search
WP_Query Object
(
    [query] => Array
        (
            [page] => 
            [pagename] => blog
        )

    [query_vars] => Array
        (
            [page] => 0
            [pagename] => blog
            [error] => 
            [m] => 
            [p] => 0
            [post_parent] => 
            [subpost] => 
            [subpost_id] => 
            [attachment] => 
            [attachment_id] => 0
            [name] => 
            [page_id] => 0
            [second] => 
            [minute] => 
            [hour] => 
            [day] => 0
            [monthnum] => 0
            [year] => 0
            [w] => 0
            [category_name] => flood-mitigation
            [tag] => 
            [cat] => 35
            [tag_id] => 
            [author] => 
            [author_name] => 
            [feed] => 
            [tb] => 
            [paged] => 1
            [meta_key] => 
            [meta_value] => 
            [preview] => 
            [s] => 
            [sentence] => 
            [title] => 
            [fields] => 
            [menu_order] => 
            [embed] => 
            [category__in] => Array
                (
                    [0] => 35
                )

            [category__not_in] => Array
                (
                )

            [category__and] => Array
                (
                )

            [post__in] => Array
                (
                )

            [post__not_in] => Array
                (
                )

            [post_name__in] => Array
                (
                )

            [tag__in] => Array
                (
                )

            [tag__not_in] => Array
                (
                )

            [tag__and] => Array
                (
                )

            [tag_slug__in] => Array
                (
                )

            [tag_slug__and] => Array
                (
                )

            [post_parent__in] => Array
                (
                )

            [post_parent__not_in] => Array
                (
                )

            [author__in] => Array
                (
                )

            [author__not_in] => Array
                (
                )

            [search_columns] => Array
                (
                )

            [posts_per_page] => 11
            [ignore_sticky_posts] => 
            [suppress_filters] => 
            [cache_results] => 1
            [update_post_term_cache] => 1
            [update_menu_item_cache] => 
            [lazy_load_term_meta] => 1
            [update_post_meta_cache] => 1
            [post_type] => 
            [nopaging] => 
            [comments_per_page] => 5
            [no_found_rows] => 
            [order] => DESC
        )

    [tax_query] => WP_Tax_Query Object
        (
            [queries] => Array
                (
                    [0] => Array
                        (
                            [taxonomy] => category
                            [terms] => Array
                                (
                                    [0] => 35
                                )

                            [field] => term_id
                            [operator] => IN
                            [include_children] => 
                        )

                )

            [relation] => AND
            [table_aliases:protected] => Array
                (
                    [0] => ph_term_relationships
                )

            [queried_terms] => Array
                (
                    [category] => Array
                        (
                            [terms] => Array
                                (
                                    [0] => 35
                                )

                            [field] => term_id
                        )

                )

            [primary_table] => ph_posts
            [primary_id_column] => ID
        )

    [meta_query] => WP_Meta_Query Object
        (
            [queries] => Array
                (
                )

            [relation] => 
            [meta_table] => 
            [meta_id_column] => 
            [primary_table] => 
            [primary_id_column] => 
            [table_aliases:protected] => Array
                (
                )

            [clauses:protected] => Array
                (
                )

            [has_or_relation:protected] => 
        )

    [date_query] => 
    [queried_object] => WP_Post Object
        (
            [ID] => 6
            [post_author] => 1
            [post_date] => 2021-01-18 12:51:43
            [post_date_gmt] => 2021-01-18 12:51:43
            [post_content] => 
            [post_title] => Blog
            [post_excerpt] => 
            [post_status] => publish
            [comment_status] => closed
            [ping_status] => closed
            [post_password] => 
            [post_name] => blog
            [to_ping] => 
            [pinged] => 
            [post_modified] => 2021-01-18 12:51:43
            [post_modified_gmt] => 2021-01-18 12:51:43
            [post_content_filtered] => 
            [post_parent] => 0
            [guid] => https://princetonhydro.com/?page_id=6
            [menu_order] => 0
            [post_type] => page
            [post_mime_type] => 
            [comment_count] => 0
            [filter] => raw
        )

    [queried_object_id] => 6
    [request] => 
					SELECT SQL_CALC_FOUND_ROWS  ph_posts.ID
					FROM ph_posts  LEFT JOIN ph_term_relationships ON (ph_posts.ID = ph_term_relationships.object_id)
					WHERE 1=1  AND ( 
  ph_term_relationships.term_taxonomy_id IN (35)
) AND ((ph_posts.post_type = 'post' AND (ph_posts.post_status = 'publish' OR ph_posts.post_status = 'acf-disabled')))
					GROUP BY ph_posts.ID
					ORDER BY ph_posts.menu_order, ph_posts.post_date DESC
					LIMIT 0, 11
				
    [posts] => Array
        (
            [0] => WP_Post Object
                (
                    [ID] => 14684
                    [post_author] => 1
                    [post_date] => 2024-04-10 15:23:17
                    [post_date_gmt] => 2024-04-10 15:23:17
                    [post_content] => 

Nestled within the New Jersey townships of Hamilton, Robbinsville, and West Windsor lies Miry Run Dam Site 21—an expansive 279-acre parcel with a rich history dating back to its acquisition by Mercer County in the late 1970s. Originally earmarked for flood mitigation and recreation, this hidden gem is on the cusp of a remarkable transformation, poised to unveil its true potential as a thriving public park.

Central to the revitalization efforts is a comprehensive Master Plan, meticulously crafted by Mercer County Park Commission in partnership with Simone Collins Landscape Architecture and Princeton Hydro. This visionary roadmap encompasses a spectrum of engineering and ecological uplift initiatives, including:

  • Several types of trails and boardwalks that total approximately 7 miles, including a tree canopy walk-through over an area of vernal pools;
  • A nature-based playground and an ADA inclusive playground;
  • Kayak launch and water trail;
  • Protected swimming area for a limited number of swimmers each day;
  • A native plant arboretum and horticultural garden;
  • Fishing access areas;
  • Parking lots, driveways, small restrooms and pavilions; and
  • A group camping area that would accommodate about 30-40 campers.

The Master Plan serves as a long-term vision for improvements to the property and will be implemented over multiple phases. In 2021, it was recognized with the Landscape Architectural Chapter Award from the New Jersey Chapter American Society of Landscape Architects, which underscores its innovative and impactful approach to landscape design.


Phase One is Underway

Now, Dam Site 21’s revitalization has begun with a crucial endeavor: the dredging of its 50-acre lake. This process, spearheaded by Mercer County Park Commission in collaboration with Princeton Hydro, aims to rejuvenate the water body by removing accumulated debris, sediment, and invasive vegetation—a vital step towards restoring its ecological balance. Beyond the aesthetic and ecological improvements, dredging enhances accessibility for recreational activities that provide an opportunity to create a deeper connection between the park’s visitors and its beautiful natural landscape.

Based on the bathymetric assessment, which the Princeton Hydro team completed as part of the Master Plan, the dredging efforts are focused on three primary areas: Area 1 is located in the main body of the lake just downstream of Line Road and will generate approximately 34,000 cubic yards of dredged material; Area 2, which has approximately 4,900 cubic yards of accumulated sediment is located in the northeast cove, just north of Area 1; and Area 3, the northwestern cove, entails the removal of approximately 7,300 cubic yards of accumulated sediment.

This video, taken on February 27, provides an aerial view of the project site and the dredging in progress: [embed]https://youtu.be/F7t39mD1Rq8?si=6pnAarnT2RomS0s6[/embed]

Before the dredging work could begin, the Princeton Hydro team was responsible for providing a sediment sampling plan, sample collection and laboratory analysis, engineering design plan, preparation and submission of all NJDEP regulatory permitting materials, preparation of the technical specifications, and bid administration. Currently, our team is providing construction administration and oversight for the project.

[gallery columns="2" link="none" size="medium" ids="14730,14726"] [caption id="attachment_14729" align="aligncenter" width="1227"] March 19 2024 - The dredging work begins[/caption]

From Planning to Implementation and Beyond

The journey towards Dam Site 21's revival has been marked by meticulous planning, design, and community engagement spanning several years. With the commencement of dredging operations, the project's vision is gradually materializing—a testament to the dedication of all stakeholders involved. As the first phase unfolds, anticipation mounts for the realization of a vibrant, inclusive public space that honors both nature and community.

[caption id="attachment_14713" align="aligncenter" width="1280"] Drone image of the Miry Run Dam Site 21 Project (Feb 27 2024)[/caption] [gallery link="none" size="medium" ids="14735,14734,14736"]

As Dam Site 21 undergoes its metamorphosis, it symbolizes not just a physical restoration, but a renewal of collective vision and commitment. Ultimately, Dam Site 21 isn't just a park—it's a testament to the enduring legacy of conservation, community, and the transformative power of restoration.

The significance of Dam Site 21's transformation extends far beyond its recreational appeal. It embodies a commitment to environmental stewardship, with measures aimed at bolstering flood resilience, improving water quality, and nurturing diverse wildlife habitats. By blending conservation with recreation, the project strikes an important balance between creating access for community members to enjoy the space and ecological preservation that puts native plants,  critical habitat, and wildlife at the forefront.


To learn more about the restoration initiative and view the Final Master Plan, visit the Mercer County Park Commission’s website. Click here to learn about another one of Princeton Hydro’s recent restoration efforts. And, stay tuned here for more Mercer County Park Commission project updates!

[post_title] => Restoration in Motion at Miry Run Dam Site 21 [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => restoration-in-motion-at-miry-runs-dam-site-21 [to_ping] => [pinged] => [post_modified] => 2024-04-16 18:46:45 [post_modified_gmt] => 2024-04-16 18:46:45 [post_content_filtered] => [post_parent] => 0 [guid] => https://princetonhydro.com/?p=14684 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [1] => WP_Post Object ( [ID] => 14409 [post_author] => 1 [post_date] => 2024-02-10 07:12:51 [post_date_gmt] => 2024-02-10 07:12:51 [post_content] =>

New Jersey’s water-related infrastructure is a complex system, constantly facing the challenges posed by stormwater runoff and working to properly manage it. Stormwater management isn’t just about handling rainfall; it’s a critical aspect of preserving water quality and mitigating flooding risks. In New Jersey, where urbanization and rainfall patterns intersect, managing stormwater is more than just a priority; it’s a necessity. Enter a stormwater utility— a dedicated fee to address these stormwater management challenges.

Stormwater Utilities in New Jersey

New Jersey’s stormwater infrastructure (storm drains, sewer piping, etc.) is aging and unable to effectively handle the amount of runoff that has been flowing through the region in recent years. This is causing increased nutrient runoff and flooding in communities throughout the state. With increasing global temperatures and the proliferation of intense storm systems, this trend is likely to continue.

To address these issues, in 2019, New Jersey enacted the Clean Stormwater & Flood Reduction Law that allows municipalities, counties, groups of municipalities, and sewage and improvement authorities to establish a stormwater utility.

For many local leaders, the process to establish a utility can be complex, often depending on a number of details like the scope of the work and size of the community. In 2021, Princeton Hydro teamed up with the New Jersey League of Conservation Voters, New Jersey Future, and Flood Defense New Jersey to host a webinar explaining the purpose of a stormwater utility; how a stormwater utility works; how to decide if a stormwater utility is the right fit for a particular community; and how municipalities or counties can implement one.

[embed]https://www.youtube.com/watch?v=mUvD79bjiPQ[/embed]

In 2022, New Jersey Department of Environmental Protection (NJDEP) announced the availability of Technical Assistance for Stormwater Utility Feasibility Studies, which supports municipalities in completing a stormwater utility feasibility study. Stormwater feasibility studies can help communities weigh the costs and benefits of having a stormwater utility to determine if it's right for them. Princeton Hydro is currently conducting a feasibility study for the City of Lambertville.


Jersey Water Works Stormwater Utility Information Forum

Jersey Water Works is a collaborative effort of many diverse organizations and individuals who embrace the common purpose of transforming New Jersey’s water infrastructure. They bring people together to find equitable solutions focused on: Clean water and waterways; healthier, safer neighborhoods; local jobs; flood and climate resilience; and economic growth. Jersey Water Works consists of many different committees run by volunteers, including the Stormwater Utilities Subcommittee, which is part of the Asset Management and Finance Committee.

The Jersey Waterworks Stormwater Utility Subcommittee launched the “Stormwater Utility Informational Forum” comprising five one-hour-long, town-hall-style education sessions. Each session featured expert panelists who explored various aspects of creating a stormwater utility and establishing a sustainable and dedicated funding mechanism to pay for a community’s stormwater management program.

Utility leaders, government stormwater managers, municipal and county representatives, elected officials, experts and stakeholders came together to discuss the topics of stormwater financial planning and funding options; New Jersey legislation and the utility development process; stormwater rate structures and credits; stormwater utility policies; and stakeholder engagement.

Key leaders in the Stormwater Utility subcommittee who organized the information forum include Dana Patterson Grear, Director of Marketing and Communications for Princeton Hydro (co-chair); Micah Shapiro of RES (co-chair); Prabha Kumar of Black & Veatch Management Consulting LLC; and Elizabeth Treadway of WSP. The forum presenters included Prabha Kumar, Elizabeth Treadway, Dana Patterson Grear, Dave Mason of CDM Smith; Lindsey Sigmund of New Jersey Future.


The Art of Stakeholder Engagement

Prabha Kumar and Dana Patterson Grear led the final session of the forum, which was dedicated to Stakeholder Engagement. They shared their expert recommendations and real-world experience in fostering community involvement, navigating the complexities of stakeholder engagement, and developing inclusive public meetings and dialogues related to implementing a stormwater utility feasibility study.

The presentation emphasized the significance of prioritizing stakeholder engagement early on and maintaining consistent engagement throughout the entire stormwater utility feasibility process. Prabha and Dana also provided tons of easy-to-follow, actionable tips, including:

  • How to structure your stakeholder groups, including the creation of a project team, a project champion and internal steering committee;

  • Which local community groups, municipal entities, and other external stakeholders to include in the conversation and when to include them;

  • Key factors in planning public workshops, like how many workshops to host, should the workshops be virtual or in-person, and how to structure the agenda for the best results; and

  • How to create engaging graphics, solicit feedback and educate the target audience in ways that are inclusive, informative and tailored to the unique characteristics of the community.

"Creating a stormwater utility in your community can be challenging as it is a public policymaking process. Engaging stakeholders throughout the entire process and educating the public is not just a step; it's the cornerstone to success," said Dana. "It's about embracing a  diversity of voices from day one, listening to concerns and ideas, and collaboratively shaping a solution that resonates with your communities' needs."

Watch the full presentation.

[embed]https://youtu.be/WFeVCMrMlJE?si=qu8h-v8ESwrzAigd[/embed]

Continuing the Conversation

The Stormwater Utility Information Forum served as a platform for sharing expertise and fostering dialogue around supporting community efforts to properly manage stormwater and protect water quality. As the conversation continues, it's crucial to leverage these insights to drive meaningful change in stormwater management initiatives across New Jersey.

The sessions were held via Zoom and the recordings of the forum sessions made available on the Jersey Water Works website. The recorded sessions serve as invaluable resources for individuals, communities, and policymakers interested in delving deeper into stormwater management.

The journey towards sustainable stormwater management is ongoing. If you or your community are interested in furthering this cause or exploring a stormwater utility, don't hesitate to reach out. The Jersey Water Works Stormwater Utility Subcommittee and Princeton Hydro welcome all voices committed to creating a more resilient and equitable water infrastructure. For more information about the Stormwater Utility Subcommittee or to get involved, please contact info@jerseywaterworks.org. Also, please explore New Jersey Future's New Jersey Stormwater Utility Resource Center which is a treasure trove of resources on this topic!

Princeton Hydro is a leader in innovative, cost-effective, and environmentally sound stormwater management systems. The preparation of stormwater management plans and design of stormwater management systems for pollutant reduction is an integral part of our projects - learn more.

[post_title] => In the Eye of the Storm: Exploring A Stormwater Utility in New Jersey [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => exploring-a-stormwater-utility-in-new-jersey [to_ping] => [pinged] => [post_modified] => 2024-02-21 17:08:03 [post_modified_gmt] => 2024-02-21 17:08:03 [post_content_filtered] => [post_parent] => 0 [guid] => https://princetonhydro.com/?p=14409 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 1 [filter] => raw ) [2] => WP_Post Object ( [ID] => 13963 [post_author] => 1 [post_date] => 2023-11-27 12:03:16 [post_date_gmt] => 2023-11-27 12:03:16 [post_content] =>

The removal of Beatty's Mill Dam stands as a pivotal moment in the conservation efforts along the Musconetcong River. This critical initiative, spearheaded by the Musconetcong Watershed Association (MWA), Washington Township, and the Town of Hackettstown in collaboration with Princeton Hydro and RiverLogic Solutions, marks a significant stride towards rejuvenating the river's natural ecosystem and addressing long-standing concerns regarding flood mitigation and habitat preservation.

[caption id="attachment_13929" align="aligncenter" width="763"] Photo taken November 12, 2023.[/caption]

History of the Beatty’s Mill Dam

Beatty's Mill Dam straddles the border between Warren and Morris Counties in Hackettstown and Washington Township, New Jersey.  It is a 6-foot-high stone masonry, concrete, and earth embankment dam that was built in the 18th century and has been non-functional for decades.

[caption id="attachment_13968" align="alignright" width="419"] Photo of Beatty's Mill Dam (pre-removal) taken from upstream with the East Avenue bridge in the background[/caption]

Beatty’s Mill Dam is a low-head dam, which means it was not built to protect communities from flooding and can make flooding worse in some cases. Hackettstown and Washington Township are also more susceptible to flooding and erosion due to the high percentage of impervious surfaces, like roads and parking lots, which cause higher flows of stormwater runoff.

A dam safety report from 1981 shows that the dam had been breached on the eastern end. The breach caused a hairpin turn where the river is diverted sharply to the east then back to the west before flowing under the East Avenue bridge. Over time, this created erosive conditions at the upstream side of the bridge and roadbed, threatening the integrity of the infrastructure. Additionally, extensive alteration of the floodplain occurred upstream of the dam, including an elevated earthen berm along the left bank, and general land disturbance in both upland and wetlands.

The removal of the dam not only addresses the structural concerns but also holds the promise of extensive environmental improvements. By eradicating barriers to the Musconetcong River's natural flow, restoring the floodplain, and implementing strategies to curb stormwater runoff, this initiative aims to mitigate flooding, promote water quality, and foster a thriving habitat for aquatic organisms including indigenous species like the Eastern Brook Trout and American Eel.


Removing the Dam

With funding from the Highlands Council, Princeton Hydro was contracted in 2019 by Washington Township to complete a water quality assessment, hydrologic and hydraulic analysis, and functional value stream assessment of reaches of the Musconetcong River that encompassed the Beatty’s Mill site (and the downstream Newburgh Dam site). Following the New Jersey Highlands Water Protection and Planning Council guidance, Princeton Hydro assessed and rated the river reaches on five functional values: channel integrity, habitat, water quality, temperature moderation, and public use. The Beatty’s Mill Dam, floodplain encroachment, narrow riparian buffers, and non-native riparian vegetation were the primary sources of impact to the functional values.

Subsequently, Princeton Hydro was contracted by MWA to complete a site investigation, wetland delineation, topographic survey, and preliminary (60%) engineering design for dam removal. Preliminary plans were reviewed by Washington Township and the Town of Hackettstown. In 2023, Princeton Hydro completed the final engineering design, hydrologic and hydraulic modeling, and permitting for the removal of Beatty’s Mill Dam and restoration of the floodplain and provided engineering oversight during construction.

[gallery link="none" columns="2" ids="13938,13939"]  

The removal of Beatty’s Mill Dam was officially completed the week of November 13, 2023!

Princeton Hydro assisted in the removal and restoration, providing engineering plans and project management support. With the dam removed, 2.5 acres of flood plain have been restored; 0.15 mile of stream bank have been stabilized; 0.15 mile of stream bed has been rehabilitated; and total suspended solids in the water have been reduced by 20%.

Michael Allers, Princeton Hydro Restoration Ecologist and licensed FAA-Certified Commercial Drone Pilot, captured these aerial images of the completed project site:

[gallery link="none" columns="4" ids="13934,13933,13932,13931"]

It is projected that there will be significant improvement to the five aforementioned functional values, increased fish passage, enhanced hydraulic conditions at the East Avenue bridge as well as improvements to the river’s pH, temperature, and dissolved oxygen levels.

Removing the dam also supports conformance with the Highlands Regional Master Plan, which is intended to protect, preserve, and enhance precious water resources within the Highlands Region. The project work also includes the restoration of the damaged floodplain, stream banks, and stream bed by planting trees, building up the banks with rocks, and allowing the river to return to its natural flowing channel.


Looking Ahead

This project’s significance extends beyond the immediate environmental impact. Funding from sources like the National Fish and Wildlife Foundation under the Delaware Watershed Conservation Fund and New Jersey’s Highlands Council, along with corporate contributions, underscores its potential to serve as a model for similar restoration projects across the Delaware River Watershed. Such initiatives not only enhance aquatic habitats but also bolster community resilience against flooding and elevate public awareness regarding watershed conservation.

The vision for this restoration effort reflects a collective commitment to revitalize river ecosystems, not just for the immediate region but as part of a broader strategy for conservation. The Beatty's Mill Dam marks the MWA's sixth dam removed on the Musconetcong River since 2008, but it is far from the last. This project aims to set a precedent for sustainable river management and ecosystem preservation.

The removal of Beatty's Mill Dam represents a milestone in the ongoing efforts to restore the Musconetcong River's ecological balance and underscores the collaborative spirit between MWA, local municipalities, various stakeholders, and Princeton Hydro. It serves as a testament to the potential of concerted conservation endeavors to restore the vitality of our waterways and safeguard the natural heritage for generations to come.


The Musconetcong Watershed Association (MWA) is an independent, nonprofit organization dedicated to protecting and improving the quality of the Musconetcong River and its watershed, including its natural and cultural resources. Members of the organization are part of a network of individuals, families, and companies that care about the Musconetcong River and its watershed, and are dedicated to improving the watershed resources through public education and awareness programs, river water quality monitoring, promotion of sustainable land management practices, and community involvement. Click here to learn more.

Princeton Hydro has been working with MWA in the areas of river restoration, dam removal, and engineering consulting since 2003. Click here to read our Client Spotlight blog featuring MWA’s Executive Director Cindy Joerger and Communications Coordinator Karen Doerfer.

[post_title] => Conservation Spotlight: Beatty's Mill Dam Removal is Complete [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => beattys-mill-dam-removal [to_ping] => [pinged] => [post_modified] => 2024-01-18 05:10:51 [post_modified_gmt] => 2024-01-18 05:10:51 [post_content_filtered] => [post_parent] => 0 [guid] => https://princetonhydro.com/?p=13963 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 2 [filter] => raw ) [3] => WP_Post Object ( [ID] => 12825 [post_author] => 1 [post_date] => 2023-06-07 15:14:17 [post_date_gmt] => 2023-06-07 15:14:17 [post_content] =>

On June 6, 2023, New Jersey Governor Philip Murphy announced the Administration’s upcoming adoption of the Inland Flood Protection Rule to better protect New Jersey’s communities from worsening riverine flooding and stormwater runoff. The rulemaking was filed with the Office of Administrative Law and was adopted, effective on July 17, 2023, after publication in the New Jersey Register. A courtesy copy of the rule and additional information are available here.

The Inland Flood Protection Rule updates New Jersey’s existing flood hazard and stormwater regulations by replacing outdated precipitation estimates with modern data that account for observed and projected increases in rainfall. These changes will help reduce flooding from stormwater runoff and increase the resilience of new developments located in flood-prone inland areas. Upon adoption, New Jersey will become the first state to use predictive precipitation modeling to implement rules to inform and protect future development and redevelopment from the impacts of climate change.

The Inland Flood Protection Rule will serve as a critical component of my Administration’s comprehensive strategy to bolster our state’s resilience amid the worsening impacts of climate change,” said Governor Murphy. “As a national model for climate adaptation and mitigation, we can no longer afford to depend on 20th-century data to meet 21st-century challenges. This rule’s formation and upcoming adoption testify to our commitment to rely on the most up-to-date science and robust stakeholder engagement to inform our most crucial policy decisions.

[caption id="attachment_12829" align="alignnone" width="1230"]Street flooded over sidewalks and up to buildings in Lambertville NJ Street Flooded in Lambertville, NJ[/caption]  

Inland Flood Protection Rule Overview

The Inland Flood Protection Rule establishes design elevations that are reflective of New Jersey’s changing climate and more frequent and intense rainfall, replacing standards based on outdated data and past conditions. The updated standards will apply to certain new and substantially reconstructed developments in inland riverine areas that are subject to flooding, but they do not prohibit development in these flood hazard areas.

Under the two primary components of the rule:

  1. The elevation of habitable first floors will be two feet higher than currently indicated on NJDEP state flood maps and three feet higher than indicated on FEMA maps.
  2. Applicants for certain permits will use NJDEP’s New Jersey-specific precipitation data when calculating peak flow rates of streams and rivers for permits under the Flood Hazard Area Control Act Rules, N.J.A.C. 7:13, as well as when proposed development triggers compliance with DEP’s Stormwater Management rules, N.J.A.C. 7:8.

The updated standards in the Inland Flood Protection Rule will apply to new or reconstructed developments and not to existing developments. Pending development applications before NJDEP that are administratively complete at the time of adoption are not affected by these changes. Existing provisions of the flood hazard and stormwater rules that provide flexibility from strict compliance based on unique site-specific conditions will remain in place, along with new provisions designed to ensure that infrastructure projects already in progress can continue to move forward.

The final rule also provides clarifications for the legacy provision of the Flood Hazard Area Control Act rules at N.J.A.C. 7:13-2.1 to address projects that were wholly located outside the prior flood hazard area, and which have already received local approval under the Municipal Land Use Law. As initially proposed, this exemption from the new flood elevations would have been limited to those projects that had begun construction before the new rules were adopted. In recognition of the often-significant investments made for projects that have reached the stage of receiving municipal approval, NJDEP is retaining the existing exemption for such projects.

New Jersey’s Flood Indicator Tool

“New Jersey’s communities are facing unprecedented threats from the devastating impacts of extreme rainfall events, which are expected to continue to intensify in their frequency and severity,” said Commissioner of Environmental Protection Shawn M. LaTourette. “The Inland Flood Protection Rule ensures that inland, riverine areas at significant risk are better defined and that new and reconstructed assets in these areas are designed and constructed to protect New Jersey’s assets, economy and, above all, our people from the catastrophic effects of worsening floods. My DEP colleagues and I are truly grateful for Governor Murphy’s vision and leadership and for the thoughtful feedback we have received from the public and leaders in labor, business, local government, academia, and advocacy in designing this rule as part of the New Jersey Protecting Against Climate Threats (NJ PACT) initiative.”

Screenshot of New Jersey’s Flood Indicator Tool MapperIn connection with the proposed Inland Flood Protection Rule, to aid the public to gauge flood risk and provide a visual approximation of regulatory jurisdiction on specific parcels, NJDEP has launched a flood indicator tool.  While the tool does not provide a definitive demonstration of regulatory jurisdiction or calculate actual risk, it can be useful in assisting property owners or prospective property owners on potential risk and, by referencing the 500-year flood extent, approximate NJDEP’s regulatory jurisdiction and flood risk. Equipped with this information, property owners may then decide to take additional steps to determine actual risk, which is dependent on site-specific conditions.


For more information on Princeton Hydro's stormwater management, flood mitigation, and resilience services, please contact us here. [post_title] => NJDEP Announces Filing of Inland Flood Protection Rule [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => njdep-announces-filing-of-inland-flood-protection-rule [to_ping] => [pinged] => [post_modified] => 2023-07-24 17:01:48 [post_modified_gmt] => 2023-07-24 17:01:48 [post_content_filtered] => [post_parent] => 0 [guid] => https://princetonhydro.com/?p=12825 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [4] => WP_Post Object ( [ID] => 12527 [post_author] => 1 [post_date] => 2023-04-24 19:34:52 [post_date_gmt] => 2023-04-24 19:34:52 [post_content] =>

The Watershed Institute’s Annual Conference brings together municipal representatives, engineers, environmental professionals, watershed advocates, business leaders, and community members to advance the best available information and techniques for protecting and restoring watersheds. The program consists of a keynote discussion, exhibits, poster sessions and presentations that combine science, policy, and practical applications.

This year’s conference, focused on stormwater management in New Jersey, Municipal Separate Storm Sewer System (MS4) permit requirements, regional solutions to address stormwater runoff and flooding, environmental justice, and the need for community-wide action.

Princeton Hydro, a proud sponsor of the conference, led two presentations:


Translating Waste Load Allocations & Load Allocations Into Water Improvement Plans

This presentation, given by Princeton Hydro Senior Technical Director of Ecological Services Dr. Fred Lubnow and One Water Consulting, LLC Principal Jim Cosgrove P.E., provided a basic understanding of Total Maximum Daily Loads (TMDLs), how they’re connected to Watershed Implementation Plan (WIP) requirements, and addressed how towns can best utilize Waste Load Allocations in the development of a WIPs.

Watch now: [embed]https://www.youtube.com/watch?v=763ekPvi2vo[/embed]

Understanding Watersheds

This presentation was led by three members of the Princeton Hydro team: Senior Technical Director of Engineering Dr. Clay Emerson P.E., CFM; Vice President, Founding Principal Mark Gallagher; and Senior Director of Ecological Services Dr. Fred Lubnow. Participants learned about how to develop regional, multi-municipality plans for improving water quality and reducing flooding.

Watch now: [embed]https://www.youtube.com/watch?v=SSrGFX5IMfg&feature=youtu.be[/embed]

Other presentation topics included, “Understanding Water Quality in New Jersey,” “Stormwater Utilities for Community Members,” and “Youth Advocacy – Engaging the Next Generation in MS4.” You can view all the presentations from the 6th Annual Conference by clicking below:

Save the date for the 7th Annual Watershed Conference: February 9, 2024.

Princeton Hydro is recognized as a leader in innovative, cost-effective, and environmentally sound stormwater management green infrastructure. We've been incorporating green infrastructure into our engineering designs since before the term was regularly used in the stormwater lexicon. Click here to learn how we designed a green infrastructure stormwater management system, on a 55-acre corporate campus, that is capable of containing on site nearly all the stormwater runoff generated by storm events up to and including a 100-year frequency, 24-hour duration storm:

[post_title] => WATCH: Presentations from the 6th Annual Watershed Conference focused on Stormwater Management [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => watch-stormwater-management-presentations-2023-watershed-conference [to_ping] => [pinged] => [post_modified] => 2023-04-24 19:57:09 [post_modified_gmt] => 2023-04-24 19:57:09 [post_content_filtered] => [post_parent] => 0 [guid] => https://princetonhydro.com/?p=12527 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [5] => WP_Post Object ( [ID] => 11558 [post_author] => 1 [post_date] => 2022-12-20 05:17:55 [post_date_gmt] => 2022-12-20 05:17:55 [post_content] =>

When New Jersey Manufacturers Insurance Group
(NJM) developed their new Regional Operations Facility, a 55-acre corporate campus in Hammonton, New Jersey, they approached the construction with one major goal at the forefront: stormwater management.

Fundamental to that goal was designing a green infrastructure stormwater management system capable of containing on site nearly all the stormwater runoff generated by storm events up to and including a 100-year frequency, 24-hour duration storm.

The group hired Princeton Hydro, recognized as a leader in innovative, cost-effective, and environmentally sound stormwater management, to develop a concept plan that could be built within the context of proper stormwater management and meet the stringent requirements of the NJ Pinelands Comprehensive Management Plan.

To accomplish the ambitious stormwater management goals, the project team designed and implemented an integrated stormwater management system that combined traditional and green infrastructure components, and consisted of bioinfiltration basins, parking lot islands, a wetland basin, and a bioretention island. These features were designed to promote the interception, evapotranspiration, and infiltration of stormwater runoff at its source.

Emphasis was given to green infrastructure BMPs specifically capable of treating and infiltrating large volumes of runoff. Thus, all of the infiltration areas were designed using a soil amendment process where the underlying soils were excavated and amended with organic material to improve the underlying recharge capabilities of the soils. To complement the BMPs, the team designed and installed 120,000 gallon below-grade rainwater capture and reuse system. The system captures roof runoff to be used for on-site irrigation, which not only reduces stormwater volume but also decreases the facility’s water usage.

The project is one of the first projects in New Jersey built to infiltrate nearly 100% of the on-site runoff and uses site-design-based stormwater capacity to determine allowable impervious cover.

[gallery link="none" ids="11591,11590,14396"]

Before construction began, the team implemented a comprehensive study, which began with a detailed analysis of the site’s soils, with particular attention given to physical properties of the soil and the depth to seasonal high water (groundwater). During construction, Princeton Hydro provided monitoring services for all earthwork activities. Our team was on site full-time during critical activities to ensure that the project was built in accordance with the intent of the original design and ensure the maintenance of the project schedule. The team also provided environmental and geotechnical design and engineering services throughout the corporate campus construction, including the analysis of subsurface structures shop drawings and providing consultation support to the general contractor.

For the project, we partnered with Burgis Associates, Inc. who created site designs, provided landscape architectural and professional planning services, and helped to obtain agency approvals. The landscape program sought to establish native plant communities that filter runoff, provide an aesthetically pleasing visual, reduce invasive species, create habitat for pollinators and other critical species, and require limited maintenance to stay healthy and flourishing.

Post construction, the Princeton Hydro team led the preparation of the scope of services, budget, and proposal for the Stormwater Basin Maintenance, which included mowing and clearing the vegetation in nine infiltration basins. The basins were inspected monthly for functionality and for the presence of invasive plants. And, we are happy to report that the basins are all working properly and invasive plants have been eradicated.

At Princeton Hydro, we are experts in stormwater management; we recognize the numerous benefits of green infrastructure; and we’ve been incorporating green infrastructure into our engineering designs since before the term was regularly used in the stormwater lexicon. Click below to read about a Stormwater Treatment Train we designed and implemented in Thompson Park, a 675-acre recreation area in Middlesex County, New Jersey.

  [post_title] => Designing a Stormwater Management System for a 55-Acre Corporate Campus [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => designing-a-stormwater-management-system-for-a-55-acre-corporate-campus [to_ping] => [pinged] => [post_modified] => 2024-01-19 02:18:14 [post_modified_gmt] => 2024-01-19 02:18:14 [post_content_filtered] => [post_parent] => 0 [guid] => https://princetonhydro.com/?p=11558 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [6] => WP_Post Object ( [ID] => 11289 [post_author] => 1 [post_date] => 2022-08-26 19:06:38 [post_date_gmt] => 2022-08-26 19:06:38 [post_content] =>

The New Jersey Department of Environmental Protection (NJDEP) launched a Youth Inclusion Initiative to help the State of New Jersey develop the next generation of environmental protection, conservation and stewardship leaders while also providing an avenue for young adults from open space-constrained communities to engage with nature as they provide valuable stewardship services to the public through jobs at NJDEP. 

This year, the youth inclusion program is partnering with Groundwork Elizabeth, Rutgers University Camden, and Newark’s Ironbound Community Corporation to create a workforce development curriculum for people ages 17 to 24. Groundwork Elizabeth sent 12 participants to this year’s program, and Rutgers Camden and the Ironbound Community Corporation each sent 10.

[caption id="attachment_11299" align="aligncenter" width="771"] Photo by NJDEP[/caption]

The curriculum provides career education in the environmental protection field and helps the young participants develop the skills necessary to pursue those career paths in New Jersey. Participants learn through classroom instruction and by working across sectors regulated by the NJDEP, including water resources, air quality, energy and sustainability, public lands management, and wildlife. 

Susan Lockwood of NJDEP’s Division of Land Resource Protection’s Mitigation Unit reached out to Princeton Hydro to showcase ecosystem restoration and mitigation efforts across the state as well as discuss the variety of career roles that make these projects possible. Our portion of the curriculum entailed each group of students visiting two sites to learn about the benefits of restoring a landscape with native vegetation. Our discussion explored different fields of work related to urban environmental restoration and water resource protection and the job responsibilities of environmental scientists, water resource engineers, geologists, ecologists, pesticide applicators, and regulatory compliance specialists. 

The Abbott Marshlands in Trenton, New Jersey

[gallery link="none" ids="11287,11288,11281"]

After a quick stop at NJDEP’s office in Trenton to learn about NJ invasive species, all three groups popped over to the Tulpehaking Nature Center in Mercer County’s John A. Roebling Park to see the restoration site in the Abbott Marshlands. The 3,000-acre Abbott Marshlands is the northernmost freshwater tidal marsh on the Delaware River and contains valuable habitat for many rare species like River Otter, American Eel, Bald Eagle, and various species of wading birds. Unfortunately, the area has experienced a significant amount of loss and degradation, partially due to the introduction of the invasive Common Reed (Phragmites australis). For Mercer County Park Commission, Princeton Hydro implemented a restoration plan to remove Common Reed and expose the native seed bank in 40-acres of the marsh to increase biodiversity, improve recreational opportunities, and enhance visitor experience. Students learned how to tell the difference between the invasive Common Reed vs. native Wild Rice (Zizania palustris L.). They utilized tools of the trade like field guides and binoculars to identify flora and fauna in the marsh. Learn more about this project.


Mullica River Wetland Mitigation Site in Evesham, New Jersey

[gallery link="none" ids="11343,11342,11282"]

After visiting the Roebling site, students from Camden traveled down to Evesham Township in Burlington County to visit the Mullica River Wetland Mitigation Site. For this project, Princeton Hydro worked with GreenVest, LLC to restore a highly degraded 34-acre parcel of land which was previously used for cranberry cultivation. Through the implementation of restoration activities focused on removing the site’s agricultural infrastructure, Princeton Hydro and GreenVest were able to restore a natural wetland system on the site and over 1,600 linear feet of stream, providing forested, scrub-shrub, and emergent wetlands, forested uplands, headwater stream and riparian buffer, and critical wildlife habitat. The project also significantly uplifted threatened and endangered species habitats including Timber Rattlesnake.

Susan Lockwood of NJDEP, Owen McEnroe of GreenVest, and Dana Patterson of Princeton Hydro, lead the group of 10 students. They learned the difference between restoration and mitigation and got to experience the remoteness of Pinelands habitat. Walking through the site, we shared how the dam and dike removal helped to restore the river back to its natural free-flowing state and the numerous resulting environmental benefits.The site was chosen for the Camden students in order to demonstrate that successful mitigation and restoration projects happen throughout the State and not far from urban centers like Camden. Learn more about this project.


3. Third River Floodplain Wetland Enhancement Project in Bloomfield, New Jersey

[gallery link="none" ids="11344,11279,11277"]

After visiting the Roebling site, students from Newark and Elizabeth trekked up to Essex County to visit an urban wetland creation project now known as Lion Gate Park. The once densely developed, abandoned Scientific Glass Factory in Bloomfield Township was transformed into a thriving public park with 4.2 acres of wetlands. Students heard the story of how this project came to be; decades of advocacy and litigation by community members and environmental nonprofits to stop redevelopment of the site into 148 townhomes. Bloomfield Township eventually secured the property to preserve as open space through a range of grants from NJDEP. Serving as the ecological engineer to Bloomfield Township, Princeton Hydro designed, permitted, and oversaw construction for the restoration project and is currently monitoring the site. The restoration work brought back to the land valuable ecological functions and natural floodplain connection, enhanced aquatic and wildlife habitat, and increased flood storage capacity for urban stormwater runoff. Learn more about this project.


 

The NJDEP Youth Inclusion Initiative began on July 5 with a week of orientation classes, and continued through August with classroom and in-field learning. The initiative culminates on August 26 with a graduation and NJDEP Career Day, during which students will have the opportunity to meet with and discuss career options with various organizations tabling at the event, including Princeton Hydro.

Click here to learn more about the NJDEP education program. If you’re interested in learning more about Princeton Hydro’s ecological restoration services, click here.

[post_title] => Students from NJDEP's Youth Inclusion Initiative Tour Restored Landscapes with Princeton Hydro [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => njdep-youth-inclusion-initiative [to_ping] => [pinged] => [post_modified] => 2022-08-26 19:13:55 [post_modified_gmt] => 2022-08-26 19:13:55 [post_content_filtered] => [post_parent] => 0 [guid] => https://princetonhydro.com/?p=11289 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [7] => WP_Post Object ( [ID] => 10630 [post_author] => 1 [post_date] => 2022-05-06 12:15:24 [post_date_gmt] => 2022-05-06 12:15:24 [post_content] =>

In October 2021, the largest stream restoration in Maryland was completed. Over 7 miles (41,000 linear feet) of Tinkers Creek and its tributaries were stabilized and restored.

The project was designed by Princeton Hydro for GV-Petro, a partnership between GreenVest and Petro Design Build Group. Working with Prince George’s County Department of the Environment and coordinating with the Maryland-National Capital Parks and Planning Commission, this full-delivery project was designed to meet the County’s Watershed Implementation Plan total maximum daily load (TMDL) requirements and its National Pollutant Discharge Elimination System Municipal Separate Storm Sewer System (MS4) Discharge Permit conditions.

Today, we are thrilled to report that the once highly urbanized watershed is flourishing and teeming with life:

[gallery columns="2" size="medium" link="none" ids="10632,10631"]

We used nature-based design and bioengineering techniques like riparian zone planting and live staking to prevent erosion and restore wildlife habitat.

[gallery columns="2" size="medium" ids="10635,10634"]

10,985 native trees and shrubs were planted in the riparian area, and 10,910 trees were planted as live stakes along the streambank.

[gallery columns="2" size="medium" ids="10637,10636"]

For more information about the project visit GreenVest's website and check out our blog:

[post_title] => Revisiting Tinkers Creek Stream Restoration [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => revisiting-tinkers-creek-stream-restoration [to_ping] => [pinged] => [post_modified] => 2022-05-06 16:15:35 [post_modified_gmt] => 2022-05-06 16:15:35 [post_content_filtered] => [post_parent] => 0 [guid] => https://princetonhydro.com/?p=10630 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [8] => WP_Post Object ( [ID] => 9813 [post_author] => 1 [post_date] => 2021-12-28 02:38:00 [post_date_gmt] => 2021-12-28 02:38:00 [post_content] =>

Thousands of native flowering plants and grasses were planted at Thompson Park in Middlesex County, New Jersey. Once established, the native plant meadow will not only look beautiful, it will reduce stormwater runoff and increase habitat for birds, pollinators, and other critical species.

The planting was completed by community volunteers along with Eric Gehring of  Kramer+Marks Architects, Middlesex County Youth Conservation Corps, Rutgers Cooperative Extension of Middlesex County, South Jersey Resource Conservation and Development Council, and Princeton Hydro Landscape Architect Cory Speroff, PLA, ASLA, CBLP. 

All of the plants that were installed are native to the north-central region of New Jersey. Volunteers planted switchgrass (panicum virgatum), orange coneflower (rudbeckia fulgida), blue wild indigo (baptisia australis), partridge pea (chamaecrista fasciculata), Virginia mountain mint (pycnanhemum virginianum), and aromatic aster (symphyotrichum oblongifolium). In selecting the location for each of the plants, special consideration was given to each species' drought tolerance and sunlight and shade requirements. The selected plant species all provide important wildlife value, including providing food and shelter for migratory birds.

Photos provided by: Michele Bakacs

The planting initiative is one part of a multi-faceted Stormwater Treatment Train project recently completed in Thompson Park. The project is funded by a Water Quality Restoration 319(h) grant awarded to South Jersey Resource Conservation and Development Council by the NJDEP.

Middlesex County Office of Parks and Recreation and Office of Planning, NJDEP, South Jersey Resource Conservation and Development Council, Middlesex County Mosquito Extermination Commission, Freehold Soil Conservation District, Rutgers Cooperative Extension, Enviroscapes, and Princeton Hydro worked together to bring this project to fruition.

To learn more about the Thompson Park Zoo stormwater project, check out our recent blog:

[post_title] => Thousands of Native Plants Installed in Thompson Park [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => thompson-park-native-plant-meadow [to_ping] => [pinged] => [post_modified] => 2021-12-27 12:58:34 [post_modified_gmt] => 2021-12-27 12:58:34 [post_content_filtered] => [post_parent] => 0 [guid] => https://princetonhydro.com/?p=9813 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [9] => WP_Post Object ( [ID] => 9403 [post_author] => 1 [post_date] => 2021-12-27 12:55:10 [post_date_gmt] => 2021-12-27 12:55:10 [post_content] =>

What is Stormwater Runoff?

Stormwater runoff is all of the rainfall or snowmelt water that is not absorbed into the ground and instead flows over land. When not managed properly, stormwater runoff causes issues like pollution in our waterways, flooding, and erosion. Stormwater runoff has been cited in multiple studies as a leading cause of water quality impairment to our local lakes and rivers. And, with increasing levels of rainfall from climate change impacts, stormwater management is an especially critical issue for communities all across the U.S.  

What is Stormwater Management?

Stormwater management focuses on reducing runoff and improving water quality through a variety of techniques. 

Traditional stormwater management methods include things like storm drains, retention ponds, and culverts. Green stormwater infrastructure uses vegetation, soil, and other natural components to manage stormwater. Green stormwater infrastructure systems mimic natural hydrology to take advantage of interception, evapotranspiration, and infiltration of stormwater runoff at its source. Examples include rain gardens, constructed wetlands, vegetated bioswales, and living shorelines.  Many stormwater systems include a combination of grey and green infrastructure management practices. 

Stormwater management treatment "trains" combine multiple stormwater management processes in order to prevent pollution and decrease stormwater flow volumes that negatively affect the receiving waterbody.

Let’s Take a Look at a Stormwater Treatment Train in Action

The Thompson Park Zoo in New Jersey

Thompson Park is a 675-acre recreation area - the largest developed park in the Middlesex County park system - with numerous attractions including playgrounds, ballfields, hiking trails, and a zoo. The zoo is an animal haven that houses over 50 geese and fowl, goats, and approximately 90 deer in a fenced enclosure. The park also features Lake Manalapan. 

Within the zoo is a 0.25-acre pond that impounds stormwater runoff from adjacent uplands and two stormwater-fed tributaries to Lake Manalapan and Manalapan Brook. There are three tributaries to the pond  with varying levels of erosion. The western tributary contains a headcut that is approximately four feet high. A headcut is created by a sudden down-cutting of the stream bottom. Similar to a miniature waterfall, a headcut slowly migrates upstream and becomes deeper as it progresses. The headcut in the Zoo tributary had destabilized the stream by eroding and incising its channel and banks. Additionally, foraging by Zoo inhabitants had removed most ground cover around the pond and associated tributaries, which also caused erosion. 

The bare soil conditions, headcut, and manure from the Zoo animals were contributing sediment, nutrient, and pathogen loading to the Zoo pond and subsequently Lake Manalapan. The Zoo pond drains to an outlet structure, a 24-inch reinforced concrete pipe (RCP), and subsequently to a vegetated swale via a stormwater outlet. A second outlet pipe drains stormwater runoff from an asphalt parking lot which discharges to the vegetated swale. 

The shoreline of Lake Manalapan where the vegetated swale drains into the lake was the subject of a previous restoration project during which a diverse suite of native plants was installed; however, the swale was not included in this project and a maintained lawn, which does not adequately filter stormwater runoff or provide any ecosystem services. The swale also had little access to its floodplain where vegetation can help filter non-point source (NPS) pollutants from the Zoo pond and adjacent uplands.

Implementing a Stormwater Management Treatment Train

In order to increase channel stability, decrease erosion, improve water quality and ecological function, and reduce the NPS pollutants originating from the Zoo, a stormwater management treatment train was designed and constructed. 

Middlesex County Office of Parks and Recreation and Office of Planning, the New Jersey Department of Environmental Protection (NJDEP), South Jersey Resource Conservation and Development Council (SJRC&D), Middlesex County Mosquito Extermination Commission, Freehold Soil Conservation District, Rutgers Cooperative Extension, Enviroscapes and Princeton Hydro worked together to fund,  design, permit,  and construct the following stormwater management measures: 

  • stabilizing the western tributary to Lake Manalapan and its existing headcut by constructing a rock step-pool sequence; 
  • installing BioChar filter bags within the Zoo pond to remove excess nutrients from the water column and bed sediments; 
  • daylighting a portion of the existing 24-inch RCP in order to widen the stream channel and allow for more stormwater absorption 
  • grading the vegetated swale to provide positive drainage and reduce mosquito breeding habitat; 
  • grading a floodplain bench adjacent to the swale to allow for increased water storage and absorption times and thus greater nutrient removal; 
  • installing outlet protection measures to reduce stormwater velocity and prevent scour within the swale; and 
  • replacing the manicured grass with native vegetation within transition areas to reduce erosion potential and increase biodiversity.

To see the project elements taking shape and being completed, watch our video:

https://www.youtube.com/watch?v=qXqDjH8knDY

The project is funded by a Water Quality Restoration 319(h) grant awarded to SJRC&D by the NJDEP for continued implementation of watershed-based measures to reduce NPS pollutant loading and compliance with a total phosphorus (TP) Total Maximum Daily Load (TMDL) established by the NJDEP for Lake Manalapan. The TMDL is a regulatory term in the U.S. Clean Water Act, that identifies the maximum amount of a pollutant (in this case phosphorus) that a waterbody can receive while still meeting water quality standards. 

“The South Jersey Resource Conservation and Development Council was pleased to participate in this project. Partnering with these various governmental agencies and private entities to implement on the ground conservation and water quality improvements aligns perfectly with our mission.  We are thrilled with the great work done at Thompson Park and look forward to continuing this partnership.”

Craig McGee, South Jersey Resource Conservation and Development Council District Manager

Construction of the stormwater treatment train components began in early August 2021 and was completed by the end of September 2021. 

The first step of the stormwater treatment train was to stabilize the tributary to Lake Manalapan and its associated headcut. Streambank stabilization measures included grade modifications to create a gradual stream slope and dynamically stable form with improved habitat features, including riffles and pools, with gravel and cobble substrate. On August 17, grading of the floodplain bench began, the RCP was exposed, and the team started  excavation for the lower three steps in the step-pool sequence.

On August 20, the rock grade and step-pool sequence were completed. And, fabric was installed along both sides of the rock-lined channel to increase stream-bank stability. Rock was placed within the pools to cover the edge of the fabric. We are very pleased to report that the newly restored channel held up to two large storm events during the construction process.

Bags of BioChar, a pure carbon charcoal-like substance made from organic material, were installed across the Zoo pond using an anchor and line system. The BioChar bags help to remove TP and other nutrients from the water column and bed sediments of the Zoo pond and subsequently Manalapan Brook Watershed. The team also built, planted and installed a floating wetland island, an effective green infrastructure solution that improves water quality by assimilating and removing excess nutrients that could fuel algae growth.

After conclusion of pipe lighting, excavation of the floodplain bench and installation of scour protection, native perennial vegetation was planted within the floodplain and swale in order to provide sediment deposition and nutrient uptake functions, as well as aquatic food web services and water temperature moderation before flows are discharged to Lake Manalapan. The plantings also enhance and create suitable avian and pollinator species habitat, and greater flora and fauna diversity.


This stormwater treatment train project improves the habitat and water quality of the Manalapan Brook Watershed by addressing NPS pollutants that originate from Thompson Park Zoo. The completed work also supports the Watershed Protection and Restoration Plan for the Manalapan Brook Watershed by reducing TSS and TP loads in compliance with the TMDL. Additionally, the project improves the overall ecosystem by stabilizing eroded streambanks, installing native and biodiverse vegetation, and reducing the quantity of pollutants entering Lake Manalapan. 

“Thompson Park Zoo is an excellent model for showcasing a successful and comprehensive approach to stormwater management and watershed restoration through a dynamic multi-stakeholder partnership. We are so proud to be a part of this project and continue to support the Manalapan Brook Watershed Protection Plan through a variety of restoration activities.”

Amy McNamara, E.I.T, Princeton Hydro Project Manager and Water Resource Engineer

At Princeton Hydro, we are experts in stormwater management; we recognize the numerous benefits of green infrastructure; and we’ve been incorporating green infrastructure into our engineering designs since before the term was regularly used in the stormwater lexicon. Click here to learn more about our stormwater management services.

[post_title] => Stormwater Management at Thompson Park Zoo [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => stormwater-management-at-thompson-park-zoo [to_ping] => [pinged] => [post_modified] => 2021-12-27 12:55:12 [post_modified_gmt] => 2021-12-27 12:55:12 [post_content_filtered] => [post_parent] => 0 [guid] => https://princetonhydro.com/?p=9403 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [10] => WP_Post Object ( [ID] => 9512 [post_author] => 1 [post_date] => 2021-09-25 04:11:00 [post_date_gmt] => 2021-09-25 04:11:00 [post_content] =>

Just 50 miles southeast of New York City, tucked between two municipalities, sits a 650+ acre tidal salt marsh which spans the shorelines of the South River in densely populated, highly developed Central New Jersey. The South River is the first major tributary of the Raritan River, located 8.3 miles upstream of the Raritan River’s mouth, which drains into Raritan Bay.

The Lower Raritan River and Raritan Bay make up a large part of the core of the NY-NJ Harbor and Estuary Program. Within the Raritan Estuary, the South River wetland ecosystem is one of the largest remaining wetland complexes. While the South River salt marsh ecosystem has been spared from direct development, it has been degraded in quality, and does not provide optimal habitat for wildlife or maximum flood protection for residents. This area is subject to fairly regular tidal flooding (particularly when it occurs simultaneously with a storm) and periodic—generally more severe—flooding during more significant events such as nor’easters and tropical storms. Hurricanes Irene and Sandy caused damage in the Boroughs of Sayreville and South River too.

In 2018, Princeton Hydro and Rutgers University, along with the Lower Raritan Watershed Partnership, Middlesex County, Borough of Sayreville, Borough of South River, NY/NJ Baykeeper, Raritan Riverkeeper, and the Sustainable Raritan River Initiative, secured funding from NFWF’s National Coastal Resilience Fund for the “South River Ecosystem Restoration & Flood Resiliency Enhancement Project.”

The South River Ecosystem Restoration and Flood Resiliency Enhancement Project aims to:

  • Reduce socioeconomic damages to the Boroughs of South River and Sayreville caused by storm damage, flooding, and sea level rise;

  • Transform degraded wetlands to high-quality marsh that can reduce flooding and enhance fish & wildlife habitat; and

  • Engage stakeholders in activities about coastal resilience and ecological health to maximize public outreach in the Raritan River Watershed.

For this 165-acre tidal marsh and transitional forest “eco-park,” the project team is conducting an ecosystem restoration site assessment and design. This phase of the coastal restoration project will result in a permit-ready engineering design plan that stabilizes approximately 2.5 miles of shoreline, reduces flood risk for smaller coastal storms, and enhances breeding and foraging habitat for 10 state-listed threatened and endangered avian species.

[gallery link="none" ids="9640,9642,9639"]

Project Area History

This area has experienced repeated flooding, especially during large storms. For example, coastal areas of Sayreville and South River flooded after Hurricane Floyd (1999), Tropical Storm Ernesto (2006), Hurricane Irene (2011), and Hurricane Sandy (2012). Over the last century, there have been several studies and assessments completed for the South River, many of which identify this project area as a priority location for flooding improvements. The following are key reports and studies published about the project area and surrounding communities:

  • NJ Legislature’s 71st Congress published a report, “Basinwide Water Resource Development Report on the Raritan River Basin” which focused on navigation and flood control for the entire Raritan River Basin. It discussed recommendations for flood control and local storm drainage, setting the stage for future actions.

1970s
  • NJDEP Division of Water Resources published Flood Hazard Reports for the Matchaponix Brook System and Raritan River Basin, which delineated the floodplains in the South River, and its tributaries, the Manalapan Brook and Matchaponix Brook.

1980s
  • USACE New York District released a “Survey Report for Flood Control, Raritan River Basin,” which served as a comprehensive study of the Raritan River Basin and recommended several additional studies. Although the South River was studied, none of the proposed improvements were determined to be economically feasible at that time.

  • Project area was listed as one of the Nation’s Estuaries of National Significance.

1990s
  • USACE conducted a multi-purpose study of this area. This preliminary investigation identified Federal interest in Hurricane and Storm Damage Reduction and ecosystem restoration along the South River and concluded that a 100-year level of structural protection would be technically and economically feasible.

2000s
  • USACE NYD and NJDEP released a joint draft, “Integrated Feasibility Report and Environmental Impact Statement” for the South River, Raritan River Basin, which focused on “Hurricane & Storm Damage Reduction and Ecosystem Restoration.” Because it was previously determined that there were no widespread flooding problems upstream, the study area was modified to focus on the flood-prone areas within the Boroughs of Sayreville and South River, as well as Old Bridge Township.

Towards a More Resilient South River Ecosystem

Through collaboration with our project partners and following input provided from a virtual stakeholder meeting held in December 2020, Princeton Hydro developed a conceptual design for an eco-park that incorporates habitat enhancement and restoration, and protective measures to reduce impacts from flooding while maximizing public access and utility. Public access includes trails for walking and designated areas for fishing. The eco-park can also be used for additional recreation activities such as bird watching and kayaking.

Highlights of the conceptual design include the following features:

  • Approximately two miles of trails with overlook areas, connection to fishing access, and a kayak launch.

  • ~3,000 linear feet of living shoreline, located along portions of the Washington Canal and the South River, to provide protection from erosion, reduce the wake and wave action, and provide habitat for aquatic and terrestrial organisms.

  • ~60 acres of enhanced upland forest to provide contiguous habitat areas for resident and migratory fauna.

  • A tidal channel that will connect to the existing mud flat on the southeastern part of the site and provide tidal flushing to proposed low and high marsh habitats along its banks.

  • A vegetated berm with a trail atop will extend the length of the site to help mitigate flood risk.

  • Two nesting platforms for Osprey, a species listed as “Threatened” in NJ

  • Designated nesting habitat for the Diamondback Terrapin, a species listed as “Special Concern” in NJ

Princeton Hydro specializes in the planning, design, permitting, implementing, and maintenance of ecological rehabilitation and floodplain management projects. Click here to read about a coastal rehabilitation and resiliency project we completed in New Jersey.

[post_title] => Designing an Eco-Park Along the South River [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => designing-an-eco-park-along-the-south-river [to_ping] => [pinged] => [post_modified] => 2022-05-27 14:53:54 [post_modified_gmt] => 2022-05-27 14:53:54 [post_content_filtered] => [post_parent] => 0 [guid] => https://princetonhydro.com/?p=9512 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 2 [filter] => raw ) ) [post_count] => 11 [current_post] => -1 [before_loop] => 1 [in_the_loop] => [post] => WP_Post Object ( [ID] => 14684 [post_author] => 1 [post_date] => 2024-04-10 15:23:17 [post_date_gmt] => 2024-04-10 15:23:17 [post_content] =>

Nestled within the New Jersey townships of Hamilton, Robbinsville, and West Windsor lies Miry Run Dam Site 21—an expansive 279-acre parcel with a rich history dating back to its acquisition by Mercer County in the late 1970s. Originally earmarked for flood mitigation and recreation, this hidden gem is on the cusp of a remarkable transformation, poised to unveil its true potential as a thriving public park.

Central to the revitalization efforts is a comprehensive Master Plan, meticulously crafted by Mercer County Park Commission in partnership with Simone Collins Landscape Architecture and Princeton Hydro. This visionary roadmap encompasses a spectrum of engineering and ecological uplift initiatives, including:

  • Several types of trails and boardwalks that total approximately 7 miles, including a tree canopy walk-through over an area of vernal pools;
  • A nature-based playground and an ADA inclusive playground;
  • Kayak launch and water trail;
  • Protected swimming area for a limited number of swimmers each day;
  • A native plant arboretum and horticultural garden;
  • Fishing access areas;
  • Parking lots, driveways, small restrooms and pavilions; and
  • A group camping area that would accommodate about 30-40 campers.

The Master Plan serves as a long-term vision for improvements to the property and will be implemented over multiple phases. In 2021, it was recognized with the Landscape Architectural Chapter Award from the New Jersey Chapter American Society of Landscape Architects, which underscores its innovative and impactful approach to landscape design.


Phase One is Underway

Now, Dam Site 21’s revitalization has begun with a crucial endeavor: the dredging of its 50-acre lake. This process, spearheaded by Mercer County Park Commission in collaboration with Princeton Hydro, aims to rejuvenate the water body by removing accumulated debris, sediment, and invasive vegetation—a vital step towards restoring its ecological balance. Beyond the aesthetic and ecological improvements, dredging enhances accessibility for recreational activities that provide an opportunity to create a deeper connection between the park’s visitors and its beautiful natural landscape.

Based on the bathymetric assessment, which the Princeton Hydro team completed as part of the Master Plan, the dredging efforts are focused on three primary areas: Area 1 is located in the main body of the lake just downstream of Line Road and will generate approximately 34,000 cubic yards of dredged material; Area 2, which has approximately 4,900 cubic yards of accumulated sediment is located in the northeast cove, just north of Area 1; and Area 3, the northwestern cove, entails the removal of approximately 7,300 cubic yards of accumulated sediment.

This video, taken on February 27, provides an aerial view of the project site and the dredging in progress: [embed]https://youtu.be/F7t39mD1Rq8?si=6pnAarnT2RomS0s6[/embed]

Before the dredging work could begin, the Princeton Hydro team was responsible for providing a sediment sampling plan, sample collection and laboratory analysis, engineering design plan, preparation and submission of all NJDEP regulatory permitting materials, preparation of the technical specifications, and bid administration. Currently, our team is providing construction administration and oversight for the project.

[gallery columns="2" link="none" size="medium" ids="14730,14726"] [caption id="attachment_14729" align="aligncenter" width="1227"] March 19 2024 - The dredging work begins[/caption]

From Planning to Implementation and Beyond

The journey towards Dam Site 21's revival has been marked by meticulous planning, design, and community engagement spanning several years. With the commencement of dredging operations, the project's vision is gradually materializing—a testament to the dedication of all stakeholders involved. As the first phase unfolds, anticipation mounts for the realization of a vibrant, inclusive public space that honors both nature and community.

[caption id="attachment_14713" align="aligncenter" width="1280"] Drone image of the Miry Run Dam Site 21 Project (Feb 27 2024)[/caption] [gallery link="none" size="medium" ids="14735,14734,14736"]

As Dam Site 21 undergoes its metamorphosis, it symbolizes not just a physical restoration, but a renewal of collective vision and commitment. Ultimately, Dam Site 21 isn't just a park—it's a testament to the enduring legacy of conservation, community, and the transformative power of restoration.

The significance of Dam Site 21's transformation extends far beyond its recreational appeal. It embodies a commitment to environmental stewardship, with measures aimed at bolstering flood resilience, improving water quality, and nurturing diverse wildlife habitats. By blending conservation with recreation, the project strikes an important balance between creating access for community members to enjoy the space and ecological preservation that puts native plants,  critical habitat, and wildlife at the forefront.


To learn more about the restoration initiative and view the Final Master Plan, visit the Mercer County Park Commission’s website. Click here to learn about another one of Princeton Hydro’s recent restoration efforts. And, stay tuned here for more Mercer County Park Commission project updates!

[post_title] => Restoration in Motion at Miry Run Dam Site 21 [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => restoration-in-motion-at-miry-runs-dam-site-21 [to_ping] => [pinged] => [post_modified] => 2024-04-16 18:46:45 [post_modified_gmt] => 2024-04-16 18:46:45 [post_content_filtered] => [post_parent] => 0 [guid] => https://princetonhydro.com/?p=14684 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [comment_count] => 0 [current_comment] => -1 [found_posts] => 40 [max_num_pages] => 4 [max_num_comment_pages] => 0 [is_single] => [is_preview] => [is_page] => [is_archive] => [is_date] => [is_year] => [is_month] => [is_day] => [is_time] => [is_author] => [is_category] => [is_tag] => [is_tax] => [is_search] => [is_feed] => [is_comment_feed] => [is_trackback] => [is_home] => 1 [is_privacy_policy] => [is_404] => [is_embed] => [is_paged] => [is_admin] => [is_attachment] => [is_singular] => [is_robots] => [is_favicon] => [is_posts_page] => 1 [is_post_type_archive] => [query_vars_hash:WP_Query:private] => 832e299909b07e8c2279ec99d66b98ee [query_vars_changed:WP_Query:private] => 1 [thumbnails_cached] => [allow_query_attachment_by_filename:protected] => [stopwords:WP_Query:private] => [compat_fields:WP_Query:private] => Array ( [0] => query_vars_hash [1] => query_vars_changed ) [compat_methods:WP_Query:private] => Array ( [0] => init_query_flags [1] => parse_tax_query ) )

Blog

archive
 
Topics
Select Topics