We’re committed to improving our ecosystems, quality of life, and communities for the better.
Our passion and commitment to the integration of innovative science and engineering drive us to exceed on behalf of every client.
WP_Query Object ( [query] => Array ( [page] => [pagename] => blog ) [query_vars] => Array ( [page] => 0 [pagename] => blog [error] => [m] => [p] => 0 [post_parent] => [subpost] => [subpost_id] => [attachment] => [attachment_id] => 0 [name] => [page_id] => 0 [second] => [minute] => [hour] => [day] => 0 [monthnum] => 0 [year] => 0 [w] => 0 [category_name] => natural-resource-management [tag] => [cat] => 10 [tag_id] => [author] => [author_name] => [feed] => [tb] => [paged] => 1 [meta_key] => [meta_value] => [preview] => [s] => [sentence] => [title] => [fields] => all [menu_order] => [embed] => [category__in] => Array ( [0] => 10 ) [category__not_in] => Array ( ) [category__and] => Array ( ) [post__in] => Array ( ) [post__not_in] => Array ( ) [post_name__in] => Array ( ) [tag__in] => Array ( ) [tag__not_in] => Array ( ) [tag__and] => Array ( ) [tag_slug__in] => Array ( ) [tag_slug__and] => Array ( ) [post_parent__in] => Array ( ) [post_parent__not_in] => Array ( ) [author__in] => Array ( ) [author__not_in] => Array ( ) [search_columns] => Array ( ) [posts_per_page] => 11 [ignore_sticky_posts] => [suppress_filters] => [cache_results] => 1 [update_post_term_cache] => 1 [update_menu_item_cache] => [lazy_load_term_meta] => 1 [update_post_meta_cache] => 1 [post_type] => [nopaging] => [comments_per_page] => 5 [no_found_rows] => [order] => DESC ) [tax_query] => WP_Tax_Query Object ( [queries] => Array ( [0] => Array ( [taxonomy] => category [terms] => Array ( [0] => 10 ) [field] => term_id [operator] => IN [include_children] => ) ) [relation] => AND [table_aliases:protected] => Array ( [0] => ph_term_relationships ) [queried_terms] => Array ( [category] => Array ( [terms] => Array ( [0] => 10 ) [field] => term_id ) ) [primary_table] => ph_posts [primary_id_column] => ID ) [meta_query] => WP_Meta_Query Object ( [queries] => Array ( ) [relation] => [meta_table] => [meta_id_column] => [primary_table] => [primary_id_column] => [table_aliases:protected] => Array ( ) [clauses:protected] => Array ( ) [has_or_relation:protected] => ) [date_query] => [queried_object] => WP_Post Object ( [ID] => 6 [post_author] => 1 [post_date] => 2021-01-18 12:51:43 [post_date_gmt] => 2021-01-18 12:51:43 [post_content] => [post_title] => Blog [post_excerpt] => [post_status] => publish [comment_status] => closed [ping_status] => closed [post_password] => [post_name] => blog [to_ping] => [pinged] => [post_modified] => 2021-01-18 12:51:43 [post_modified_gmt] => 2021-01-18 12:51:43 [post_content_filtered] => [post_parent] => 0 [guid] => https://princetonhydro.com/?page_id=6 [menu_order] => 0 [post_type] => page [post_mime_type] => [comment_count] => 0 [filter] => raw ) [queried_object_id] => 6 [request] => SELECT SQL_CALC_FOUND_ROWS ph_posts.ID FROM ph_posts LEFT JOIN ph_term_relationships ON (ph_posts.ID = ph_term_relationships.object_id) WHERE 1=1 AND ( ph_term_relationships.term_taxonomy_id IN (10) ) AND ((ph_posts.post_type = 'post' AND (ph_posts.post_status = 'publish' OR ph_posts.post_status = 'acf-disabled'))) GROUP BY ph_posts.ID ORDER BY ph_posts.menu_order, ph_posts.post_date DESC LIMIT 0, 11 [posts] => Array ( [0] => WP_Post Object ( [ID] => 18888 [post_author] => 1 [post_date] => 2025-12-16 16:04:21 [post_date_gmt] => 2025-12-16 16:04:21 [post_content] => Friends of Hopewell Valley Open Space (FoHVOS), in partnership with Princeton Hydro, has launched a groundbreaking initiative, “Monitoring Harmful Algal Blooms (HABs) in the Delaware River Watershed Using Drones and Spatial Analysis,” to improve understanding and forecasting of HABs throughout the Delaware River Watershed. Funded by the National Fish and Wildlife Foundation (NFWF), in partnership with the U.S. Fish & Wildlife Service, through the Delaware Watershed Conservation Fund (DWCF), the project leverages drone technology and advanced data modeling to identify environmental conditions that contribute to HAB formation and aims to develop tools and methodologies for early detection and management. For this innovative research project, FoHVOS, a 501(c)3 and accredited Land Trust located in Hopewell Township, NJ, has teamed with Princeton Hydro. Princeton Hydro conceptualized and designed the initiative and is leading the technical implementation, including field survey design, drone operations, data analysis, and volunteer training. “The Delaware River is central to Hopewell Valley’s identity. It shapes our way of life, supplies drinking water to 14.2 million people, shelters wildlife like the endangered Atlantic sturgeon, and offers abundant outdoor recreation,” said Jennifer Rogers, Executive Director of FoHVOS. “HABs were once confined to ponds and lakes, but since 2018, they’ve appeared in colder months and spread to streams and rivers. Though land trusts traditionally focus on land, HABs show how land use directly affects water. These blooms often stem from excess nitrogen and phosphorus washed into waterways during storms. Protecting water means restoring land. Our partnership with Princeton Hydro aligns perfectly with our mission. Together, we’re working to better understand and safeguard the Delaware River and its tributaries in both NJ and PA.” HABs, caused by nuisance growth of cyanobacteria, can have detrimental effects on water quality and are a growing environmental concern nationwide. These blooms deplete oxygen levels, release toxins, and disrupt ecosystems, potentially posing serious risks to drinking water supplies and the health of wildlife, pets, humans, and local economies. Despite advances in environmental monitoring, predicting when and where HABs will occur remains a challenge due to the complex interplay of nutrient loading, temperature, and hydrologic conditions that can lead to rapid bloom proliferation. To address these challenges, this newly launched initiative integrates drone-based remote sensing, field sampling, and spatial data analysis to collect and interpret detailed environmental data over a two-year period. The study spans multiple monitoring sites along a 73-mile stretch of the Delaware River in New Jersey and Pennsylvania, focusing on near-shore sections and 23 associated waterbodies. The first survey event began in August 2025. Drones equipped with multispectral imaging systems capture high-resolution spatial data that is then integrated with digital platforms to link remote-sensing with the drone data and on-the-water collected data. The field-based water quality measurements are being collected by a team of trained community volunteers who are using phycocyanin fluorometer meters to measure concentrations of the photosynthetic pigment phycocyanin, which is produced primarily by cyanobacteria. Volunteers enter the data into a customized ArcGIS mobile-friendly survey. These combined datasets will be used to develop and validate predictive algorithms for both planktonic and benthic HABs under varying seasonal and hydrologic conditions. The following photos depict the RGB (Visual) and corresponding Thermal image from the monitoring flights over Spring Lake in New Jersey: [gallery columns="2" link="none" size="medium" ids="18899,18900"] “This research project represents a major step forward in how we study and manage harmful algal blooms at the watershed scale,” said Dr. Fred Lubnow, Project Lead and Senior Technical Director of Ecological Services at Princeton Hydro. “By integrating satellite data, drone imagery, and on-the-water sampling, we’re developing predictive tools that will enable us take a proactive approach to mitigate HABs, improve response time, and better support our ecosystem health.” Project partners include New York City College of Technology – The City University of New York, which donated the drone and is supporting remote sensing and data integration; Trenton Water Works, Mercer County Park Commission, and The College of New Jersey which are providing monitoring sites and contributing volunteers for water quality data collection in New Jersey; Aqua-PA and the Philadelphia Water Department, which are providing monitoring sites and volunteers to collect watershed data in Pennsylvania; the Bucks County Conservation District, which is coordinating volunteer data collection; and Turner Designs, whose advanced phycocyanin sensors are being used to calibrate and validate drone-based monitoring data. In the photos below, volunteers are being trained by Princeton Hydro staff on how to use phycocyanin fluorometers and Secchi disks to gather water quality data and log their findings. [gallery link="none" size="medium" ids="18896,18895,18894,18897,18891,18892"] This $1M project is funded through a $488,400 NFWF DWCF grant as part of the NFWF’s Research, Monitoring, & Evaluation Grant category and $513,700 in matching funds from project partners. This grant category aims to support high-performing science that is inclusive, adaptive, and innovative, with the potential to transform the Delaware River Watershed’s future through improved conservation, restoration, and public engagement. Once complete, the project will produce a comprehensive report summarizing methods, analyses, and data-driven recommendations for practical, low-cost HAB monitoring and mitigation strategies that can be replicated across the Delaware River Watershed and beyond. Crucially, the report will identify tributaries and sources contributing to riverine HABs, enabling targeted restoration of the most affected lands and waters. Data collection will continue through Fall 2025, resume in Spring/Summer 2026, and culminate in a final report expected in 2027. [gallery link="file" columns="2" ids="18781,18902"] FoHVOS is a 501(c)3 nonprofit land trust dedicated to conserving the natural resources of the Hopewell Valley region and beyond. Through land preservation, ecological restoration, community engagement, and science-driven initiatives, FoHVOS works to protect and enhance open spaces for future generations. Learn more at www.fohvos.org. Princeton Hydro is committed to improving our ecosystems, quality of life, and communities for the better. The firm was formed in 1998 with the specific mission of providing integrated ecological and engineering consulting services. Offering expertise in natural resource management, water resources engineering, geotechnical design and investigation, and regulatory compliance, their staff provide a full suite of environmental services throughout the Northeast for the public and private sectors. Project Lead, Dr. Fred Lubnow, is an expert in HAB management and has worked with dozens of lake associations and government agencies to restore lakes, manage watersheds, reduce pollutant loading, address invasive aquatic plants, and mitigate nuisance HABs. To learn more about Princeton Hydro's work to mitigate harmful algal blooms, go here. [post_title] => Innovative Drone-Based Research Study to Predict HABs in the Delaware River Watershed [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => innovative-drone-based-research-study-to-predict-habs-in-the-delaware-river-watershed [to_ping] => [pinged] => [post_modified] => 2025-12-16 16:12:45 [post_modified_gmt] => 2025-12-16 16:12:45 [post_content_filtered] => [post_parent] => 0 [guid] => https://princetonhydro.com/?p=18888 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [1] => WP_Post Object ( [ID] => 18909 [post_author] => 1 [post_date] => 2025-12-12 13:55:34 [post_date_gmt] => 2025-12-12 13:55:34 [post_content] => Duke Farms, a Center of the Doris Duke Foundation, is a 2,700-acre landscape in Hillsborough, NJ, dedicated to restoring ecosystems, demonstrating sustainable land management, and inspiring environmental leadership. Once the privately-owned estate of J.B. and Doris Duke, the property now welcomes more than 150,000 visitors annually who come to experience its diverse habitats, miles of public trails, and innovative conservation programs. Situated within the Raritan River Watershed and bordered by a mosaic of rural and suburban development, Duke Farms functions as a living laboratory for nature-based solutions in complex, fragmented landscapes. Its forests, meadows, waterways, and working lands offer an unparalleled setting to advance climate-positive strategies, including restorative land management and decarbonization initiatives, while maintaining an unwavering commitment to protecting wildlife and enriching biodiversity. For more than 20 years, Princeton Hydro has partnered with Duke Farms to restore, monitor, and manage its interconnected lakes and ponds. In 2001, we developed a comprehensive Lake Management Plan to address water quality challenges, promote ecological balance, and ensure these systems could support both wildlife and public use. Since then, we have provided ongoing updates to align management strategies with the ecological objectives of the Duke Farms Foundation. Over time, the Foundation has expanded public access for education and recreation, highlighting the distinctions between shallow, artificial impoundments and natural lakes while implementing innovative, nature-based techniques for algae and aquatic plant control. Today, Duke Farms’ 11 lakes and ponds, eight of which were included in the original plan, remain central to the property’s water resources and continue to play a vital role in overall ecological health, stewardship programming, and public recreation opportunities. Great Falls Cove at Duke Farms. Photo by Princeton Hydro Aquatic Ecologist Katie Walston-Frederick. Evolving Strategies for an Evolving Landscape The original Lake Management Plan integrated routine water quality monitoring, hydrologic and pollutant-load modeling, adaptive aquatic plant management, and targeted interventions to restore ecological balance. Key components included invasive species control, such as Common Carp removal to support native fish populations, and a comprehensive algae and aquatic plant program that included aeration and aquascaping. This multifaceted approach established the foundation for long-term recovery across the lake system. As Duke Farms expanded public access and strengthened its educational mission, management strategies evolved to emphasize innovative, low-impact techniques for shallow, human-made impoundments. Recent advancements implemented by Princeton Hydro include:
Friends of Hopewell Valley Open Space (FoHVOS), in partnership with Princeton Hydro, has launched a groundbreaking initiative, “Monitoring Harmful Algal Blooms (HABs) in the Delaware River Watershed Using Drones and Spatial Analysis,” to improve understanding and forecasting of HABs throughout the Delaware River Watershed. Funded by the National Fish and Wildlife Foundation (NFWF), in partnership with the U.S. Fish & Wildlife Service, through the Delaware Watershed Conservation Fund (DWCF), the project leverages drone technology and advanced data modeling to identify environmental conditions that contribute to HAB formation and aims to develop tools and methodologies for early detection and management.
For this innovative research project, FoHVOS, a 501(c)3 and accredited Land Trust located in Hopewell Township, NJ, has teamed with Princeton Hydro. Princeton Hydro conceptualized and designed the initiative and is leading the technical implementation, including field survey design, drone operations, data analysis, and volunteer training.
“The Delaware River is central to Hopewell Valley’s identity. It shapes our way of life, supplies drinking water to 14.2 million people, shelters wildlife like the endangered Atlantic sturgeon, and offers abundant outdoor recreation,” said Jennifer Rogers, Executive Director of FoHVOS. “HABs were once confined to ponds and lakes, but since 2018, they’ve appeared in colder months and spread to streams and rivers. Though land trusts traditionally focus on land, HABs show how land use directly affects water. These blooms often stem from excess nitrogen and phosphorus washed into waterways during storms. Protecting water means restoring land. Our partnership with Princeton Hydro aligns perfectly with our mission. Together, we’re working to better understand and safeguard the Delaware River and its tributaries in both NJ and PA.”
HABs, caused by nuisance growth of cyanobacteria, can have detrimental effects on water quality and are a growing environmental concern nationwide. These blooms deplete oxygen levels, release toxins, and disrupt ecosystems, potentially posing serious risks to drinking water supplies and the health of wildlife, pets, humans, and local economies. Despite advances in environmental monitoring, predicting when and where HABs will occur remains a challenge due to the complex interplay of nutrient loading, temperature, and hydrologic conditions that can lead to rapid bloom proliferation.
To address these challenges, this newly launched initiative integrates drone-based remote sensing, field sampling, and spatial data analysis to collect and interpret detailed environmental data over a two-year period. The study spans multiple monitoring sites along a 73-mile stretch of the Delaware River in New Jersey and Pennsylvania, focusing on near-shore sections and 23 associated waterbodies. The first survey event began in August 2025.
Drones equipped with multispectral imaging systems capture high-resolution spatial data that is then integrated with digital platforms to link remote-sensing with the drone data and on-the-water collected data. The field-based water quality measurements are being collected by a team of trained community volunteers who are using phycocyanin fluorometer meters to measure concentrations of the photosynthetic pigment phycocyanin, which is produced primarily by cyanobacteria. Volunteers enter the data into a customized ArcGIS mobile-friendly survey. These combined datasets will be used to develop and validate predictive algorithms for both planktonic and benthic HABs under varying seasonal and hydrologic conditions.
The following photos depict the RGB (Visual) and corresponding Thermal image from the monitoring flights over Spring Lake in New Jersey:
“This research project represents a major step forward in how we study and manage harmful algal blooms at the watershed scale,” said Dr. Fred Lubnow, Project Lead and Senior Technical Director of Ecological Services at Princeton Hydro. “By integrating satellite data, drone imagery, and on-the-water sampling, we’re developing predictive tools that will enable us take a proactive approach to mitigate HABs, improve response time, and better support our ecosystem health.”
Project partners include New York City College of Technology – The City University of New York, which donated the drone and is supporting remote sensing and data integration; Trenton Water Works, Mercer County Park Commission, and The College of New Jersey which are providing monitoring sites and contributing volunteers for water quality data collection in New Jersey; Aqua-PA and the Philadelphia Water Department, which are providing monitoring sites and volunteers to collect watershed data in Pennsylvania; the Bucks County Conservation District, which is coordinating volunteer data collection; and Turner Designs, whose advanced phycocyanin sensors are being used to calibrate and validate drone-based monitoring data.
In the photos below, volunteers are being trained by Princeton Hydro staff on how to use phycocyanin fluorometers and Secchi disks to gather water quality data and log their findings.
This $1M project is funded through a $488,400 NFWF DWCF grant as part of the NFWF’s Research, Monitoring, & Evaluation Grant category and $513,700 in matching funds from project partners. This grant category aims to support high-performing science that is inclusive, adaptive, and innovative, with the potential to transform the Delaware River Watershed’s future through improved conservation, restoration, and public engagement.
Once complete, the project will produce a comprehensive report summarizing methods, analyses, and data-driven recommendations for practical, low-cost HAB monitoring and mitigation strategies that can be replicated across the Delaware River Watershed and beyond. Crucially, the report will identify tributaries and sources contributing to riverine HABs, enabling targeted restoration of the most affected lands and waters. Data collection will continue through Fall 2025, resume in Spring/Summer 2026, and culminate in a final report expected in 2027.
FoHVOS is a 501(c)3 nonprofit land trust dedicated to conserving the natural resources of the Hopewell Valley region and beyond. Through land preservation, ecological restoration, community engagement, and science-driven initiatives, FoHVOS works to protect and enhance open spaces for future generations. Learn more at www.fohvos.org.
Princeton Hydro is committed to improving our ecosystems, quality of life, and communities for the better. The firm was formed in 1998 with the specific mission of providing integrated ecological and engineering consulting services. Offering expertise in natural resource management, water resources engineering, geotechnical design and investigation, and regulatory compliance, their staff provide a full suite of environmental services throughout the Northeast for the public and private sectors. Project Lead, Dr. Fred Lubnow, is an expert in HAB management and has worked with dozens of lake associations and government agencies to restore lakes, manage watersheds, reduce pollutant loading, address invasive aquatic plants, and mitigate nuisance HABs. To learn more about Princeton Hydro's work to mitigate harmful algal blooms, go here.
Duke Farms, a Center of the Doris Duke Foundation, is a 2,700-acre landscape in Hillsborough, NJ, dedicated to restoring ecosystems, demonstrating sustainable land management, and inspiring environmental leadership. Once the privately-owned estate of J.B. and Doris Duke, the property now welcomes more than 150,000 visitors annually who come to experience its diverse habitats, miles of public trails, and innovative conservation programs.
Situated within the Raritan River Watershed and bordered by a mosaic of rural and suburban development, Duke Farms functions as a living laboratory for nature-based solutions in complex, fragmented landscapes. Its forests, meadows, waterways, and working lands offer an unparalleled setting to advance climate-positive strategies, including restorative land management and decarbonization initiatives, while maintaining an unwavering commitment to protecting wildlife and enriching biodiversity.
For more than 20 years, Princeton Hydro has partnered with Duke Farms to restore, monitor, and manage its interconnected lakes and ponds. In 2001, we developed a comprehensive Lake Management Plan to address water quality challenges, promote ecological balance, and ensure these systems could support both wildlife and public use. Since then, we have provided ongoing updates to align management strategies with the ecological objectives of the Duke Farms Foundation. Over time, the Foundation has expanded public access for education and recreation, highlighting the distinctions between shallow, artificial impoundments and natural lakes while implementing innovative, nature-based techniques for algae and aquatic plant control. Today, Duke Farms’ 11 lakes and ponds, eight of which were included in the original plan, remain central to the property’s water resources and continue to play a vital role in overall ecological health, stewardship programming, and public recreation opportunities.
Great Falls Cove at Duke Farms. Photo by Princeton Hydro Aquatic Ecologist Katie Walston-Frederick.
The original Lake Management Plan integrated routine water quality monitoring, hydrologic and pollutant-load modeling, adaptive aquatic plant management, and targeted interventions to restore ecological balance. Key components included invasive species control, such as Common Carp removal to support native fish populations, and a comprehensive algae and aquatic plant program that included aeration and aquascaping. This multifaceted approach established the foundation for long-term recovery across the lake system.
As Duke Farms expanded public access and strengthened its educational mission, management strategies evolved to emphasize innovative, low-impact techniques for shallow, human-made impoundments. Recent advancements implemented by Princeton Hydro include:
The most recent plan update incorporates techniques that were unavailable when the original plan was developed:
In 2012, Princeton Hydro conducted a detailed hydrologic analysis of Duke Farms’ interconnected lake system to evaluate water management strategies. Historically, water from the Raritan River was pumped into the lakes to maintain water levels. While reliable, this practice introduced elevated nutrients and sediments in the property’s lakes and ponds, degrading water quality and fueling nuisance algal blooms.
The study synthesized pump and discharge records, long-term climate and hydrologic data, and monthly water budgets, and included experimental pumping scenarios to assess alternatives. Results were transformative: under normal conditions, supplemental pumping could be reduced by more than 95%, and even during drought, by about 70%, without compromising lake levels. Based on these findings, Duke Farms adopted a low-volume, seasonal pumping strategy and transitioned to a higher-quality groundwater source, which significantly reduced nutrient loading, improved water clarity, and lowered energy consumption.
Ongoing monitoring remains a cornerstone of the Duke Farms–Princeton Hydro partnership. For each waterbody, the team conducts in-situ data collection, laboratory analyses, visual and observational evaluations, and detailed reporting. Data from continuous monitoring demonstrates sustained improvements in dissolved oxygen, water quality, and overall lake/pond health. This continuous feedback loop informs adaptive management decisions and allows Duke Farms to measure the ecological success of its restoration efforts.
We are proud to partner with Duke Farms in advancing the health and resilience of its water resources, a commitment that not only protects the lakes and ponds on the property but also delivers positive ecological benefits throughout the Raritan River watershed. Click here to learn more about our lake management work in the region. To explore Duke Farms, plan a visit to its beautiful property, sign up for educational programs, or discover ways to get involved in its conservation initiatives, visit Duke Farms’ website.
We’re excited to announce Senior Wildlife Biologist and Ecologist Mike McGraw, CSE, QAWB, ACE is a co-author of a newly published study in Agriculture, Ecosystems & Environment, a leading journal in agroecological research. The paper, “Is regenerative agriculture for the birds? Outcomes are practice and species specific,” offers fresh insight into how regenerative farming practices affect the abundance and diversity of bird species across working landscapes in the Northern Great Plains of the US and Canada.
The full paper is available for free via an open-access link until January 13. We encourage everyone interested in wildlife conservation, regenerative agriculture, or avian ecology to take advantage of this limited-time access. Click here to read it now.
Regenerative agriculture is often heralded as a win-win for soil health, productivity, and biodiversity, but how exactly do these practices affect bird communities? Birds are highly sensitive to agricultural change, and many North American species have experienced significant declines due to intensification of farming practices. The newly published study takes a closer, science-driven look at whether regenerative approaches can help reverse these trends.
Drawing on extensive point counts, distance sampling, and acoustic recording units across agricultural landscapes, the research team examined nine common regenerative practices, including cover cropping, integrating livestock, eliminating tillage, and enhancing field margins. Rather than assuming a blanket benefit, the study asked a nuanced question: Which birds benefit from which practices, and why?
This work helps refine what regenerative agriculture can contribute to working-lands conservation and provides actionable, species-specific insights for farmers, land managers, and conservation practitioners.
Agriculture, Ecosystems & Environment is a leading interdisciplinary journal that publishes high-impact research at the intersection of agroecology, land management, and environmental science. The journal focuses on how agricultural systems function, how they influence the environment, and how environmental change shapes those systems in return. Research featured in this publication is known for being data-rich, hypothesis-driven, and globally relevant.
This publication represents a collaborative effort among a team of researchers dedicated to understanding how regenerative agriculture shapes biodiversity in working landscapes. The authors contributed expertise in avian ecology, agricultural management, statistical analysis, and landscape science, bringing a multi-disciplinary lens to this important study.
Mike J. McGraw, CSE, QAWB, ACE, is a Senior Project Manager, Regulatory and Wildlife and Senior Wildlife Biologist and Ecologist, Regulatory and Wildlife with Princeton Hydro. He has over 20 years of experience designing and conducting ecological assessments and wildlife surveys across the United States and Canada. His work spans compliance-based assessments, regenerative agriculture research, long-term ecological monitoring, and conservation-focused outreach. Mike also teaches Avifaunal Ecology in the MES program at the University of Pennsylvania and serves on several municipal and land trust committees.
In addition to Mike, the paper was co-authored by the following contributors:
This publication reflects years of fieldwork, analysis, and collaboration—an accomplishment the entire Princeton Hydro team is proud to celebrate. Though Mike’s work has been published previously, this marks the first time his work appears in print under the Princeton Hydro affiliation, making it a particularly meaningful milestone for all of us.
In addition to his peer-reviewed work, Mike’s contributions to regenerative agriculture research are featured in “Roots So Deep,” a four-part documentary series about inventive farmers and maverick scientists working to solve climate change with hooves, heart, and soil.
Mike appears throughout the series, including Parts 1 & 4 which will be shown at the Newtown Theatre in Newtown, Pennsylvania, during a special Screening & Discussion event taking place on January 21 at 7pm. Following the film, Mike will join the post-screening panel to take part in the audience Q&A.
Don’t miss your chance to access Mike's full article for free through January 13. Explore the study and discover the latest insights into bird conservation and the role of regenerative agriculture. Click here to dive in.
The Lower Darby Creek Area encompasses a unique blend of residential neighborhoods, commercial zones, and critical regional infrastructure, including the Philadelphia International Airport, Interstate 95, and portions of the John Heinz National Wildlife Refuge. Despite its urban setting, the area supports diverse wetlands, waterways, and wildlife habitats that play an essential role in regional flood protection, resiliency, and ecological connectivity.
Flooding and habitat loss have long challenged the Lower Darby Creek Area, particularly in the communities of Eastwick in southwest Philadelphia and Tinicum Township of Delaware County, PA. Residents in these neighborhoods experience extreme flooding during storm and high tide events, and community groups have been leading local efforts to enhance resilience and reduce flood risk. The increasing effects of climate change, such as more intense storms, sea level rise, and frequent tidal flooding, are compounding challenges.
To help address these challenges, The Nature Conservancy in Pennsylvania (TNC) and the John Heinz National Wildlife Refuge have commissioned Princeton Hydro to lead a two-year Urban Flood and Habitat Resilience Feasibility Study for the Lower Darby Creek Area. The study aims to identify and evaluate nature-based solutions that would help to convey, store, and infiltrate water to alleviate flooding, improve habitat for local wildlife species, and enhance community resilience.
Community engagement is a cornerstone of the Feasibility Study, ensuring that local voices help shape the region’s path toward long-term resilience. The project work began with a series of community meetings to learn from residents about the impacts of flooding and the changes they want to see in their neighborhoods. The outcome of this project will be a list of 6-10 nature-based solutions that have been prioritized by community members and that have been analyzed for feasibility and potential for flood reduction and ecological benefit. This information will be presented in a Project Roadmap for the co-developed pathway to achieve community and ecological resilience through project implementation. This guidance will empower partners and communities to secure funding, implement pilot projects, and advance long-term resilience goals.
Once the study is complete, Princeton Hydro will create an interactive ArcGIS StoryMap webpage that will allow users to take a deeper dive into the study's findings and interact with the data. Users will be able to visualize flood scenarios and potential restoration opportunities and learn more about specific project activities and the proposed solutions.
Earlier this year, project partners joined residents for Eastwick Community Day, a vibrant event celebrating neighborhood connections, local leadership, and climate resilience. Hosted by the City of Philadelphia’s Office of Sustainability, the event was supported by representatives from The Nature Conservancy in Pennsylvania, John Heinz National Wildlife Refuge, and Princeton Hydro, including Director of Restoration & Resilience Christiana Pollack, CERP, CFM, GISP and Director of Aquatics Mike Hartshorne.
The gathering offered residents an opportunity to meet the organizations involved in the flood study, learn about available climate resilience resources, and share their own experiences and priorities. Alongside informational displays and project updates, attendees enjoyed a picnic lunch, family activities, and hands-on learning about nature-based solutions. It was a day that captured the spirit of collaboration driving this initiative.
The Lower Darby Creek initiative builds on Princeton Hydro’s earlier Eastwick Flood Resilience Study, expanding from a neighborhood-focused analysis to a watershed-scale approach. In 2016, in partnership with the University of Pennsylvania, the John Heinz National Wildlife Refuge, Keystone Conservation Trust, Audubon Pennsylvania, and the William Penn Foundation, Princeton Hydro conducted an analysis of Eastwick, the flood impacts created by the Lower Darby Creek, and the viability of several potential flood mitigation strategies. The study sought to answer questions commonly asked by community members related to flooding conditions, with the main question being: What impact does the landfill have on area flooding? Princeton Hydro developed a 2-D hydrologic and hydraulic model to understand how varying restoration techniques, including removal of the Clearview Landfill, expansion of the existing tidal freshwater wetland, removal of bridge infrastructure, and rerouting storm flows, would alter flooding in the Eastwick neighborhood.
Findings from that study provided key data and analytical frameworks that now inform the Lower Darby Creek Area Feasibility Study. Expanding beyond the boundaries of Eastwick, the comprehensive Lower Darby Creek Area study takes a watershed-scale view, exploring how interconnected systems, including upstream hydrology, tidal influences, and habitat networks, can be managed holistically.
Resilience is not achieved in isolation; it thrives through collaboration. The success of the Lower Darby Creek Area Feasibility Study and related restoration projects depends on a network of partners committed to shared goals. By aligning expertise, resources, and local knowledge, these partnerships create a foundation for long-term climate adaptation and ecological health. To learn more about the Nature Conservancy in Pennsylvania, click here. To learn more about the City of Philadelphia Office of Sustainability Flood Resilience Strategy for Eastwick, go here. And, click here to learn more about the John Heinz National Wildlife Refuge in Tinicum.
Princeton Hydro is also collaborating with the Refuge to restore the Refuge’s Turkey Foot area. Working with Enviroscapes and Merestone Consultants, our team designed and implemented habitat enhancement and hydrologic restoration projects to improve water quality, restore native wetland vegetation, and expand habitat for fish and wildlife. If you’re interested in learning more about this project, check out our blog: Ecological Restoration in John Heinz National Wildlife Refuge.
Princeton Hydro was proud to participate in the New Jersey Association for Floodplain Management (NJAFM) 20th Annual Conference and Exhibition, held this fall in Atlantic City, NJ. Celebrating two decades of collaboration and innovation within the floodplain management community, the conference brought together more than 500 practitioners, researchers, agency staff, and industry leaders from across the Northeast.
As the region’s premier floodplain management event, the NJAFM conference serves as a hub for sharing cutting-edge tools, best practices, and real-world strategies that help communities reduce flood risk, adapt to changing climate conditions, and build long-term resilience. Over the course of two days, participants attended educational sessions, hands-on training, and networking events centered on the theme: “NJAFM at 20 Years: Celebrate the Past, Focus on the Future.”
Princeton Hydro was excited to return as a conference sponsor, exhibitor, and session presenter.
Floodplain management is a multidisciplinary practice that integrates planning, engineering, ecological science, and public policy to reduce flood risk while preserving the natural functions of riverine and coastal systems. At its core, it involves understanding how water moves across a landscape, identifying areas vulnerable to flooding, and implementing measures that protect people, infrastructure, and ecosystems.
Floodplains provide a range of essential functions. Hydrologically, they convey, store, and infiltrate water during storm events, supporting natural flood attenuation, erosion control, and groundwater recharge. Ecologically, they contribute to biodiversity by providing habitat, migration corridors, and spawning areas for fish and wildlife. From a community perspective, well-managed floodplains can offer recreational value, improve water quality, and enhance the aesthetic and economic vitality of local neighborhoods.
Modern floodplain management relies on both structural and non-structural approaches. Structural measures may include engineered solutions such as levees, floodwalls, culvert improvements, or stormwater system upgrades. Non-structural tools often involve land-use planning, flood-resilient building standards, conservation of open space, and community engagement programs that help residents understand risk and adopt best practices.
Princeton Hydro works with municipalities, state agencies, nonprofit organizations, and watershed groups to develop and implement comprehensive floodplain management strategies across the region, emphasizing strategies that balance flood risk reduction with ecological enhancement, ensuring that floodplain management supports both resilient communities and healthy, functioning watersheds.
Pictured above: before and after photos from the Floodplain Restoration and Urban Wetland Creation project in Bloomfield Township, New Jersey. By removing a little over four acres of upland historic fill in this densely developed area and converting it into 4.2 acres of a functioning floodplain wetland, the project restored valuable ecological functions, enhances wetland and riparian zone habitat, and increases flood storage capacity for urban stormwater runoff.
Our team led two workshops at the NJAFM 20th Annual Conference:
Christiana Pollack, CERP, CFM, GISP, Princeton Hydro’s Director of Restoration and Resilience, presented on strategies to address chronic flooding and climate-driven impacts in Eastwick and Tinicum Township, Philadelphia. Her talk highlighted a two-year technical assessment commissioned by The Nature Conservancy in Pennsylvania and the John Heinz National Wildlife Refuge, and led by Princeton Hydro. The project combines integrated field data collection, advanced hydrologic and hydraulic modeling, and rigorous alternatives analysis to evaluate nature-based solutions. These include wetland creation or enhancement, stream and floodplain reconnection, and stormwater management retrofits, with the ultimate goal of restoring natural hydrologic function, reducing flood risk, and strengthening habitat and community resilience. Read more about the project here.
Elizabeth Treadway of WSP USA and Dr. Clay Emerson, PhD, PE, CFM, Senior Technical Director of Engineering at Princeton Hydro, led a session on the practical, legal, and financial considerations of establishing a stormwater utility, an increasingly vital tool for sustainable infrastructure funding. Participants learned:
The session also addressed common challenges such as aging infrastructure, rapid development, and the growing frequency of severe storm events driven by climate change. Stormwater feasibility studies were highlighted as a key resource for evaluating costs and benefits before moving forward.
Managing stormwater effectively is essential for resilient infrastructure and community safety. Click here to learn about a Stormwater Utility Investigation & Feasibility Study we conducted for the Town of Hammonton, New Jersey.
Throughout the conference, our team was able to connect with planners, municipal officials, engineers, and local leaders at our exhibitor booth. These conversations offered valuable opportunities to discuss project experiences, share resources, and learn from others working to advance resilience across New Jersey.
Princeton Hydro is proud to be part of this community and remains committed to advancing science-based, equitable, and sustainable approaches to reducing flood risk. We look forward to continuing our partnership with NJAFM and supporting clients and communities in building a safer, more resilient future.
The Borough of Mountain Lakes has received grant funding from the New Jersey Highlands Council to develop a comprehensive Lake and Watershed Management Plan for nine lakes within the Borough. To lead this effort, the Borough engaged Princeton Hydro, a leader in ecological and engineering consulting. The initiative will focus on characterizing hydrologic and nutrient dynamics within the Borough’s lake systems and watersheds to guide targeted water quality improvement and management strategies.
“Mountain Lakes takes great pride in our lakes, which play an important role in defining our community. Through our partnership with the Highlands Council and Princeton Hydro, we’re taking a proactive, data-driven approach to protecting both the environmental and recreational value of our lakes and waterways, with the goal of preserving these vital natural resources for generations to come,” said Borough of Mountain Lakes Manager Mitchell Stern.
A selection process was undertaken by the Borough of Mountain Lakes, Princeton Hydro, and the New Jersey Highlands Council to define the scope of this Lake and Watershed Management Program. In accordance with Policy 1L2 and Objective 1L2a of the NJHC Regional Master Plan, which establish lake management tiers and prioritize lakes greater than 10 acres for protection and management, nine lakes were selected for the study: Birchwood Lake, Crystal Lake, Wildwood Lake, Sunset Lake, Mountain Lake, Shadow Pond, Olive Pond, Grundens Pond, and Cove Pond. These lakes represent the waterbodies in the Borough and were chosen to ensure the program focuses on areas with the greatest potential impact on water quality, watershed function, and community value.
Princeton Hydro’s work will include watershed modeling, hydrologic and pollutant load analyses, and in-lake and watershed-based water quality monitoring. Once the data is analyzed, Princeton Hydro will develop a General Assessment Report that identifies the primary drivers of eutrophication and outlines a prioritized set of management strategies to effectively reduce nutrient loading and enhance long-term lake health.
“The regional, science-based approach to lake and watershed management has proven to be a powerful tool for municipalities in the Highlands Region,” said Christopher Mikolajczyk, CLM, Senior Manager of Aquatics at Princeton Hydro, Certified Lake Manager, and lead designer for this initiative. “We’re excited to collaborate with Mountain Lakes to help identify cost-effective, data-driven strategies that will enhance water quality throughout the watershed and help safeguard these treasured natural resources.”
The New Jersey Highlands Water Protection and Planning Council (Highlands Council) is a regional planning agency that partners with municipalities and counties in the Highlands Region to promote proactive watershed protection. Established under the New Jersey Highlands Water Protection and Planning Act of 2004, the Council has funded numerous water-quality-related planning initiatives.
Historically, municipalities and private lake associations have managed water quality issues independently. However, taking a coordinated, watershed-based approach enables communities to more effectively address pollution sources, improve water quality, and prevent the spread of invasive species and harmful algal blooms.
Mountain Lakes joins several other Highlands region municipalities that have received Highlands council funding to implement similar lake and watershed management initiatives. In 2019, the Borough of Ringwood became the first municipality in New Jerey to adopt a regional, public-private approach to lake management, partnering with four lake associations across six lakes. Since the completion of the Ringwood plan, NJDEP has funded recommendations from the plan. This model has since inspired additional projects, including watershed assessments for West Milford Township, Rockaway Township, Byram Township, Vernon Township, and Somerset County Parks Commission. Princeton Hydro worked with each agency to develop the respective scope of work to secure grant funding from the Highlands Council.
The New Jersey Department of Environmental Protection (NJDEP) recently announced $8 million in Water Quality Restoration Grants to support projects that reduce nonpoint source pollution, mitigate harmful algal blooms, restore riparian areas, and enhance watershed and climate resilience. Funded through Section 319(h) of the federal Clean Water Act and administered by the DEP's Watershed and Land Management Program, these grants were awarded to municipalities, nonprofit organizations, and academic institutions across the state.
Princeton Hydro is proud to be a partner on five of the 17 funded projects. Our contributions vary by project and encompass activities such as engineering design, water quality assessment, watershed-based planning, and technical support for implementing stormwater and habitat restoration measures. Let's take a deeper look at these collaborative efforts:
The Watershed Institute received $205K in 319(h) grant funding to develop a watershed-based plan for the Assunpink Creek watershed, located within the Raritan River Basin. This watershed spans 11 municipalities across two counties, where varied landscapes and demographics share common challenges such as localized flooding, stormwater management, and water quality degradation, highlighting the need for a coordinated, watershed-wide, science-driven approach.
The plan will evaluate pollution sources and identify large-scale restoration opportunities, including green infrastructure and riparian buffer restoration, to improve water quality and reduce flooding. It will also assess the cost, feasibility, and pollutant reduction potential of proposed measures to ensure practical implementation. Princeton Hydro supported the Institute in developing the grant proposal and planning framework, leveraging our expertise in watershed-based planning to prioritize nature-based solutions that address both water quality and climate resilience. This initiative represents a critical step toward regional collaboration, enabling upstream and downstream communities to work together on strategies that strengthen watershed health, protect public safety, and build long-term resilience.
The Lake Hopatcong Commission (LHC) was awarded $366K to retrofit an existing stormwater detention basin between King Road and Mount Arlington Boulevard in Roxbury Township. This retrofit is part of a larger Watershed Implementation Plan that Princeton Hydro developed in collaboration with LHC, which prioritizes nutrient reduction and stormwater management strategies across the Lake Hopatcong watershed. Over the past several years, LHC has actively implemented multiple elements of this plan to address harmful algal blooms (HABs) and improve water quality.
For this project, Princeton Hydro is providing engineering design and technical oversight to transform the existing basin into a green stormwater infrastructure system that slows, captures, and naturally treats runoff before it enters King Cove. The design incorporates native vegetation, invasive species management, and erosion control measures to stabilize soils and filter pollutants, reducing nutrient loading, which is one key driver of HABs. Public outreach and pre- and post-construction water quality monitoring will ensure performance tracking and measurable improvements. This basin retrofit represents a critical step in a coordinated, science-based approach to restoring ecological health and water quality in New Jersey’s largest lake.
Jefferson Township received $350K in grant funding to develop an Emerging Contaminants Management Plan for Cozy Lake, focusing on cyanotoxins and HABs. Cozy Lake is a 28-acre waterbody within a 1,152-acre sub-watershed that includes both forested (60%) and developed (29%) land. The lake is fed by the Rockaway River at its northern end and a smaller southeastern inlet, with outflow through a dam on the western edge.
The shoreline is primarily residential lawn with minimal emergent wetlands, and several inlets and rock-lined drainage ditches exhibit erosion and lack slope protection, contributing to sediment loading. Princeton Hydro provided early technical input to shape this innovative project with the creation of a comprehensive Jefferson Township Lake and Watershed Restoration and Protection Plan. As part of the plan, Princeton Hydro made recommendations for Cozy Lake, which included enhancing shoreline buffers with native vegetation and installing living shorelines at select properties to stabilize soils, filter stormwater and reduce nutrient loading, improve habitat quality, and enhance community access. These measures, combined with in-lake monitoring and proactive management strategies, will help mitigate HABs and protect ecological and public health.
Rockaway Township received $399K in grant funding to implement elements of its Watershed Implementation Plan, focusing on green infrastructure stormwater management and nutrient reduction to improve water quality. The project will retrofit the municipal complex by converting a rock-lined drainage swale into a vegetated swale with a bioretention basin, designed to filter stormwater runoff and reduce nonpoint source pollutants entering Fox’s Pond and Fox Brook.
Princeton Hydro played a key role in developing the Watershed Implementation Plan, which encompasses 11 private lakes within the Rockaway River watershed, prioritizing critical locations for intervention and designing cost-effective green infrastructure BMPs. This regional approach aligns with strategies recommended by NJDEP and the Highlands Council. The plan included a comprehensive watershed-based assessment to identify and quantify factors contributing to eutrophication, evaluate management measures, estimate costs, and establish an implementation schedule. Princeton Hydro authored the final report, which guided the Township in applying for the Section 319(h) grant and now informs the design and construction of green stormwater infrastructure that will deliver measurable water quality improvements while supporting ecological restoration goals.
Green Trust Alliance (GTA), a nationally accredited land trust and public charity dedicated to accelerating large-scale conservation, received $1.39 million in NJDEP funding to implement green infrastructure improvements at Pinelands Regional High School in Tuckerton, New Jersey. This initiative targets the Tuckerton Creek watershed, which drains into Tuckerton Creek and ultimately flows into Barnegat Bay—a critical estuary spanning 33 municipalities in Ocean County and four in Monmouth County. The retrofit will transform the school’s stormwater detention basin into a multi-functional system that mimics natural hydrology, enhances flow control, and improves water quality locally and in the larger Barnegat Bay watershed.
Working with GTA and GreenVest, Princeton Hydro is serving as the design engineer, applying nature-based engineering and ecological restoration techniques to intercept, evapotranspire, and infiltrate stormwater runoff at its source. In addition to its technical objectives, the effort includes a strong community engagement component and an educational platform for students. By bringing green infrastructure into the school environment, the initiative provides hands-on experience with water resources, stormwater management, and ecological engineering, help to build STEM skills while fostering a deeper connection to the surrounding landscape and an understanding of how natural systems work together to support environmental and community health.
Princeton Hydro also assisted several of these partners in developing successful NJDEP Section 319(h) grant applications, providing technical documentation, conceptual designs, and pollutant load reduction estimates to strengthen the proposals.
To date, the Murphy Administration has awarded more than $33M in Water Quality Restoration grants to improve the health of waterways in all corners of the state. Click here to read about all the 2025 grant funding recipients and their innovative projects.
As NJDEP Environmental Protection Commissioner Shawn M. LaTourette noted in the department's press release, “Enhancing the ecological health of our lakes, rivers, streams and coastal waters has long been a priority of the Murphy Administration. The Department of Environmental Protection is pleased to award these grants that will help our partners advance a variety of strategies to improve the health of these waterways and enhance the quality of life in our communities.”
We are proud to play a continued role in advancing that mission: helping communities implement practical, data-driven solutions that make a measurable difference for New Jersey’s waterways and the people who depend on them. Click here to learn more about our work to protect natural habitat and restore water quality throughout the New Jersey.
Coastal communities are on the frontlines of climate change, facing rising seas, stronger storms, and eroding shorelines. At the same time, these landscapes provide critical habitat and natural defenses that protect people, ecosystems and myriad wildlife. Coastal ecological restoration restores natural systems and strengthens future resilience to climate impacts.
Earlier this month, our team joined the New Jersey Coastal Resilience Collaborative (NJCRC) for its Coastal Ecological Restoration Technical Workshop, a full-day, in-person event held at the Rutgers EcoComplex in Bordentown, NJ. The workshop convened coastal stakeholders, researchers, practitioners, and managers to share knowledge and explore the latest science advancing coastal ecological restoration.
The day began with a work group session, “Advancing Science-Based Ecological Restoration Across New Jersey’s Coast,” led by a panel of experts and followed by an interactive Q&A. Click here to view the presentation. Participants then chose from a variety of technical sessions covering topics such as, eDNA and Water Quality as Indicators of Coastal Ecological Health; Smart Permitting for Restoration; and Diatoms as Ecological Indicators in Living Shoreline Applications.
Dana Patterson Grear, Princeton Hydro's Director of Marketing & Communications, delivered an engaging presentation titled, "How to Build a Digital Communications Toolkit for Climate Action." She provided practical guidance for turning communication into a powerful tool for advancing ecological restoration and climate resilience, including how to develop tailored climate messaging, understand the values of your audience and remove personal bias, and determine your level of engagement and capacity. Dana's presentation broke down complex communication strategies into actional steps that attendees can apply directly to their work. Click here to view her presentation slides.
Beyond the educational workshops, networking breaks, shared meals, and a post-workshop reception created opportunities to connect and collaborate. And, as a fun and fitting bonus, each participant went home with a complimentary native plant courtesy of Pinelands Nursery.
Coastal ecological restoration involves the rehabilitation and creation of coastal ecosystems, like wetlands, reefs, and shorelines, with the goal of restoring the natural processes and functions. These efforts provide long-term protection from erosion, create habitat for fish and wildlife, and build community resilience against flooding and storm surge.
At Princeton Hydro, we understand the impacts of climate change, including sea level rise, and use tools such as vulnerability assessments to inform our restoration designs. Our team specializes in designing and implementing living shorelines and habitat restoration projects. We combine field data, empirical approaches, ecological and geomorphic understanding, hydrologic and hydraulic modeling, and state-of-the-art computer programming technology to develop our designs. Our nature-based solutions deliver lasting ecological and community benefits.
A prime example of this work is the Spring Creek North Ecosystem Restoration project, located in Brooklyn and Queens, NY. Once part of the expansive Jamaica Bay wetland system, Spring Creek's salt marshes were heavily degraded over the last century. Princeton Hydro was contracted by the U.S. Army Corps of Engineers, New York District to lead the design and engineering for this restoration effort. Construction efforts began in early October 2025. Once completed, the project will restore approximately 43 acres of habitat within a 67-acre footprint, including low and high marsh, scrub shrub wetland, and maritime upland. Efforts also aim to improve water quality, increase biodiversity, and strengthen the overall Jamaica Bay ecosystem.
The following photos depict the degraded habitat and pre-construction conditions of the site. Stay tuned to our blog for more photos from each of the project phases.
Princeton Hydro's Director of Aquatics, Michael Hartshorne, recently traveled to Pietermaritzburg, South Africa, to present at the Southern African Society for Aquatic Scientists (SASAqS) Congress 2025. Hosted by the Institute of Natural Resources (INS) and the University of KwaZulu-Natal, the annual event convened researchers, industry professionals, government officials, and students from around the world to advance aquatic science by linking research with real-world practice.
Over the course of five days, participants shared insights on critical global and regional issues, including water pollution, water security, biodiversity conservation, climate change adaptation, and community-based resource management. The program featured an array of interdisciplinary presentations spanning hydrology, freshwater ecology, and policy, while also creating space for collaboration and connection through interactive workshops, poster sessions and exhibits, networking events, and a gala dinner and awards ceremony. On the closing day, field trips brought attendees out into the surrounding landscape, offering a tangible backdrop to the themes explored throughout the conference.
On the opening day of the SASAqS Congress 2025 program, Michael addressed the full conference audience with a presentation titled “Novel Techniques for the Monitoring of Harmful Algal Blooms (HABs) in Lakes and Rivers of the United States,” which focused on innovative approaches for detecting and managing HABs, a growing worldwide concern driven by nutrient pollution and climate change. Michael illustrated how innovative research can inform practical management strategies while encouraging global collaboration.
HABs are intensifying in frequency, scale, and severity worldwide, presenting challenges for drinking water supplies, recreational lakes, and river ecosystems. Michael’s presentation showcased a suite of monitoring tools, from handheld phycocyanin and phycoerythrin meters, to drones with multispectral lenses, to advanced techniques such as qPCR (quantitative Polymerase Chain Reaction), microscopy, and akinete cell monitoring. Through case studies from lakes, reservoirs, and river systems in New Jersey, Virginia, and Pennsylvania, he highlighted the strengths and limitations of each method, emphasizing the importance of tailoring monitoring strategies to the unique conditions of each waterbody. Michael also discussed management interventions and highlighted how emerging technologies can support more adaptive, science-driven management of HABs.
“It was an honor to participate in this year’s event and learn alongside so many dedicated professionals who are working to protect and restore aquatic ecosystems,” said Michael. “The international exchange of ideas and techniques is critical in helping us all address the increasingly complex challenges facing our water resources.”
The conference concluded with optional field trips that gave participants a chance to view South Africa’s aquatic systems and management challenges firsthand. Each excursion highlighted a different aspect of aquatic science in practice:
UKZN Zebrafish Research Facility: On the University of KwaZulu-Natal’s Pietermaritzburg campus, this outing introduced participants to the zebrafish as a model organism for studying genetics, development, and aquatic toxicology. The tour provided a window into laboratory-based aquatic science and its applications to regional and global challenges.
Lions River Monitoring Demonstration: Hosted by GroundTruth, this field trip took a group to Lions River to observe live demonstrations of water quality and quantity monitoring using advanced tools such as UAVs (drones), USVs (unmanned survey boats), and a suite of citizen science methods, including MiniSASS, clarity tubes, and velocity planks. The excursion showcased how high-tech innovation and community-driven monitoring can complement one another in managing freshwater resources.
Outside of the conference, Michael took the opportunity to explore the diverse beauty and culture of South Africa. At Betty's Bay, a small town on the Western Cape he enjoyed coffee while taking in sweeping coastal views; walked scenic trails; spotted a few Hyraxes and Chacma baboons; and observed the African penguin (Spheniscus demersus) at the Stony Point colony. He also viewed the Cape Rockjumper (Chaetops frenatus), a ground-dwelling bird endemic to the mountain Fynbos, at nearby Rooi-Els.
He visited Karkloof Nature Reserve in the KwaZulu-Natal province, a rural agricultural area which has implemented conservation efforts for the once endangered, but still threated, Wattled Crane (Grus carunculate).
Michael’s participation in SASAqS Congress 2025 reflects Princeton Hydro’s ongoing commitment to advancing aquatic science and collaborating with experts around the world. By sharing practical monitoring and management strategies for HABs, his contributions added to a rich global dialogue on how science can inform sustainable solutions.
Since joining Princeton Hydro in 2006, Michael has led numerous lake, stream, and watershed studies focused on water quality, restoration, and sustainable management. His expertise includes applied limnology, ecological restoration, TMDL (total maximum daily load) development, and biological surveys. Michael is skilled in designing and implementing monitoring programs that integrate technical rigor with community engagement, ensuring effective outcomes for both ecosystems and stakeholders. To learn more about Michael, click here.
The Institute of Natural Resources promotes the sustainable use of natural resources to benefit both the environment and society. Click here to learn more. To learn more about The University of KwaZulu-Natal a teaching and research-led university with multiple campuses across South Africa, click here.
Earlier this year, Princeton Hydro President Geoffrey M. Goll, PE traveled to Durban, South Africa, to participate in a symposium focused on “Dam Management and Restoration of River Connectivity.” Click here to read the blog about his journey.
Welcome to our Partner Spotlight blog series, where we highlight the meaningful collaborations and shared successes Princeton Hydro enjoys with our valued partners. Today, we’re shining the spotlight on Save Barnegat Bay, a nonprofit rooted deeply in environmental advocacy and stewardship, dedicated to safeguarding Barnegat Bay.
Fed by freshwater inputs from rivers, creeks, and streams, and saltwater from the Atlantic Ocean, Barnegat Bay is a unique estuary stretching approximately 42 miles from Bay Head to Long Beach Island and the Little Egg Harbor inlet. Barnegat Bay is the largest body of water in New Jersey and one of the region’s most valuable natural resources.
Save Barnegat Bay, founded in 1971 by neighbors concerned about the future of their local waterways, has grown into a highly respected, effective, and influential voice for environmental protection throughout the state. Through advocacy, education, restoration, and community engagement, the organization is leading the charge to preserve the Barnegat Bay ecosystem and the wildlife and communities that call it home.
For this Partner Spotlight, we spoke with Britta Forsberg, Executive Director of Save Barnegat Bay, who brings decades of personal and professional commitment to protecting this vital resource.
Let’s jump in!
“What truly sets Save Barnegat Bay apart is our hyper-local approach. We’re not a Washington, D.C.-based environmental group, we’re right here in the Barnegat Bay Watershed, working directly with the communities we serve. For 54 years, we’ve remained a steady and effective environmental voice, and we’ve achieved meaningful, lasting impacts through persistence, collaboration, and grassroots engagement.”
In the video below, Britta shares more about the guiding vision behind Save Barnegat Bay’s work and what continues to fuel the organization’s success:
“Save Barnegat Bay’s work spans decades and addresses a wide range of threats to the watershed, from nutrient pollution to legacy contamination. One of our most impactful successes is the passage of the New Jersey Fertilizer Law, which we wrote and lobbied for. It remains the strictest fertilizer content law in the country. This effort began with local ordinances, but we quickly realized a patchwork of municipal laws wasn’t effective. So, we pursued statewide legislation to reduce nitrogen pollution, a major stressor for Barnegat Bay’s ecological health. This law has helped prevent millions of tons of nitrogen from entering New Jersey’s waterways.
Another critical focus for us is environmental justice and accountability. We’re currently challenging a controversial settlement related to the Ciba-Geigy Superfund Site in Toms River. This site has a painful history: decades ago, a chemical plant discharged toxic waste into rivers, groundwater, and even the Atlantic Ocean, resulting in significant health impacts, including a well-documented childhood cancer cluster. While criminal charges and civil suits were eventually brought, we’re now fighting for appropriate restitution. We believe the NJDEP’s current settlement with the site’s owner, BASF, the world’s largest chemical company, lacks transparency and fails to account for the full environmental damage. We’ve filed an appeal and are advocating for a more just and science-based resolution that considers the lasting damage to 1,200 acres of land, the groundwater, wetlands, river, bay, and ocean.
We’re also proud to have played a leading role in the closure of the Oyster Creek Nuclear Generating Station, once the oldest operating nuclear plant in the country. The plant’s design used Barnegat Bay water to cool its reactors, then discharged superheated water back into the estuary, devastating marine life daily. We believe Save Barnegat Bay is the only grassroots environmental organization in the U.S. to successfully close a nuclear plant not on the basis of nuclear energy itself, but on its local ecological impacts.
These are just a few examples of the many efforts Save Barnegat Bay has led or supported over the years. From legislative advocacy to grassroots mobilization, our work is broad and ongoing. What unites it all is our deep commitment to protecting the Bay and ensuring its health for generations to come.”
“Barnegat Bay relies on a delicate and often overlooked network of 58 named rivers, creeks, and streams. Many of these freshwater sources originate in the Pine Barrens, winding through Ocean County and parts of Monmouth County before reaching the Bay. They are the lifeblood of the estuary, delivering freshwater that supports the Bay’s health, biodiversity, and overall ecological function.
Our “Rivers, Creeks, and Streams” campaign was created to inspire and connect people with their local waterways and take part in their protection. Whether it's through cleanup activities, water sampling, or making simple, eco-friendly changes at home, we believe small actions can collectively have a big impact.
Thanks to the generosity of local businesses, we've been able to acquire a fleet of canoes and kayaks to get people, including elected officials and community leaders, directly out on the water. This hands-on approach helps participants build a personal relationship with their local water resources, see firsthand the challenges and opportunities for improvement, and feel empowered to help. It’s one thing to talk about water quality in a meeting room, it’s another to experience it on the water, paddle in hand.”
In the video clip below, Britta shares more about this unique initiative:
“Over the years, we’ve collaborated with Princeton Hydro on a wide range of impactful projects. We've worked with many members of their team, including Dr. Steve Souza; Dr. Fred Lubnow; Geoffrey Goll, P.E.; and Mark Gallagher, just to name a few. Our work together has spanned everything from technical restoration projects to public education initiatives. In fact, we’ve probably partnered with a good portion of their staff at some point on various critical initiatives across the watershed.”
In the video clip below, Britta highlights two collaborative projects that stand out as major wins, successfully protecting sensitive habitats while navigating the priorities of various stakeholders:
Britta continues: “We’re also partnering with Princeton Hydro to take a proactive approach to water quality management in coastal towns throughout the Barnegat Bay Watershed. Specifically, we’ve been supporting Point Pleasant Beach and Bay Head in developing comprehensive lake and watershed management plans. There are three coastal lakes in Point Pleasant and one in Bay Head, and these proactive planning efforts have been incredibly valuable for those communities.
Honestly, I could go on and on. We’ve worked with Princeton Hydro on so many important projects together; it’s a true partnership.”
“There are so many ways to get involved. At Save Barnegat Bay, we encourage people to contribute and participate in whatever way works best for them—time, treasure, or talent. Nearly everything we offer is free and open to the public, from hands-on workshops like rain barrel construction to science-based programs like eelgrass planting and clinging jellyfish monitoring to volunteer initiatives like shoreline clean-ups. We’re not a membership-based organization, which means there’s no barrier to participation. You can simply show up and engage in whatever way feels right to you.
Britta leaves us with a few inspiring words about the power of big ideas, and a reminder to look beyond the everyday and believe in what’s possible:
A heartfelt thank you to Britta Forsberg for her time, passion, and leadership, and for sharing the inspiring story of Save Barnegat Bay. Her dedication to community-driven stewardship and environmental advocacy reflects the profound impact that local action can have on protecting vital natural resources on a wide-reaching scale.
Click here to learn more about Save Barnegat Bay’s work, sign up for the volunteer email newsletter, check out the events calendar, and explore all the ways you can get involved. To learn more about some of Princeton Hydro's work to protect and restore Barnegat Bay, click here.
We're pleased to announce the release of the "New Jersey Nature-Based Solutions: Planning, Implementation, and Monitoring Reference Guide," a free resource that provides a comprehensive roadmap to incorporating nature-based solutions (NBS) into infrastructure, construction, restoration, and resilience projects across the state.
Created by the Rutgers University New Jersey Climate Change Resource Center with support from The Nature Conservancy in New Jersey, the guide compiles current research, case studies, best practices, practical tools, science-based strategies, and funding resources to "inform and empower readers to implement and seek funding for NBS."
Click here to view and download the guide now.
As the guide states, "nature-based solutions (NBS) are defined as actions to protect, sustainably manage, and restore natural and modified ecosystems that address societal challenges effectively and adaptively, simultaneously benefiting people and nature." (IUCN 2024)
Whether you're a municipal planner, community leader, contractor, public- or private-sector professional, or an academic, new to NBS or experienced in large-scale restoration projects, the guide offers value at every level with practical instruction that spans the full project lifecycle, from planning and permitting to funding and long-term monitoring. While the content is tailored to New Jersey's diverse landscapes, the guide's insights and approaches are broadly applicable to regions with similar ecosystems, from Massachusetts to Virginia.
The guide also includes insights on how to address equity considerations and foster meaningful community engagement, helping users implement NBS that are both impactful and inclusive.
Princeton Hydro was proud to contribute technical expertise to this important effort. Our Director of Restoration & Resilience, Christiana L. Pollack, CERP, CFM, GISP, participated on the guide's steering committee, and our team provided informational resources, including content and case studies on invasive species management, wetland and floodplain enhancement, and dam and culvert removal to restore rivers and improve fish passage. These contributions along with those from many other participants, reflect the collaborative nature of the guide and the collective commitment to advancing NBS across the state.
The guide's easy-to-follow format includes four key sections:
Whether you're just beginning to conceptualize a project or deep into project implementation, this guide is an invaluable addition to your toolbox. We encourage you to explore, download, and share it widely! Click here to access the guide now.
Your Full Name * Phone Number * Your Email * Organization Address Message *
By EmailBy Phone
Submit
Δ
Couldn’t find a match? Check back often as we post new positions throughout the year.