] => stdClass Object ( [year] => 2019 [month] => 1 [posts] => 5 ) [57] => stdClass Object ( [year] => 2018 [month] => 12 [posts] => 5 ) [58] => stdClass Object ( [year] => 2018 [month] => 11 [posts] => 4 ) [59] => stdClass Object ( [year] => 2018 [month] => 10 [posts] => 8 ) [60] => stdClass Object ( [year] => 2018 [month] => 9 [posts] => 3 ) [61] => stdClass Object ( [year] => 2018 [month] => 8 [posts] => 6 ) [62] => stdClass Object ( [year] => 2018 [month] => 7 [posts] => 6 ) [63] => stdClass Object ( [year] => 2018 [month] => 6 [posts] => 7 ) [64] => stdClass Object ( [year] => 2018 [month] => 5 [posts] => 6 ) [65] => stdClass Object ( [year] => 2018 [month] => 4 [posts] => 6 ) [66] => stdClass Object ( [year] => 2018 [month] => 3 [posts] => 5 ) [67] => stdClass Object ( [year] => 2018 [month] => 2 [posts] => 2 ) [68] => stdClass Object ( [year] => 2018 [month] => 1 [posts] => 3 ) [69] => stdClass Object ( [year] => 2017 [month] => 12 [posts] => 3 ) [70] => stdClass Object ( [year] => 2017 [month] => 11 [posts] => 3 ) [71] => stdClass Object ( [year] => 2017 [month] => 10 [posts] => 2 ) [72] => stdClass Object ( [year] => 2017 [month] => 9 [posts] => 2 ) [73] => stdClass Object ( [year] => 2017 [month] => 8 [posts] => 2 ) [74] => stdClass Object ( [year] => 2017 [month] => 7 [posts] => 2 ) [75] => stdClass Object ( [year] => 2017 [month] => 6 [posts] => 1 ) [76] => stdClass Object ( [year] => 2017 [month] => 5 [posts] => 2 ) [77] => stdClass Object ( [year] => 2017 [month] => 4 [posts] => 1 ) [78] => stdClass Object ( [year] => 2017 [month] => 3 [posts] => 1 ) [79] => stdClass Object ( [year] => 2017 [month] => 2 [posts] => 2 ) [80] => stdClass Object ( [year] => 2017 [month] => 1 [posts] => 1 ) [81] => stdClass Object ( [year] => 2016 [month] => 12 [posts] => 2 ) [82] => stdClass Object ( [year] => 2016 [month] => 11 [posts] => 2 ) [83] => stdClass Object ( [year] => 2016 [month] => 10 [posts] => 1 ) [84] => stdClass Object ( [year] => 2016 [month] => 9 [posts] => 1 ) [85] => stdClass Object ( [year] => 2016 [month] => 8 [posts] => 2 ) [86] => stdClass Object ( [year] => 2016 [month] => 7 [posts] => 1 ) [87] => stdClass Object ( [year] => 2016 [month] => 5 [posts] => 2 ) [88] => stdClass Object ( [year] => 2016 [month] => 4 [posts] => 2 ) [89] => stdClass Object ( [year] => 2016 [month] => 3 [posts] => 3 ) [90] => stdClass Object ( [year] => 2016 [month] => 2 [posts] => 2 ) [91] => stdClass Object ( [year] => 2015 [month] => 11 [posts] => 2 ) [92] => stdClass Object ( [year] => 2013 [month] => 8 [posts] => 1 ) [93] => stdClass Object ( [year] => 2013 [month] => 7 [posts] => 2 ) [94] => stdClass Object ( [year] => 2013 [month] => 6 [posts] => 8 ) )
Your Full Name * Phone Number * Your Email * Organization Address Message *
By EmailBy Phone
Submit
Δ
Couldn’t find a match? Check back often as we post new positions throughout the year.