We’re committed to improving our ecosystems, quality of life, and communities for the better.
Our passion and commitment to the integration of innovative science and engineering drive us to exceed on behalf of every client.
WP_Query Object ( [query] => Array ( [page] => [pagename] => blog ) [query_vars] => Array ( [page] => 0 [pagename] => blog [error] => [m] => [p] => 0 [post_parent] => [subpost] => [subpost_id] => [attachment] => [attachment_id] => 0 [name] => [page_id] => 0 [second] => [minute] => [hour] => [day] => 0 [monthnum] => 0 [year] => 0 [w] => 0 [category_name] => natural-resource-management [tag] => [cat] => 10 [tag_id] => [author] => [author_name] => [feed] => [tb] => [paged] => 1 [meta_key] => [meta_value] => [preview] => [s] => [sentence] => [title] => [fields] => all [menu_order] => [embed] => [category__in] => Array ( [0] => 10 ) [category__not_in] => Array ( ) [category__and] => Array ( ) [post__in] => Array ( ) [post__not_in] => Array ( ) [post_name__in] => Array ( ) [tag__in] => Array ( ) [tag__not_in] => Array ( ) [tag__and] => Array ( ) [tag_slug__in] => Array ( ) [tag_slug__and] => Array ( ) [post_parent__in] => Array ( ) [post_parent__not_in] => Array ( ) [author__in] => Array ( ) [author__not_in] => Array ( ) [search_columns] => Array ( ) [posts_per_page] => 11 [ignore_sticky_posts] => [suppress_filters] => [cache_results] => 1 [update_post_term_cache] => 1 [update_menu_item_cache] => [lazy_load_term_meta] => 1 [update_post_meta_cache] => 1 [post_type] => [nopaging] => [comments_per_page] => 5 [no_found_rows] => [order] => DESC ) [tax_query] => WP_Tax_Query Object ( [queries] => Array ( [0] => Array ( [taxonomy] => category [terms] => Array ( [0] => 10 ) [field] => term_id [operator] => IN [include_children] => ) ) [relation] => AND [table_aliases:protected] => Array ( [0] => ph_term_relationships ) [queried_terms] => Array ( [category] => Array ( [terms] => Array ( [0] => 10 ) [field] => term_id ) ) [primary_table] => ph_posts [primary_id_column] => ID ) [meta_query] => WP_Meta_Query Object ( [queries] => Array ( ) [relation] => [meta_table] => [meta_id_column] => [primary_table] => [primary_id_column] => [table_aliases:protected] => Array ( ) [clauses:protected] => Array ( ) [has_or_relation:protected] => ) [date_query] => [queried_object] => WP_Post Object ( [ID] => 6 [post_author] => 1 [post_date] => 2021-01-18 12:51:43 [post_date_gmt] => 2021-01-18 12:51:43 [post_content] => [post_title] => Blog [post_excerpt] => [post_status] => publish [comment_status] => closed [ping_status] => closed [post_password] => [post_name] => blog [to_ping] => [pinged] => [post_modified] => 2021-01-18 12:51:43 [post_modified_gmt] => 2021-01-18 12:51:43 [post_content_filtered] => [post_parent] => 0 [guid] => https://princetonhydro.com/?page_id=6 [menu_order] => 0 [post_type] => page [post_mime_type] => [comment_count] => 0 [filter] => raw ) [queried_object_id] => 6 [request] => SELECT SQL_CALC_FOUND_ROWS ph_posts.ID FROM ph_posts LEFT JOIN ph_term_relationships ON (ph_posts.ID = ph_term_relationships.object_id) WHERE 1=1 AND ( ph_term_relationships.term_taxonomy_id IN (10) ) AND ((ph_posts.post_type = 'post' AND (ph_posts.post_status = 'publish' OR ph_posts.post_status = 'acf-disabled'))) GROUP BY ph_posts.ID ORDER BY ph_posts.menu_order, ph_posts.post_date DESC LIMIT 0, 11 [posts] => Array ( [0] => WP_Post Object ( [ID] => 18685 [post_author] => 1 [post_date] => 2025-11-07 17:08:03 [post_date_gmt] => 2025-11-07 17:08:03 [post_content] => The Borough of Mountain Lakes has received grant funding from the New Jersey Highlands Council to develop a comprehensive Lake and Watershed Management Plan for nine lakes within the Borough. To lead this effort, the Borough engaged Princeton Hydro, a leader in ecological and engineering consulting. The initiative will focus on characterizing hydrologic and nutrient dynamics within the Borough’s lake systems and watersheds to guide targeted water quality improvement and management strategies. “Mountain Lakes takes great pride in our lakes, which play an important role in defining our community. Through our partnership with the Highlands Council and Princeton Hydro, we’re taking a proactive, data-driven approach to protecting both the environmental and recreational value of our lakes and waterways, with the goal of preserving these vital natural resources for generations to come,” said Borough of Mountain Lakes Manager Mitchell Stern. A selection process was undertaken by the Borough of Mountain Lakes, Princeton Hydro, and the New Jersey Highlands Council to define the scope of this Lake and Watershed Management Program. In accordance with Policy 1L2 and Objective 1L2a of the NJHC Regional Master Plan, which establish lake management tiers and prioritize lakes greater than 10 acres for protection and management, nine lakes were selected for the study: Birchwood Lake, Crystal Lake, Wildwood Lake, Sunset Lake, Mountain Lake, Shadow Pond, Olive Pond, Grundens Pond, and Cove Pond. These lakes represent the waterbodies in the Borough and were chosen to ensure the program focuses on areas with the greatest potential impact on water quality, watershed function, and community value. Princeton Hydro’s work will include watershed modeling, hydrologic and pollutant load analyses, and in-lake and watershed-based water quality monitoring. Once the data is analyzed, Princeton Hydro will develop a General Assessment Report that identifies the primary drivers of eutrophication and outlines a prioritized set of management strategies to effectively reduce nutrient loading and enhance long-term lake health. “The regional, science-based approach to lake and watershed management has proven to be a powerful tool for municipalities in the Highlands Region,” said Christopher Mikolajczyk, CLM, Senior Manager of Aquatics at Princeton Hydro, Certified Lake Manager, and lead designer for this initiative. “We’re excited to collaborate with Mountain Lakes to help identify cost-effective, data-driven strategies that will enhance water quality throughout the watershed and help safeguard these treasured natural resources.” The New Jersey Highlands Water Protection and Planning Council (Highlands Council) is a regional planning agency that partners with municipalities and counties in the Highlands Region to promote proactive watershed protection. Established under the New Jersey Highlands Water Protection and Planning Act of 2004, the Council has funded numerous water-quality-related planning initiatives. Historically, municipalities and private lake associations have managed water quality issues independently. However, taking a coordinated, watershed-based approach enables communities to more effectively address pollution sources, improve water quality, and prevent the spread of invasive species and harmful algal blooms. Mountain Lakes joins several other Highlands region municipalities that have received Highlands council funding to implement similar lake and watershed management initiatives. In 2019, the Borough of Ringwood became the first municipality in New Jerey to adopt a regional, public-private approach to lake management, partnering with four lake associations across six lakes. Since the completion of the Ringwood plan, NJDEP has funded recommendations from the plan. This model has since inspired additional projects, including watershed assessments for West Milford Township, Rockaway Township, Byram Township, Vernon Township, and Somerset County Parks Commission. Princeton Hydro worked with each agency to develop the respective scope of work to secure grant funding from the Highlands Council. Photo from the Borough of Mountain Lakes. [post_title] => Borough of Mountain Lakes Launches Lake and Watershed Management Program with Funding from NJ Highlands Council [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => borough-of-mountain-lakes-launches-lake-and-watershed-management-program-with-funding-from-the-new-jersey-highlands-council [to_ping] => [pinged] => [post_modified] => 2025-11-11 17:38:59 [post_modified_gmt] => 2025-11-11 17:38:59 [post_content_filtered] => [post_parent] => 0 [guid] => https://princetonhydro.com/?p=18685 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [1] => WP_Post Object ( [ID] => 18586 [post_author] => 1 [post_date] => 2025-11-06 00:15:54 [post_date_gmt] => 2025-11-06 00:15:54 [post_content] => The New Jersey Department of Environmental Protection (NJDEP) recently announced $8 million in Water Quality Restoration Grants to support projects that reduce nonpoint source pollution, mitigate harmful algal blooms, restore riparian areas, and enhance watershed and climate resilience. Funded through Section 319(h) of the federal Clean Water Act and administered by the DEP's Watershed and Land Management Program, these grants were awarded to municipalities, nonprofit organizations, and academic institutions across the state. Princeton Hydro is proud to be a partner on five of the 17 funded projects. Our contributions vary by project and encompass activities such as engineering design, water quality assessment, watershed-based planning, and technical support for implementing stormwater and habitat restoration measures. Let's take a deeper look at these collaborative efforts: 1. The Watershed Institute – Watershed-Based Planning for Assunpink Creek The Watershed Institute received $205K in 319(h) grant funding to develop a watershed-based plan for the Assunpink Creek watershed, located within the Raritan River Basin. This watershed spans 11 municipalities across two counties, where varied landscapes and demographics share common challenges such as localized flooding, stormwater management, and water quality degradation, highlighting the need for a coordinated, watershed-wide, science-driven approach. The plan will evaluate pollution sources and identify large-scale restoration opportunities, including green infrastructure and riparian buffer restoration, to improve water quality and reduce flooding. It will also assess the cost, feasibility, and pollutant reduction potential of proposed measures to ensure practical implementation. Princeton Hydro supported the Institute in developing the grant proposal and planning framework, leveraging our expertise in watershed-based planning to prioritize nature-based solutions that address both water quality and climate resilience. This initiative represents a critical step toward regional collaboration, enabling upstream and downstream communities to work together on strategies that strengthen watershed health, protect public safety, and build long-term resilience. 2. Lake Hopatcong Commission – Watershed-Based Stormwater BMPs The Lake Hopatcong Commission (LHC) was awarded $366K to retrofit an existing stormwater detention basin between King Road and Mount Arlington Boulevard in Roxbury Township. This retrofit is part of a larger Watershed Implementation Plan that Princeton Hydro developed in collaboration with LHC, which prioritizes nutrient reduction and stormwater management strategies across the Lake Hopatcong watershed. Over the past several years, LHC has actively implemented multiple elements of this plan to address harmful algal blooms (HABs) and improve water quality. For this project, Princeton Hydro is providing engineering design and technical oversight to transform the existing basin into a green stormwater infrastructure system that slows, captures, and naturally treats runoff before it enters King Cove. The design incorporates native vegetation, invasive species management, and erosion control measures to stabilize soils and filter pollutants, reducing nutrient loading, which is one key driver of HABs. Public outreach and pre- and post-construction water quality monitoring will ensure performance tracking and measurable improvements. This basin retrofit represents a critical step in a coordinated, science-based approach to restoring ecological health and water quality in New Jersey’s largest lake. 3. Cozy Lake, Jefferson Township – Addressing Emerging Contaminants Jefferson Township received $350K in grant funding to develop an Emerging Contaminants Management Plan for Cozy Lake, focusing on cyanotoxins and HABs. Cozy Lake is a 28-acre waterbody within a 1,152-acre sub-watershed that includes both forested (60%) and developed (29%) land. The lake is fed by the Rockaway River at its northern end and a smaller southeastern inlet, with outflow through a dam on the western edge. The shoreline is primarily residential lawn with minimal emergent wetlands, and several inlets and rock-lined drainage ditches exhibit erosion and lack slope protection, contributing to sediment loading. Princeton Hydro provided early technical input to shape this innovative project with the creation of a comprehensive Jefferson Township Lake and Watershed Restoration and Protection Plan. As part of the plan, Princeton Hydro made recommendations for Cozy Lake, which included enhancing shoreline buffers with native vegetation and installing living shorelines at select properties to stabilize soils, filter stormwater and reduce nutrient loading, improve habitat quality, and enhance community access. These measures, combined with in-lake monitoring and proactive management strategies, will help mitigate HABs and protect ecological and public health. 4. Rockaway Township – Watershed-Based Green Infrastructure Rockaway Township received $399K in grant funding to implement elements of its Watershed Implementation Plan, focusing on green infrastructure stormwater management and nutrient reduction to improve water quality. The project will retrofit the municipal complex by converting a rock-lined drainage swale into a vegetated swale with a bioretention basin, designed to filter stormwater runoff and reduce nonpoint source pollutants entering Fox’s Pond and Fox Brook. Princeton Hydro played a key role in developing the Watershed Implementation Plan, which encompasses 11 private lakes within the Rockaway River watershed, prioritizing critical locations for intervention and designing cost-effective green infrastructure BMPs. This regional approach aligns with strategies recommended by NJDEP and the Highlands Council. The plan included a comprehensive watershed-based assessment to identify and quantify factors contributing to eutrophication, evaluate management measures, estimate costs, and establish an implementation schedule. Princeton Hydro authored the final report, which guided the Township in applying for the Section 319(h) grant and now informs the design and construction of green stormwater infrastructure that will deliver measurable water quality improvements while supporting ecological restoration goals. 5. Green Trust Alliance – Green Infrastructure and Community Engagement Green Trust Alliance (GTA), a nationally accredited land trust and public charity dedicated to accelerating large-scale conservation, received $1.39 million in NJDEP funding to implement green infrastructure improvements at Pinelands Regional High School in Tuckerton, New Jersey. This initiative targets the Tuckerton Creek watershed, which drains into Tuckerton Creek and ultimately flows into Barnegat Bay—a critical estuary spanning 33 municipalities in Ocean County and four in Monmouth County. The retrofit will transform the school’s stormwater detention basin into a multi-functional system that mimics natural hydrology, enhances flow control, and improves water quality locally and in the larger Barnegat Bay watershed. Working with GTA and GreenVest, Princeton Hydro is serving as the design engineer, applying nature-based engineering and ecological restoration techniques to intercept, evapotranspire, and infiltrate stormwater runoff at its source. In addition to its technical objectives, the effort includes a strong community engagement component and an educational platform for students. By bringing green infrastructure into the school environment, the initiative provides hands-on experience with water resources, stormwater management, and ecological engineering, help to build STEM skills while fostering a deeper connection to the surrounding landscape and an understanding of how natural systems work together to support environmental and community health. Princeton Hydro also assisted several of these partners in developing successful NJDEP Section 319(h) grant applications, providing technical documentation, conceptual designs, and pollutant load reduction estimates to strengthen the proposals. To date, the Murphy Administration has awarded more than $33M in Water Quality Restoration grants to improve the health of waterways in all corners of the state. Click here to read about all the 2025 grant funding recipients and their innovative projects. As NJDEP Environmental Protection Commissioner Shawn M. LaTourette noted in the department's press release, “Enhancing the ecological health of our lakes, rivers, streams and coastal waters has long been a priority of the Murphy Administration. The Department of Environmental Protection is pleased to award these grants that will help our partners advance a variety of strategies to improve the health of these waterways and enhance the quality of life in our communities.” We are proud to play a continued role in advancing that mission: helping communities implement practical, data-driven solutions that make a measurable difference for New Jersey’s waterways and the people who depend on them. Click here to learn more about our work to protect natural habitat and restore water quality throughout the New Jersey. [post_title] => NJDEP Awards $8M for Water Quality Restoration Projects [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => njdep-319h-grants-2025 [to_ping] => [pinged] => [post_modified] => 2025-11-07 01:20:58 [post_modified_gmt] => 2025-11-07 01:20:58 [post_content_filtered] => [post_parent] => 0 [guid] => https://princetonhydro.com/?p=18586 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [2] => WP_Post Object ( [ID] => 18294 [post_author] => 1 [post_date] => 2025-10-13 18:11:03 [post_date_gmt] => 2025-10-13 18:11:03 [post_content] => Coastal communities are on the frontlines of climate change, facing rising seas, stronger storms, and eroding shorelines. At the same time, these landscapes provide critical habitat and natural defenses that protect people, ecosystems and myriad wildlife. Coastal ecological restoration restores natural systems and strengthens future resilience to climate impacts. Earlier this month, our team joined the New Jersey Coastal Resilience Collaborative (NJCRC) for its Coastal Ecological Restoration Technical Workshop, a full-day, in-person event held at the Rutgers EcoComplex in Bordentown, NJ. The workshop convened coastal stakeholders, researchers, practitioners, and managers to share knowledge and explore the latest science advancing coastal ecological restoration. Inside the Workshop The day began with a work group session, “Advancing Science-Based Ecological Restoration Across New Jersey’s Coast,” led by a panel of experts and followed by an interactive Q&A. Click here to view the presentation. Participants then chose from a variety of technical sessions covering topics such as, eDNA and Water Quality as Indicators of Coastal Ecological Health; Smart Permitting for Restoration; and Diatoms as Ecological Indicators in Living Shoreline Applications. Dana Patterson Grear, Princeton Hydro's Director of Marketing & Communications, delivered an engaging presentation titled, "How to Build a Digital Communications Toolkit for Climate Action." She provided practical guidance for turning communication into a powerful tool for advancing ecological restoration and climate resilience, including how to develop tailored climate messaging, understand the values of your audience and remove personal bias, and determine your level of engagement and capacity. Dana's presentation broke down complex communication strategies into actional steps that attendees can apply directly to their work. Click here to view her presentation slides. [gallery link="none" columns="2" size="medium" ids="18298,18297" orderby="rand"] Beyond the educational workshops, networking breaks, shared meals, and a post-workshop reception created opportunities to connect and collaborate. And, as a fun and fitting bonus, each participant went home with a complimentary native plant courtesy of Pinelands Nursery. More About Coastal Restoration Coastal ecological restoration involves the rehabilitation and creation of coastal ecosystems, like wetlands, reefs, and shorelines, with the goal of restoring the natural processes and functions. These efforts provide long-term protection from erosion, create habitat for fish and wildlife, and build community resilience against flooding and storm surge. At Princeton Hydro, we understand the impacts of climate change, including sea level rise, and use tools such as vulnerability assessments to inform our restoration designs. Our team specializes in designing and implementing living shorelines and habitat restoration projects. We combine field data, empirical approaches, ecological and geomorphic understanding, hydrologic and hydraulic modeling, and state-of-the-art computer programming technology to develop our designs. Our nature-based solutions deliver lasting ecological and community benefits. A prime example of this work is the Spring Creek North Ecosystem Restoration project, located in Brooklyn and Queens, NY. Once part of the expansive Jamaica Bay wetland system, Spring Creek's salt marshes were heavily degraded over the last century. Princeton Hydro was contracted by the U.S. Army Corps of Engineers, New York District to lead the design and engineering for this restoration effort. Construction efforts began in early October 2025. Once completed, the project will restore approximately 43 acres of habitat within a 67-acre footprint, including low and high marsh, scrub shrub wetland, and maritime upland. Efforts also aim to improve water quality, increase biodiversity, and strengthen the overall Jamaica Bay ecosystem. Key restoration activities include:
The Borough of Mountain Lakes has received grant funding from the New Jersey Highlands Council to develop a comprehensive Lake and Watershed Management Plan for nine lakes within the Borough. To lead this effort, the Borough engaged Princeton Hydro, a leader in ecological and engineering consulting. The initiative will focus on characterizing hydrologic and nutrient dynamics within the Borough’s lake systems and watersheds to guide targeted water quality improvement and management strategies.
“Mountain Lakes takes great pride in our lakes, which play an important role in defining our community. Through our partnership with the Highlands Council and Princeton Hydro, we’re taking a proactive, data-driven approach to protecting both the environmental and recreational value of our lakes and waterways, with the goal of preserving these vital natural resources for generations to come,” said Borough of Mountain Lakes Manager Mitchell Stern.
A selection process was undertaken by the Borough of Mountain Lakes, Princeton Hydro, and the New Jersey Highlands Council to define the scope of this Lake and Watershed Management Program. In accordance with Policy 1L2 and Objective 1L2a of the NJHC Regional Master Plan, which establish lake management tiers and prioritize lakes greater than 10 acres for protection and management, nine lakes were selected for the study: Birchwood Lake, Crystal Lake, Wildwood Lake, Sunset Lake, Mountain Lake, Shadow Pond, Olive Pond, Grundens Pond, and Cove Pond. These lakes represent the waterbodies in the Borough and were chosen to ensure the program focuses on areas with the greatest potential impact on water quality, watershed function, and community value.
Princeton Hydro’s work will include watershed modeling, hydrologic and pollutant load analyses, and in-lake and watershed-based water quality monitoring. Once the data is analyzed, Princeton Hydro will develop a General Assessment Report that identifies the primary drivers of eutrophication and outlines a prioritized set of management strategies to effectively reduce nutrient loading and enhance long-term lake health.
“The regional, science-based approach to lake and watershed management has proven to be a powerful tool for municipalities in the Highlands Region,” said Christopher Mikolajczyk, CLM, Senior Manager of Aquatics at Princeton Hydro, Certified Lake Manager, and lead designer for this initiative. “We’re excited to collaborate with Mountain Lakes to help identify cost-effective, data-driven strategies that will enhance water quality throughout the watershed and help safeguard these treasured natural resources.”
The New Jersey Highlands Water Protection and Planning Council (Highlands Council) is a regional planning agency that partners with municipalities and counties in the Highlands Region to promote proactive watershed protection. Established under the New Jersey Highlands Water Protection and Planning Act of 2004, the Council has funded numerous water-quality-related planning initiatives.
Historically, municipalities and private lake associations have managed water quality issues independently. However, taking a coordinated, watershed-based approach enables communities to more effectively address pollution sources, improve water quality, and prevent the spread of invasive species and harmful algal blooms.
Mountain Lakes joins several other Highlands region municipalities that have received Highlands council funding to implement similar lake and watershed management initiatives. In 2019, the Borough of Ringwood became the first municipality in New Jerey to adopt a regional, public-private approach to lake management, partnering with four lake associations across six lakes. Since the completion of the Ringwood plan, NJDEP has funded recommendations from the plan. This model has since inspired additional projects, including watershed assessments for West Milford Township, Rockaway Township, Byram Township, Vernon Township, and Somerset County Parks Commission. Princeton Hydro worked with each agency to develop the respective scope of work to secure grant funding from the Highlands Council.
The New Jersey Department of Environmental Protection (NJDEP) recently announced $8 million in Water Quality Restoration Grants to support projects that reduce nonpoint source pollution, mitigate harmful algal blooms, restore riparian areas, and enhance watershed and climate resilience. Funded through Section 319(h) of the federal Clean Water Act and administered by the DEP's Watershed and Land Management Program, these grants were awarded to municipalities, nonprofit organizations, and academic institutions across the state.
Princeton Hydro is proud to be a partner on five of the 17 funded projects. Our contributions vary by project and encompass activities such as engineering design, water quality assessment, watershed-based planning, and technical support for implementing stormwater and habitat restoration measures. Let's take a deeper look at these collaborative efforts:
The Watershed Institute received $205K in 319(h) grant funding to develop a watershed-based plan for the Assunpink Creek watershed, located within the Raritan River Basin. This watershed spans 11 municipalities across two counties, where varied landscapes and demographics share common challenges such as localized flooding, stormwater management, and water quality degradation, highlighting the need for a coordinated, watershed-wide, science-driven approach.
The plan will evaluate pollution sources and identify large-scale restoration opportunities, including green infrastructure and riparian buffer restoration, to improve water quality and reduce flooding. It will also assess the cost, feasibility, and pollutant reduction potential of proposed measures to ensure practical implementation. Princeton Hydro supported the Institute in developing the grant proposal and planning framework, leveraging our expertise in watershed-based planning to prioritize nature-based solutions that address both water quality and climate resilience. This initiative represents a critical step toward regional collaboration, enabling upstream and downstream communities to work together on strategies that strengthen watershed health, protect public safety, and build long-term resilience.
The Lake Hopatcong Commission (LHC) was awarded $366K to retrofit an existing stormwater detention basin between King Road and Mount Arlington Boulevard in Roxbury Township. This retrofit is part of a larger Watershed Implementation Plan that Princeton Hydro developed in collaboration with LHC, which prioritizes nutrient reduction and stormwater management strategies across the Lake Hopatcong watershed. Over the past several years, LHC has actively implemented multiple elements of this plan to address harmful algal blooms (HABs) and improve water quality.
For this project, Princeton Hydro is providing engineering design and technical oversight to transform the existing basin into a green stormwater infrastructure system that slows, captures, and naturally treats runoff before it enters King Cove. The design incorporates native vegetation, invasive species management, and erosion control measures to stabilize soils and filter pollutants, reducing nutrient loading, which is one key driver of HABs. Public outreach and pre- and post-construction water quality monitoring will ensure performance tracking and measurable improvements. This basin retrofit represents a critical step in a coordinated, science-based approach to restoring ecological health and water quality in New Jersey’s largest lake.
Jefferson Township received $350K in grant funding to develop an Emerging Contaminants Management Plan for Cozy Lake, focusing on cyanotoxins and HABs. Cozy Lake is a 28-acre waterbody within a 1,152-acre sub-watershed that includes both forested (60%) and developed (29%) land. The lake is fed by the Rockaway River at its northern end and a smaller southeastern inlet, with outflow through a dam on the western edge.
The shoreline is primarily residential lawn with minimal emergent wetlands, and several inlets and rock-lined drainage ditches exhibit erosion and lack slope protection, contributing to sediment loading. Princeton Hydro provided early technical input to shape this innovative project with the creation of a comprehensive Jefferson Township Lake and Watershed Restoration and Protection Plan. As part of the plan, Princeton Hydro made recommendations for Cozy Lake, which included enhancing shoreline buffers with native vegetation and installing living shorelines at select properties to stabilize soils, filter stormwater and reduce nutrient loading, improve habitat quality, and enhance community access. These measures, combined with in-lake monitoring and proactive management strategies, will help mitigate HABs and protect ecological and public health.
Rockaway Township received $399K in grant funding to implement elements of its Watershed Implementation Plan, focusing on green infrastructure stormwater management and nutrient reduction to improve water quality. The project will retrofit the municipal complex by converting a rock-lined drainage swale into a vegetated swale with a bioretention basin, designed to filter stormwater runoff and reduce nonpoint source pollutants entering Fox’s Pond and Fox Brook.
Princeton Hydro played a key role in developing the Watershed Implementation Plan, which encompasses 11 private lakes within the Rockaway River watershed, prioritizing critical locations for intervention and designing cost-effective green infrastructure BMPs. This regional approach aligns with strategies recommended by NJDEP and the Highlands Council. The plan included a comprehensive watershed-based assessment to identify and quantify factors contributing to eutrophication, evaluate management measures, estimate costs, and establish an implementation schedule. Princeton Hydro authored the final report, which guided the Township in applying for the Section 319(h) grant and now informs the design and construction of green stormwater infrastructure that will deliver measurable water quality improvements while supporting ecological restoration goals.
Green Trust Alliance (GTA), a nationally accredited land trust and public charity dedicated to accelerating large-scale conservation, received $1.39 million in NJDEP funding to implement green infrastructure improvements at Pinelands Regional High School in Tuckerton, New Jersey. This initiative targets the Tuckerton Creek watershed, which drains into Tuckerton Creek and ultimately flows into Barnegat Bay—a critical estuary spanning 33 municipalities in Ocean County and four in Monmouth County. The retrofit will transform the school’s stormwater detention basin into a multi-functional system that mimics natural hydrology, enhances flow control, and improves water quality locally and in the larger Barnegat Bay watershed.
Working with GTA and GreenVest, Princeton Hydro is serving as the design engineer, applying nature-based engineering and ecological restoration techniques to intercept, evapotranspire, and infiltrate stormwater runoff at its source. In addition to its technical objectives, the effort includes a strong community engagement component and an educational platform for students. By bringing green infrastructure into the school environment, the initiative provides hands-on experience with water resources, stormwater management, and ecological engineering, help to build STEM skills while fostering a deeper connection to the surrounding landscape and an understanding of how natural systems work together to support environmental and community health.
Princeton Hydro also assisted several of these partners in developing successful NJDEP Section 319(h) grant applications, providing technical documentation, conceptual designs, and pollutant load reduction estimates to strengthen the proposals.
To date, the Murphy Administration has awarded more than $33M in Water Quality Restoration grants to improve the health of waterways in all corners of the state. Click here to read about all the 2025 grant funding recipients and their innovative projects.
As NJDEP Environmental Protection Commissioner Shawn M. LaTourette noted in the department's press release, “Enhancing the ecological health of our lakes, rivers, streams and coastal waters has long been a priority of the Murphy Administration. The Department of Environmental Protection is pleased to award these grants that will help our partners advance a variety of strategies to improve the health of these waterways and enhance the quality of life in our communities.”
We are proud to play a continued role in advancing that mission: helping communities implement practical, data-driven solutions that make a measurable difference for New Jersey’s waterways and the people who depend on them. Click here to learn more about our work to protect natural habitat and restore water quality throughout the New Jersey.
Coastal communities are on the frontlines of climate change, facing rising seas, stronger storms, and eroding shorelines. At the same time, these landscapes provide critical habitat and natural defenses that protect people, ecosystems and myriad wildlife. Coastal ecological restoration restores natural systems and strengthens future resilience to climate impacts.
Earlier this month, our team joined the New Jersey Coastal Resilience Collaborative (NJCRC) for its Coastal Ecological Restoration Technical Workshop, a full-day, in-person event held at the Rutgers EcoComplex in Bordentown, NJ. The workshop convened coastal stakeholders, researchers, practitioners, and managers to share knowledge and explore the latest science advancing coastal ecological restoration.
The day began with a work group session, “Advancing Science-Based Ecological Restoration Across New Jersey’s Coast,” led by a panel of experts and followed by an interactive Q&A. Click here to view the presentation. Participants then chose from a variety of technical sessions covering topics such as, eDNA and Water Quality as Indicators of Coastal Ecological Health; Smart Permitting for Restoration; and Diatoms as Ecological Indicators in Living Shoreline Applications.
Dana Patterson Grear, Princeton Hydro's Director of Marketing & Communications, delivered an engaging presentation titled, "How to Build a Digital Communications Toolkit for Climate Action." She provided practical guidance for turning communication into a powerful tool for advancing ecological restoration and climate resilience, including how to develop tailored climate messaging, understand the values of your audience and remove personal bias, and determine your level of engagement and capacity. Dana's presentation broke down complex communication strategies into actional steps that attendees can apply directly to their work. Click here to view her presentation slides.
Beyond the educational workshops, networking breaks, shared meals, and a post-workshop reception created opportunities to connect and collaborate. And, as a fun and fitting bonus, each participant went home with a complimentary native plant courtesy of Pinelands Nursery.
Coastal ecological restoration involves the rehabilitation and creation of coastal ecosystems, like wetlands, reefs, and shorelines, with the goal of restoring the natural processes and functions. These efforts provide long-term protection from erosion, create habitat for fish and wildlife, and build community resilience against flooding and storm surge.
At Princeton Hydro, we understand the impacts of climate change, including sea level rise, and use tools such as vulnerability assessments to inform our restoration designs. Our team specializes in designing and implementing living shorelines and habitat restoration projects. We combine field data, empirical approaches, ecological and geomorphic understanding, hydrologic and hydraulic modeling, and state-of-the-art computer programming technology to develop our designs. Our nature-based solutions deliver lasting ecological and community benefits.
A prime example of this work is the Spring Creek North Ecosystem Restoration project, located in Brooklyn and Queens, NY. Once part of the expansive Jamaica Bay wetland system, Spring Creek's salt marshes were heavily degraded over the last century. Princeton Hydro was contracted by the U.S. Army Corps of Engineers, New York District to lead the design and engineering for this restoration effort. Construction efforts began in early October 2025. Once completed, the project will restore approximately 43 acres of habitat within a 67-acre footprint, including low and high marsh, scrub shrub wetland, and maritime upland. Efforts also aim to improve water quality, increase biodiversity, and strengthen the overall Jamaica Bay ecosystem.
The following photos depict the degraded habitat and pre-construction conditions of the site. Stay tuned to our blog for more photos from each of the project phases.
Princeton Hydro's Director of Aquatics, Michael Hartshorne, recently traveled to Pietermaritzburg, South Africa, to present at the Southern African Society for Aquatic Scientists (SASAqS) Congress 2025. Hosted by the Institute of Natural Resources (INS) and the University of KwaZulu-Natal, the annual event convened researchers, industry professionals, government officials, and students from around the world to advance aquatic science by linking research with real-world practice.
Over the course of five days, participants shared insights on critical global and regional issues, including water pollution, water security, biodiversity conservation, climate change adaptation, and community-based resource management. The program featured an array of interdisciplinary presentations spanning hydrology, freshwater ecology, and policy, while also creating space for collaboration and connection through interactive workshops, poster sessions and exhibits, networking events, and a gala dinner and awards ceremony. On the closing day, field trips brought attendees out into the surrounding landscape, offering a tangible backdrop to the themes explored throughout the conference.
On the opening day of the SASAqS Congress 2025 program, Michael addressed the full conference audience with a presentation titled “Novel Techniques for the Monitoring of Harmful Algal Blooms (HABs) in Lakes and Rivers of the United States,” which focused on innovative approaches for detecting and managing HABs, a growing worldwide concern driven by nutrient pollution and climate change. Michael illustrated how innovative research can inform practical management strategies while encouraging global collaboration.
HABs are intensifying in frequency, scale, and severity worldwide, presenting challenges for drinking water supplies, recreational lakes, and river ecosystems. Michael’s presentation showcased a suite of monitoring tools, from handheld phycocyanin and phycoerythrin meters, to drones with multispectral lenses, to advanced techniques such as qPCR (quantitative Polymerase Chain Reaction), microscopy, and akinete cell monitoring. Through case studies from lakes, reservoirs, and river systems in New Jersey, Virginia, and Pennsylvania, he highlighted the strengths and limitations of each method, emphasizing the importance of tailoring monitoring strategies to the unique conditions of each waterbody. Michael also discussed management interventions and highlighted how emerging technologies can support more adaptive, science-driven management of HABs.
“It was an honor to participate in this year’s event and learn alongside so many dedicated professionals who are working to protect and restore aquatic ecosystems,” said Michael. “The international exchange of ideas and techniques is critical in helping us all address the increasingly complex challenges facing our water resources.”
The conference concluded with optional field trips that gave participants a chance to view South Africa’s aquatic systems and management challenges firsthand. Each excursion highlighted a different aspect of aquatic science in practice:
UKZN Zebrafish Research Facility: On the University of KwaZulu-Natal’s Pietermaritzburg campus, this outing introduced participants to the zebrafish as a model organism for studying genetics, development, and aquatic toxicology. The tour provided a window into laboratory-based aquatic science and its applications to regional and global challenges.
Lions River Monitoring Demonstration: Hosted by GroundTruth, this field trip took a group to Lions River to observe live demonstrations of water quality and quantity monitoring using advanced tools such as UAVs (drones), USVs (unmanned survey boats), and a suite of citizen science methods, including MiniSASS, clarity tubes, and velocity planks. The excursion showcased how high-tech innovation and community-driven monitoring can complement one another in managing freshwater resources.
Outside of the conference, Michael took the opportunity to explore the diverse beauty and culture of South Africa. At Betty's Bay, a small town on the Western Cape he enjoyed coffee while taking in sweeping coastal views; walked scenic trails; spotted a few Hyraxes and Chacma baboons; and observed the African penguin (Spheniscus demersus) at the Stony Point colony. He also viewed the Cape Rockjumper (Chaetops frenatus), a ground-dwelling bird endemic to the mountain Fynbos, at nearby Rooi-Els.
He visited Karkloof Nature Reserve in the KwaZulu-Natal province, a rural agricultural area which has implemented conservation efforts for the once endangered, but still threated, Wattled Crane (Grus carunculate).
Michael’s participation in SASAqS Congress 2025 reflects Princeton Hydro’s ongoing commitment to advancing aquatic science and collaborating with experts around the world. By sharing practical monitoring and management strategies for HABs, his contributions added to a rich global dialogue on how science can inform sustainable solutions.
Since joining Princeton Hydro in 2006, Michael has led numerous lake, stream, and watershed studies focused on water quality, restoration, and sustainable management. His expertise includes applied limnology, ecological restoration, TMDL (total maximum daily load) development, and biological surveys. Michael is skilled in designing and implementing monitoring programs that integrate technical rigor with community engagement, ensuring effective outcomes for both ecosystems and stakeholders. To learn more about Michael, click here.
The Institute of Natural Resources promotes the sustainable use of natural resources to benefit both the environment and society. Click here to learn more. To learn more about The University of KwaZulu-Natal a teaching and research-led university with multiple campuses across South Africa, click here.
Earlier this year, Princeton Hydro President Geoffrey M. Goll, PE traveled to Durban, South Africa, to participate in a symposium focused on “Dam Management and Restoration of River Connectivity.” Click here to read the blog about his journey.
Welcome to our Partner Spotlight blog series, where we highlight the meaningful collaborations and shared successes Princeton Hydro enjoys with our valued partners. Today, we’re shining the spotlight on Save Barnegat Bay, a nonprofit rooted deeply in environmental advocacy and stewardship, dedicated to safeguarding Barnegat Bay.
Fed by freshwater inputs from rivers, creeks, and streams, and saltwater from the Atlantic Ocean, Barnegat Bay is a unique estuary stretching approximately 42 miles from Bay Head to Long Beach Island and the Little Egg Harbor inlet. Barnegat Bay is the largest body of water in New Jersey and one of the region’s most valuable natural resources.
Save Barnegat Bay, founded in 1971 by neighbors concerned about the future of their local waterways, has grown into a highly respected, effective, and influential voice for environmental protection throughout the state. Through advocacy, education, restoration, and community engagement, the organization is leading the charge to preserve the Barnegat Bay ecosystem and the wildlife and communities that call it home.
For this Partner Spotlight, we spoke with Britta Forsberg, Executive Director of Save Barnegat Bay, who brings decades of personal and professional commitment to protecting this vital resource.
Let’s jump in!
“What truly sets Save Barnegat Bay apart is our hyper-local approach. We’re not a Washington, D.C.-based environmental group, we’re right here in the Barnegat Bay Watershed, working directly with the communities we serve. For 54 years, we’ve remained a steady and effective environmental voice, and we’ve achieved meaningful, lasting impacts through persistence, collaboration, and grassroots engagement.”
In the video below, Britta shares more about the guiding vision behind Save Barnegat Bay’s work and what continues to fuel the organization’s success:
“Save Barnegat Bay’s work spans decades and addresses a wide range of threats to the watershed, from nutrient pollution to legacy contamination. One of our most impactful successes is the passage of the New Jersey Fertilizer Law, which we wrote and lobbied for. It remains the strictest fertilizer content law in the country. This effort began with local ordinances, but we quickly realized a patchwork of municipal laws wasn’t effective. So, we pursued statewide legislation to reduce nitrogen pollution, a major stressor for Barnegat Bay’s ecological health. This law has helped prevent millions of tons of nitrogen from entering New Jersey’s waterways.
Another critical focus for us is environmental justice and accountability. We’re currently challenging a controversial settlement related to the Ciba-Geigy Superfund Site in Toms River. This site has a painful history: decades ago, a chemical plant discharged toxic waste into rivers, groundwater, and even the Atlantic Ocean, resulting in significant health impacts, including a well-documented childhood cancer cluster. While criminal charges and civil suits were eventually brought, we’re now fighting for appropriate restitution. We believe the NJDEP’s current settlement with the site’s owner, BASF, the world’s largest chemical company, lacks transparency and fails to account for the full environmental damage. We’ve filed an appeal and are advocating for a more just and science-based resolution that considers the lasting damage to 1,200 acres of land, the groundwater, wetlands, river, bay, and ocean.
We’re also proud to have played a leading role in the closure of the Oyster Creek Nuclear Generating Station, once the oldest operating nuclear plant in the country. The plant’s design used Barnegat Bay water to cool its reactors, then discharged superheated water back into the estuary, devastating marine life daily. We believe Save Barnegat Bay is the only grassroots environmental organization in the U.S. to successfully close a nuclear plant not on the basis of nuclear energy itself, but on its local ecological impacts.
These are just a few examples of the many efforts Save Barnegat Bay has led or supported over the years. From legislative advocacy to grassroots mobilization, our work is broad and ongoing. What unites it all is our deep commitment to protecting the Bay and ensuring its health for generations to come.”
“Barnegat Bay relies on a delicate and often overlooked network of 58 named rivers, creeks, and streams. Many of these freshwater sources originate in the Pine Barrens, winding through Ocean County and parts of Monmouth County before reaching the Bay. They are the lifeblood of the estuary, delivering freshwater that supports the Bay’s health, biodiversity, and overall ecological function.
Our “Rivers, Creeks, and Streams” campaign was created to inspire and connect people with their local waterways and take part in their protection. Whether it's through cleanup activities, water sampling, or making simple, eco-friendly changes at home, we believe small actions can collectively have a big impact.
Thanks to the generosity of local businesses, we've been able to acquire a fleet of canoes and kayaks to get people, including elected officials and community leaders, directly out on the water. This hands-on approach helps participants build a personal relationship with their local water resources, see firsthand the challenges and opportunities for improvement, and feel empowered to help. It’s one thing to talk about water quality in a meeting room, it’s another to experience it on the water, paddle in hand.”
In the video clip below, Britta shares more about this unique initiative:
“Over the years, we’ve collaborated with Princeton Hydro on a wide range of impactful projects. We've worked with many members of their team, including Dr. Steve Souza; Dr. Fred Lubnow; Geoffrey Goll, P.E.; and Mark Gallagher, just to name a few. Our work together has spanned everything from technical restoration projects to public education initiatives. In fact, we’ve probably partnered with a good portion of their staff at some point on various critical initiatives across the watershed.”
In the video clip below, Britta highlights two collaborative projects that stand out as major wins, successfully protecting sensitive habitats while navigating the priorities of various stakeholders:
Britta continues: “We’re also partnering with Princeton Hydro to take a proactive approach to water quality management in coastal towns throughout the Barnegat Bay Watershed. Specifically, we’ve been supporting Point Pleasant Beach and Bay Head in developing comprehensive lake and watershed management plans. There are three coastal lakes in Point Pleasant and one in Bay Head, and these proactive planning efforts have been incredibly valuable for those communities.
Honestly, I could go on and on. We’ve worked with Princeton Hydro on so many important projects together; it’s a true partnership.”
“There are so many ways to get involved. At Save Barnegat Bay, we encourage people to contribute and participate in whatever way works best for them—time, treasure, or talent. Nearly everything we offer is free and open to the public, from hands-on workshops like rain barrel construction to science-based programs like eelgrass planting and clinging jellyfish monitoring to volunteer initiatives like shoreline clean-ups. We’re not a membership-based organization, which means there’s no barrier to participation. You can simply show up and engage in whatever way feels right to you.
Britta leaves us with a few inspiring words about the power of big ideas, and a reminder to look beyond the everyday and believe in what’s possible:
A heartfelt thank you to Britta Forsberg for her time, passion, and leadership, and for sharing the inspiring story of Save Barnegat Bay. Her dedication to community-driven stewardship and environmental advocacy reflects the profound impact that local action can have on protecting vital natural resources on a wide-reaching scale.
Click here to learn more about Save Barnegat Bay’s work, sign up for the volunteer email newsletter, check out the events calendar, and explore all the ways you can get involved. To learn more about some of Princeton Hydro's work to protect and restore Barnegat Bay, click here.
We're pleased to announce the release of the "New Jersey Nature-Based Solutions: Planning, Implementation, and Monitoring Reference Guide," a free resource that provides a comprehensive roadmap to incorporating nature-based solutions (NBS) into infrastructure, construction, restoration, and resilience projects across the state.
Created by the Rutgers University New Jersey Climate Change Resource Center with support from The Nature Conservancy in New Jersey, the guide compiles current research, case studies, best practices, practical tools, science-based strategies, and funding resources to "inform and empower readers to implement and seek funding for NBS."
Click here to view and download the guide now.
As the guide states, "nature-based solutions (NBS) are defined as actions to protect, sustainably manage, and restore natural and modified ecosystems that address societal challenges effectively and adaptively, simultaneously benefiting people and nature." (IUCN 2024)
Whether you're a municipal planner, community leader, contractor, public- or private-sector professional, or an academic, new to NBS or experienced in large-scale restoration projects, the guide offers value at every level with practical instruction that spans the full project lifecycle, from planning and permitting to funding and long-term monitoring. While the content is tailored to New Jersey's diverse landscapes, the guide's insights and approaches are broadly applicable to regions with similar ecosystems, from Massachusetts to Virginia.
The guide also includes insights on how to address equity considerations and foster meaningful community engagement, helping users implement NBS that are both impactful and inclusive.
Princeton Hydro was proud to contribute technical expertise to this important effort. Our Director of Restoration & Resilience, Christiana L. Pollack, CERP, CFM, GISP, participated on the guide's steering committee, and our team provided informational resources, including content and case studies on invasive species management, wetland and floodplain enhancement, and dam and culvert removal to restore rivers and improve fish passage. These contributions along with those from many other participants, reflect the collaborative nature of the guide and the collective commitment to advancing NBS across the state.
The guide's easy-to-follow format includes four key sections:
Whether you're just beginning to conceptualize a project or deep into project implementation, this guide is an invaluable addition to your toolbox. We encourage you to explore, download, and share it widely! Click here to access the guide now.
The Steven R. Rothman Overlook and Preserve, a new five-acre public open space in the heart of the Meadowlands, is now open to the public.
Situated within the 587-acre Richard P. Kane Natural Area, the preserve offers an ADA-accessible gateway into one of New Jersey's most ecologically significant landscapes. Visitors can enjoy sweeping views of the Meadowlands and the New York City skyline while immersing themselves in a protected wetland ecosystem that lies along the Atlantic Flyway, a vital route for migratory birds. Owned by the Meadowlands Conservation Trust (MCT) and managed by the New Jersey Sports and Exposition Authority (NJSEA), the site supports a wide range of native and rare wildlife and plant species.
On July 10, local and state leaders gathered to officially dedicate the new preserve and celebrate the extraordinary efforts of former U.S. Congressman Steven R. Rothman, whose leadership was instrumental in preserving the region's critical wetlands. The ceremony brought together Governor Phil Murphy, Congressman Rothman, officials from Bergen County, NY/NJ Baykeeper, Hackensack Riverkeeper, MCT, NJSEA, project partners and community members. The event featured remarks, reflections and a ceremonial tree planting.
Addressing Congressman Rothman, "We are so proud and happy that this is named after you. You stood up when a lot of others would not. You took a bold stance. You believed in preserving the Meadowlands. We thank you and congratulate you," expressed Greg Remaud, CEO of NY/NJ Baykeeper, at the event.
A century ago, the New Jersey Meadowlands spanned over 21,000 acres of open space. Today, only 8,400 acres remain largely undeveloped. Speakers at the event reflected on the decades-long fight to protect this land, which was once targeted for commercial development, including plans for what would become the American Dream Mall. That 15-year preservation effort ultimately secured the future of this critical habitat.
Governor Murphy emphasized Rothman's role in that success: "Congressman Steven R. Rothman played an oversized role in protecting this incredible expanse of treasured, public open space, and he has been an ardent supporter of the Meadowlands in Congress and as a private citizen. I commend Congressman Rothman’s steadfast determination and that of the Meadowlands Conservation Trust in saving our natural resources."
Congressman Rothman also addressed the crowd, sharing his hope for the future of the site: "This overlook and preserve will now help assure that future generations of New Jerseyans and others will learn about this area's rich natural life and a history of how this space was saved from development.”
Congressman Rothman represented New Jersey’s 9th Congressional District from 1997 to 2013, serving in the U.S. House of Representatives for 16 years.
For nearly a decade, Congressman Rothman played a pivotal role in the fight to protect what remained of the Hackensack Meadowlands' undeveloped wetlands. At a time when large-scale development threatened the ecological integrity of the region, he brought national attention to the cause, becoming the first U.S. congressional candidate, and later Congressman, to publicly oppose projects like the proposed American Dream Mall. His advocacy helped relocate the development to a more suitable location and catalyzed a broader conservation movement.
Recognizing the ecological significance of the Meadowlands, Congressman Rothman secured $10 million in federal funding, along with additional state and local contributions, to support land acquisition, environmental remediation, and permanent protection of the remaining open space. He brought together key stakeholders, took a firm public stance on what must be preserved, and was instrumental in the formal rezoning of 8,400 acres as undevelopable. Widely acknowledged as the catalyst behind one of New Jersey’s most consequential land preservation efforts, Rothman received multiple regional and national honors for his leadership. The dedication of this new preserve in his name serves as a lasting tribute to his legacy.
The project was a design-build collaboration led by SumCo Eco-Contracting, with design services provided by Princeton Hydro, including environmental, civil, and geotechnical engineering; landscape architecture; and construction oversight.
The team approached the project with a deep sense of care and responsibility. “It’s been a privilege to support the vision for this park,” said Cory Speroff, PLA, ASLA, CBLP, Landscape Architect and Project Manager at Princeton Hydro. “From the beginning, we approached the design with a sense of responsibility and sensitivity, knowing how many people have worked tirelessly over the years to protect and preserve the surrounding wetlands. Our goal was to create a space that honors that legacy — a place where people can come to connect with the Meadowlands.”
The newly constructed preserve includes a range of low-impact park features that balance ecological protection with meaningful public access:
All elements were designed to be fully ADA-compliant, ensuring inclusive access for visitors of all abilities. The trail and parking surfaces were constructed using a geocellular confinement system, which promotes stormwater infiltration and supports long-term structural integrity. A timber guardrail was added along the drive and parking area to enhance safety and define boundaries.
In consideration of the site’s role as critical habitat, particularly for nocturnal and migratory species, artificial lighting was not included in the design.
Ecological restoration was a central focus of the project. The team planted 40 native trees and shrubs, installed a pollinator garden, and seeded the site with native, drought-tolerant grasses to improve habitat value and resilience. These nature-based enhancements not only support biodiversity but also help filter stormwater, stabilize soils, and prepare the landscape for a changing climate.
The preserve, located at the end of Jomike Court in Carlstadt, NJ, is now open daily from dawn to dusk. Visitors are encouraged to explore the trail, take in the sweeping New York City skyline views from the overlook, and appreciate the beauty and ecological richness of the Meadowlands.
Looking for more examples of how design and ecology can come together to benefit both people and nature? Check out our work at South Cape May Meadows Preserve in partnership with The Nature Conservancy in New Jersey. This beloved 200-acre coastal habitat, an international hotspot for birdwatching, draws more than 90,000 visitors annually. Princeton Hydro is helping to restore the preserve’s ecological integrity while improving public access, including recent efforts to remove invasive Phragmites and promote the return of native vegetation. Read more about the project here.
Welcome to the latest edition of our Client Spotlight blog series, which provides an inside look at our collaboration, teamwork, and accomplishments with one of our client partners.
In this special edition, we’re shining the spotlight on the Town of Mina and Findley Lake Watershed Foundation (FLWF), two organizations working closely together to protect and preserve Findley Lake in Chautauqua County, New York. This charming 300-acre lake is a cherished focal point for recreation, tourism, and community pride, and safeguarding it is a shared responsibility. The Town of Mina and FLWF, a volunteer-led nonprofit, have built a strong partnership dedicated to maintaining the lake’s health and ensuring its long-term sustainability.
We kicked-off the conversation with a question for Rebecca:
Rebecca continues: “As part of our 2024 Comprehensive Plan, the Town of Mina identified four core community values that guide our decision-making, with our top priority being Findley Lake!
The lake is the heart of our community. Ensuring it remains clean, beautiful, and accessible for recreation and overall enjoyment is essential to our identity. That’s why we work so closely with FLWF. During the comprehensive planning process, FLWF developed a Lake Management Plan, which now guides our environmental efforts.
Our second core value is economic development. Findley Lake is experiencing an exciting period of growth, with several initiatives underway, including a new warehouse distribution center, growing retail presence, and revitalization in the downtown area. It’s truly a renaissance moment for our community.
Third, we’re deeply committed to preserving and enhancing our community character. We value our rural lifestyle and are working to improve it with expanded trails, new boardwalks, and safer, more accessible green spaces for all to enjoy. And, our fourth core value centers on strengthening local government, becoming more efficient, effective, and responsive to the needs of our residents. We want people to feel heard, supported, and engaged in the future of our town.”
“FLWF was established in 2002, but our roots go back much further. Before that, our work was carried out by the Findley Lake Property Owners Association, which formed in the late 1940s after the lake was no longer needed as a power source for milling operations.
At that time, the lake and dam were donated by Larry Schwartz to a group of local, stewardship-minded residents. That group did the best they could with limited resources and knowledge. But as science, lake management practices, and environmental awareness progressed, so did our approach.
By transitioning to a 501(c)(3) nonprofit in 2002, we were able to access grant funding and expand our work significantly. Since then, we’ve purchased weed harvesters, partnered with Princeton Hydro for lake studies, and supported major infrastructure projects like the new sewer system currently in development to address septic-related pollution.
We’ve also taken steps to reduce streambank erosion and manage phosphorus loading that affects lake oxygen levels. Our board is strong and diverse—we have dedicated members with the expertise needed to keep moving the organization and the lake forward. At our core, FLWF is committed to maintaining, enhancing, and improving the quality of Findley Lake and its watershed through science-based action and collaboration.”
Rebecca continues: “We’ve made significant strides in advancing the health of our local environment, thanks in part to support from the New York State Department of Environmental Conservation (DEC). We’ve completed three DEC-funded studies that are guiding our next steps.
One study focused on culverts throughout the watershed with the goal of improving water flow and reducing flood risk. Every culvert was assessed to identify those that need repair or replacement. Another study analyzed stormwater runoff, identifying ten key inflow areas to Findley Lake where erosion and sedimentation pose potential threats. Each site was evaluated and prioritized, and we’ve since secured a DEC grant to address the highest-priority site. And, the third study explored in-lake nutrient control strategies, which laid the groundwork for our current partnership with Princeton Hydro on nutrient management efforts.
Beyond lake-focused work, we’re also committed to enhancing community access to nature. We’ve received support from Chautauqua County for efforts that will benefit both the environment and quality of life for residents and visitors alike.”
“We first partnered with Princeton Hydro a few years ago when our board recognized the need for expert guidance on lake management. While we have a strong, professional board, we lacked the specialized knowledge in lake ecology and water quality science to move forward confidently with major decisions.
After researching several firms, we chose to bring Princeton Hydro on board to help us better understand nutrient dynamics in the lake. One of our key concerns was the persistent late-summer algae blooms, which we later learned were linked to phosphorus being released from the lake’s sediments.
Princeton Hydro conducted an in-lake nutrient study that clearly explained this internal loading process and helped us chart a path forward. Building on that work, we’re now working with the Princeton Hydro team on a bathymetric and sediment analysis to guide our next step, which will be to install an aeration system to reduce phosphorus release and improve water quality.
Princeton Hydro’s expertise has been instrumental in making complex science understandable and actionable, which has helped us take meaningful steps toward restoring the health of Findley Lake.”
Following Rebecca’s remarks, Ed adds: “I’d just like to echo what Rebecca said—the Princeton Hydro team we worked with this Spring was truly a pleasure to collaborate with. Their depth of knowledge was impressive, but just as important was their ability to communicate complex concepts in a way that was clear and easy for our board to understand. That kind of approachability made a big difference. It was a great experience working with them.”
“We’re always grateful for donations, they fuel much of what we do. But beyond financial support, one of the most valuable ways people can contribute is by sharing their experiences and ideas.
There are countless lakes and watershed organizations out there facing similar challenges, and many have come up with innovative, cost-effective solutions. We’re always eager to learn from others; whether it's a new technology, a successful restoration approach, or a creative funding strategy. Collaboration and information-sharing are incredibly powerful tools in watershed management. If you’ve worked on a similar issue or simply have ideas that could help, we’d love to hear from you. The more we connect and learn from each other, the better we can protect and improve Findley Lake for generations to come.”
Following Ed’s comments, Rebecca adds: “One of the things that makes the Town of Mina so special is the strong culture of volunteerism. We’re fortunate to have many residents, often individuals who’ve had professional careers elsewhere, who bring their skills, energy, and passion to our community.
Even though we’re a small town, we benefit from a wide network of nonprofit organizations and local initiatives. For example, the Findley Lake Nature Center is actively working on trail development, and there are many other opportunities for people to get involved in stewardship, whether it’s helping maintain green spaces, supporting water quality efforts, or sharing expertise on local projects.
What’s especially unique about our community is how welcoming we are. Newcomers don’t have to wait decades to feel at home here—they’re embraced right away, and their ideas are valued. That openness has really enhanced our ability to protect Findley Lake and strengthen the town as a whole.”
In the video below, Ed reflects on the strong sense of community in the Town of Mina and the local support that fuels the ongoing efforts to protect and preserve Findley Lake:
After Ed’s remarks, Rebecca shares a few additional reflections: “One particularly meaningful designation we’ve received is from New York State, which has identified us as one of only two rural NORCs (Naturally Occurring Retirement Communities) out of 43 statewide. This designation recognizes our vibrant population of older adults and has allowed us to pursue new forms of support and services. We’re currently looking into developing a pocket neighborhood to help seniors remain in the community, where they continue to be active, involved, and deeply valued.
And here’s a fun fact that speaks to the energy of Findley Lake: it serves as the practice site for the women’s rowing team from Mercyhurst University, who happen to be the reigning national champions. Pretty cool, right?”
Yes, Rebecca, we think that’s very cool!
A heartfelt thank you to Rebecca and Ed for their partnership and for taking the time to speak with us to share their passion for protecting Findley Lake and strengthening the Town of Mina. Their leadership and collaboration exemplify the power of community-driven stewardship.
To learn more about their work and how you can get involved, we encourage you to visit the Town of Mina’s website and FLWF at findleylakewf.org.
Click here to read the previous edition of our Client Spotlight Series featuring Farmington River Watershed Association Executive Director Aimee Petras.
Ever wondered how scientists measure lake water clarity? One of the simplest and most enduring tools for the job is the Secchi disk.
Long before it became a formal scientific tool, sailors and scientists were already using simple methods to estimate water clarity, like lowering white objects into the water to gauge visibility and depth. In 1865, Italian astronomer Father Pietro Angelo Secchi built on these early techniques by developing a uniform white disk and standardized utilization method. His published findings helped establish the Secchi disk as a practical tool for water quality assessment.
The design was later improved by George C. Whipple, who added alternating black and white quadrants to enhance visibility. Today, this version of the Secchi disk remains a staple in the field kits of aquatic scientists and limnologists worldwide.
As part of our Field Notes blog series, which spotlights essential tools and techniques used by our team, Senior Aquatics Manager Christopher L. Mikolajczyk, CLM, demonstrates how to properly use a Secchi disk and explains how this simple method helps inform lake and pond management strategies. Watch now:
As Chris explains in the video, water clarity is a key indicator of overall lake health, and monitoring it provides valuable insight into the condition and functioning of aquatic ecosystems. Regular monitoring helps lake managers understand whether conditions are within a healthy range, identify potential indicators of future algal blooms, and make informed decisions to maintain ecological balance.
Interested in getting involved? With a few simple materials, you can build your own Secchi disk and participate in the Secchi Dip-In, a community science initiative where volunteers measure and report water clarity data. While the Dip-In is traditionally celebrated in July during Lakes Appreciation Month, data collection is welcomed and encouraged year-round.
Chris has dedicated over 25 years to advancing the science and practice of aquatic ecology and water resource management. His expertise spans the management, oversight, and coordination of projects in three key areas: aquatic resource restoration and management, aquatic ecosystem sampling and investigations, and stormwater quality modeling and management. Chris has an Associate's, Bachelor's, and Master's degree in Water and Watershed Resource Management. In addition to his work with Princeton Hydro, Chris currently serves as the President-Elect of the Colorado Lake and Reservoir Management Association’s 2025 Board of Directors and has also served as President of North American Lake Management Society. These leadership roles highlight his dedication to advancing aquatic resource conservation.
Invasive species can quickly establish themselves in habitats ranging from freshwater wetlands and riparian corridors to stormwater basins and tidal marshes, disrupting ecological balance and biodiversity, altering hydrology, and displacing native species.
Addressing these impacts requires a thoughtful, site-specific approach. Our team at Princeton Hydro works to design and implement targeted strategies that promote long-term ecological function. These integrated efforts aid in native habitat recovery, enhance water quality, and support compliance with regulatory frameworks.
Let’s take a closer look at how invasive species disrupt our ecosystems, why managing them is so important, and the cutting-edge tools and innovative techniques helping to eradicate invasives and restore balance to delicate ecosystems.
Invasive species are organisms introduced outside their native range that proliferate in new environments, often to the detriment of local ecosystems and biodiversity. Although some introductions happen naturally, most are caused by human activity—through commercial shipping and transport, travel and outdoor recreation, or sometimes deliberate introduction. Once established, invasive species often outcompete native species by growing more aggressively, reproducing more rapidly, and exploiting resources more efficiently. These advantages are amplified by the absence of natural predators and environmental controls that would normally regulate their populations.
This can lead to a cascade of ecological consequences:
Take common reed (Phragmites australis), for example. This fast-growing plant has overtaken many wetlands, meadows, and shorelines, forming dense stands that outcompete native vegetation. These monocultures reduce food sources that native species rely on and block the movement of wildlife between critical habitats. According to the National Invasive Species Information Center (NISIC), Phragmites was most likely introduced during the 1800s in ballast material used on ships. It was initially established along the Atlantic coast and quickly spread across the continent.
Another example of an aggressive invasive species is Eurasian watermilfoil (Myriophyllum spicatum), a submerged perennial aquatic plant that grows in lakes and ponds. Native to Europe, Asia, and North Africa, it was discovered in the eastern U.S. in the early 1900s, likely introduced and spread through the movement of watercraft. It establishes itself very quickly, grows rapidly, and spreads easily, forming dense mats at the water’s surface.
Left unmanaged, aggressive invasives like Phragmites and Eurasian watermilfoil can severely impact the stability of critical environmental systems. Effective control strategies help restore balance, preserve biodiversity, and safeguard the services ecosystems provide to humans and wildlife alike.
At Princeton Hydro, we use a multifaceted approach to invasive species control, employing mechanical, herbicidal, and biological strategies depending on the specific site conditions and project goals. One of our most effective tools is the Marsh Master® 2MX-KC-FH, a fully amphibious machine built to operate with minimal environmental disruption.
Equipped with hydraulic rotary cutting blades, a rear mounted roller/chopper attachment, and a front vegetation plow, the Marsh Master® cuts through dense vegetation like Phragmites, then chops and rolls the stalks, effectively preparing the soil for native seed germination or plug installation, making it ideal for nature preserves, canal banks, and restoration sites. Its light footprint (less than one pound per square inch) means it can traverse sensitive areas without damaging the soil or root layer.
Take a look at the Marsh Master® in the field, tackling Phragmites in tough terrain:
When paired with herbicide treatments and long-term monitoring, this approach has proven very effective in eradicating invasives, restoring wetland biodiversity, improving water quality, and creating wildlife habitat. Each site is carefully analyzed and, when required for optimal non-native plant management, a site-specific USEPA and state-registered herbicide is chosen to control the target plants while preserving the desirable, native vegetation currently populating the site. Application techniques, which are also specific to each site, include machine broadcast spraying, backpack foliar spraying, hand-wiping, basal applications, herbicide injection lances, along with various other techniques.
In partnership with GreenVest and the U.S. Army Corps of Engineers Baltimore District, Princeton Hydro contributed to a tidal marsh restoration project along the Patapsco River in Baltimore, Maryland. This initiative is part of the broader “Reimagine Middle Branch” plan, a community-driven revitalization effort to restore natural habitat and improve public access along 11 miles of Patapsco River shoreline.
At the project site near Reed Bird Island, roughly five acres of marsh had been overtaken by dense stands of Phragmites. The goal was to restore hydrologic connections to the Patapsco River and convert the monoculture into a thriving mosaic of native marsh vegetation. Our team used the Marsh Master® to mow and manage the Phragmites, followed by mechanical grading and sediment redistribution to create high and low marsh zones. The restoration plan included planting 5+ acres with a combination of native species and incorporating habitat features like woody debris and unplanted cobblestone patches to facilitate fish passage.
This project demonstrates how targeted invasive species control can support large-scale ecosystem restoration, community-led initiatives, and watershed-wide environmental goals.
Princeton Hydro has worked alongside New Jersey’s Mercer County Park Commission for over a decade to restore and protect some of the region’s most ecologically valuable landscapes. From comprehensive planning to boots-on-the-ground restoration, our efforts have focused on mitigating the spread of invasive species and promoting long-term ecological resilience.
John A. Roebling Memorial Park, part of the Abbott Marshlands, an ecologically rich freshwater tidal ecosystem that contains valuable habitat for many rare species, experienced a significant amount of loss and degradation, partially due to the introduction of Phragmites. In areas where Phragmites had overtaken native wetland communities, our team developed and executed an invasive species management plan tailored to the park’s unique hydrology and habitat types. Seasonal mowing in the winter and early spring with the Marsh Master® and targeted herbicide applications helped suppress invasive growth and enabled the rebound of native species, including Wild rice (Zizania aquatica), a culturally and ecologically significant plant.
Building on that success, we contributed to the development and implementation of the Master Plan for the Miry Run Dam Site 21, a comprehensive roadmap for ecological restoration and public access. We are advancing that vision through mitigating invasive species (primarily Phragmites), leading lake dredging, and executing a variety of habitat uplift efforts. Click here to learn more about this award-winning restoration initiative.
In 2024, Mercer County retained Princeton Hydro under an on-call contract for invasive species management across its park system, enabling our team to respond rapidly to emerging threats and support the county’s ongoing commitment to long-term ecosystem health.
At the Lower Raritan Mitigation Site in central New Jersey, Princeton Hydro has led a multi-year invasive species control effort as part of a larger wetland and stream restoration initiative. Dominated by reed canary grass (Phalaris arundinacea) and Phragmites, the site had lost most (if not all) of its native biodiversity and ecological function.
Our team used a phased approach—mechanical mowing, herbicide treatment, and active planting of native species—to gradually suppress invasives and restore a healthy plant community. Monitoring data over several growing seasons has shown a significant decrease in invasive cover and a measurable increase in native diversity. Ongoing eradication of aggressive species and the promotion of native plant diversity are steadily guiding the site toward a resilient, self-sustaining ecosystem.
Owned and managed by The Nature Conservancy in New Jersey, the South Cape May Meadows Preserve is a 200-acre freshwater wetland and coastal habitat in southern New Jersey that serves as a critical refuge for migratory birds and other native wildlife. The preserve attracts over 90,000 visitors each year and is internationally recognized as a prime birdwatching destination.
Princeton Hydro is collaborating with The Nature Conservancy on a multi-faceted effort to both improve public access and restore the site’s ecological integrity. In 2023 and 2024, our team initiated the mechanical removal of dense stands of Phragmites using the Marsh Master® to suppress monocultures and promote native plant regeneration. Future phases may include targeted herbicide treatments and additional mechanical work.
In addition to the invasive species management component, this project collaboration has led to the construction of 2,675 feet of new elevated boardwalks, a 480-square-foot viewing platform, and enhancements to existing trails. Designing and installing these features across sensitive wetland terrain required a thoughtful, low-impact approach. The result is a more welcoming, species-rich, and resilient landscape that invites people into nature while actively protecting it.
Invasive vegetation doesn’t just affect wild landscapes, it also poses challenges for stormwater infrastructure. Many municipalities struggle with invasives overtaking stormwater basins, reducing their capacity and function, which can lead to violations of Municipal Separate Storm Sewer System (MS4) permits and municipality stormwater management regulatory requirements.
Princeton Hydro designs and implements comprehensive stormwater basin maintenance programs that include invasive species management. Removing Phragmites, broadleaf cattail (Typha latifolia), and other aggressive species from stormwater infrastructure helps to restore hydrologic flow and ensures the basins perform as designed. These maintenance programs also help maintain MS4 compliance, protect downstream water quality, and reduce flooding risks—while enhancing habitat value where possible.
The fight against invasive and aggressive non-native species is ongoing, and success requires a combination of science, strategy, and stewardship. Each effort implemented and every acre reclaimed is a step toward protecting the ecosystems we all depend on.
Nestled in Luzerne County, Pennsylvania, Harveys Lake spans 622 acres and is the largest natural lake by volume in the Commonwealth. Beyond its scenic beauty and popularity as a recreational destination, the lake plays a critical ecological role in the region.
Harveys Lake forms the headwaters of Harveys Creek, which flows into the Susquehanna River and ultimately the Chesapeake Bay. As such, it is part of the greater Susquehanna River Valley and contributes to the health of the Chesapeake Bay watershed. The lake and its outflow are designated High Quality – Cold-Water Fisheries, supporting sensitive aquatic life, providing vital cold-water habitat, and contributing to regional biodiversity.
Given its ecological significance and its connection to regional waterways, efforts to manage stormwater and reduce nutrient pollution in the Harveys Lake watershed are more than just local improvements, they are integral to protecting downstream water quality all the way to the Chesapeake Bay.
In 2022, building on decades of water quality initiatives, the Borough of Harveys Lake launched a forward-thinking pilot project to enhance stormwater treatment using innovative nutrient-filtering technologies. Supported by funding from the National Fish and Wildlife Foundation (NFWF) Chesapeake Bay Small Watershed Grant Program and designed and implemented in partnership with Princeton Hydro, this project explores the use of biochar and EutroSORB® filtration media to capture dissolved nutrients, an important step toward improving water quality and meeting regulatory goals.
This blog explores the local history of water management at Harveys Lake, the science behind this novel pilot approach, and the broader implications for watershed protection across the region.
Once a remote, wooded landscape, the Harveys Lake area was settled in the early 19th century and gradually developed into a hub for timbering and milling. By the late 1800s, the lake was regularly stocked with game fish, and with the arrival of the railroad in 1887, it quickly became a popular summer destination. The shoreline soon featured hotels, restaurants, and even an amusement park.
As the community flourished, the lake's natural systems began to show signs of strain. Like many waterbodies across the country, Harveys Lake faced growing water quality challenges driven by stormwater runoff, nutrient pollution, and a lack of formal environmental protections. By the 1960s, declining water clarity and seasonal algal blooms began to impact recreation, contributing to the lake’s gradual transition from a bustling public getaway to a primarily residential community.
A significant shift occurred following the passage of the U.S. Environmental Protection Agency’s Clean Water Act of 1972. Harveys Lake established a municipal sewer authority, and construction began on a utility line around the lake's perimeter to reduce point-source pollution. Still, algae blooms persisted throughout the 1980s, fueled by nonpoint sources such as stormwater runoff, lawn fertilizers, and waterfowl droppings.
In 1994, a Phase I Diagnostic Feasibility Study was conducted that formally identified Harveys Lake as impaired due to recurring algal blooms linked to elevated nutrient levels. Following this study, a Total Maximum Daily Load (TMDL) was established, and management efforts were initiated to meet long-term water quality goals.
Since 2003, the Harveys Lake watershed has undergone extensive stormwater management efforts, including the installation of numerous manufactured treatment devices (MTDs) to reduce pollutant loading. Most of these MTDs are nutrient separating baffle boxes (NSBBs), chosen due to the watershed’s steep slopes, dense residential development, and shallow bedrock. The first NSBB, pictured below, was installed at Hemlock Gardens:
In 2009, the Borough of Harvey’s Lake worked with Princeton Hydro to develop a Stormwater Implementation Plan that laid the foundation for future restoration efforts. Over the following years, the Borough of Harveys Lake, supported by state and regional grants, implemented 34 stormwater best management practices (BMPs) and installed four floating wetland islands throughout the watershed.
These projects were strategically designed to reduce nutrient loading, enhance water quality, and move the lake closer to achieving its TMDL targets. Click here to read more about these efforts.
While NSBB stormwater BMPs are highly effective at capturing sediments and associated pollutants, they are limited in their ability to remove dissolved nutrients, particularly nitrogen and phosphorus. This is evident in the Harveys Lake Watershed, where NSBBs remove approximately 70% of total suspended solids (such as sediment and plant debris), 35% of total phosphorus, and 0% of total nitrogen. To address this gap and improve overall nutrient removal efficiency, the Borough of Harveys Lake received funding from the NFWF Chesapeake Bay Small Watershed Grant Program to augment existing MTD stormwater BMPs using new filter technologies.
Partnered with Princeton Hydro for design, implementation, and technical support, the Borough launched a unique pilot project involving the installation of biochar and EutroSORB® (manufactured by SePRO Corporation) to evaluate the effectiveness of these two innovative materials in removing dissolved phosphorus and total nitrogen from stormwater runoff before it reaches Harveys Lake.
Biochar, a carbon-rich material derived from plant biomass, is valued for its high surface area and nutrient-adsorption capacity. EutroSORB® is a manufactured media specifically engineered to bind and retain dissolved phosphorus with demonstrated effectiveness in aquatic systems.
Filter socks filled with either biochar or EutroSORB® were installed at key stormwater outfalls and stream inlets that drain directly to the lake. At four NSBB sites, the socks were secured beneath manhole covers using a rope-and-carabiner system designed for easy, seasonal replacement. Each sock weighs approximately 50–60 pounds when saturated and was carefully positioned to avoid dislodgement or blockage of outlet pipes during high-flow events.
At the Hemlock Gardens site, which features a larger, multi-tray baffle box, twelve filter socks were installed across two horizontal trays to maximize contact time between stormwater and the filter media.
By integrating these innovative filter techniques into the existing BMP infrastructure, the Borough of Harveys Lake is taking a proactive, science-based approach to nutrient reduction and long-term water quality improvement.
Princeton Hydro implemented a comprehensive water quality monitoring program in the Harveys Lake watershed to assess the real-world performance of the biochar and EutroSORB® filtration systems under varying hydrologic conditions, with a particular focus on dissolved nutrients that contribute to eutrophication.
Six stormwater monitoring stations were established at locations where biochar or EutroSORB® were deployed within NSBBs or stream inlets. Each site included paired upstream (pre-treatment) and downstream (post-treatment) sampling points to capture the nutrient concentrations entering and exiting the filtration media.
Stormwater sampling was conducted during six separate rainfall events between March and April 2025. At each location, during storm flow conditions, discrete grab samples were collected via a portable polyethylene sampling pole and analyzed for key water quality parameters.
Beyond concentration-based comparisons, Princeton Hydro used empirical monitoring data to model pollutant loads upgradient and downgradient of the filtration media. These load estimates provide insights into pollutant removal effectiveness on a mass basis, with a focus on:
Emphasis was placed on SRP—the biologically available form of phosphorus most readily assimilated by algae and a key driver of harmful algal blooms and eutrophication. Because phosphorus is the target pollutant in Harveys Lake’s TMDL, SRP reduction serves as a critical indicator of the filtration media’s performance and its potential role in long-term water quality management strategies.
Overall, the study revealed variable but promising results across media types and installation locations:
These early findings suggest that both EutroSORB® and biochar hold promise as cost-effective tools for reducing soluble phosphorus in stormwater runoff. Additionally, observed differences in removal efficiency, based on installation context (NSBB vs. stream), filter media volume, and site-specific hydrologic conditions, underscore the importance of continued monitoring and system refinement.
As part of the project’s commitment to long-term sustainability and public education, a native pollinator garden was established near the Harveys Lake Department of Public Works garage, adjacent to the Little League fields.
After the final sampling in April 2025, the nutrient-saturated biochar and EutroSORB® socks were removed from the stormwater treatment systems. The spent biochar, having captured phosphorus and nitrogen from runoff, was repurposed as a soil amendment to enrich a 500-square-foot planting area. This repurposing effort served a dual purpose: demonstrating a closed-loop approach to managing excess nutrients while also creating a community-oriented space that supports local biodiversity.
The Harveys Lake Environmental Advisory Council volunteered to help plant the garden, installing 450 native plant plugs across nine species including Foxglove Beardtongue, Clustered Mountain Mint, Blue Wild Indigo, and Common Yarrow to attract pollinators such as butterflies, bees, and songbirds.
Designed by Princeton Hydro, the pollinator garden serves as both an ecological asset and an educational tool. Its prominent location next to the ballfields encourages community engagement, and an interpretive sign on-site helps visitors understand the garden’s purpose and its connection to local water quality initiatives. The sign features a QR code linking to an interactive ArcGIS StoryMap, developed by Princeton Hydro, which explores the broader context of the project. It draws connections between nutrient management efforts in Harveys Lake and similar challenges facing the entire Chesapeake Bay watershed, emphasizing how local actions contribute to regional water quality improvements. To support public outreach, the StoryMap was also shared on the Borough’s website, making this educational resource widely accessible to the community.
It is important to note that while this project illustrates a successful example of biochar reuse, all reuse applications must be assessed on a case-by-case basis. For example, biochar exposed to hazardous pollutants is not suitable for soil use. In this case, the biochar had only been used to absorb excess nutrients, making it appropriate for the garden setting.
Supported by the U.S. Environmental Protection Agency and the NFWF’s Chesapeake Bay Stewardship Fund, which promotes community-based conservation strategies to protect and restore Chesapeake Bay’s natural resources, this project was designed with scalability in mind. A core objective was to evaluate whether these filtration media could be more broadly implemented throughout the Chesapeake Bay watershed as a low-cost, community-integrated strategy for achieving water quality goals.
Through continued innovation and shared learning, small-scale efforts like this can drive large-scale impact, proving that effective water quality solutions don’t have to be costly or complex. The Harveys Lake model offers a replicable framework that communities across the region can adopt and adapt, empowering local action that contributes meaningfully to the restoration and resilience of Chesapeake Bay.
Your Full Name * Phone Number * Your Email * Organization Address Message *
By EmailBy Phone
Submit
Δ
Couldn’t find a match? Check back often as we post new positions throughout the year.