We’re committed to improving our ecosystems, quality of life, and communities for the better.
Our passion and commitment to the integration of innovative science and engineering drive us to exceed on behalf of every client.
Stormwater runoff is all of the rainfall or snowmelt water that is not absorbed into the ground and instead flows over land. When not managed properly, stormwater runoff causes issues like pollution in our waterways, flooding, and erosion. Stormwater runoff has been cited in multiple studies as a leading cause of water quality impairment to our local lakes and rivers. And, with increasing levels of rainfall from climate change impacts, stormwater management is an especially critical issue for communities all across the U.S.
Stormwater management focuses on reducing runoff and improving water quality through a variety of techniques.
Traditional stormwater management methods include things like storm drains, retention ponds, and culverts. Green stormwater infrastructure uses vegetation, soil, and other natural components to manage stormwater. Green stormwater infrastructure systems mimic natural hydrology to take advantage of interception, evapotranspiration, and infiltration of stormwater runoff at its source. Examples include rain gardens, constructed wetlands, vegetated bioswales, and living shorelines. Many stormwater systems include a combination of grey and green infrastructure management practices.
Stormwater management treatment “trains” combine multiple stormwater management processes in order to prevent pollution and decrease stormwater flow volumes that negatively affect the receiving waterbody.
Thompson Park is a 675-acre recreation area – the largest developed park in the Middlesex County park system – with numerous attractions including playgrounds, ballfields, hiking trails, and a zoo. The zoo is an animal haven that houses over 50 geese and fowl, goats, and approximately 90 deer in a fenced enclosure. The park also features Lake Manalapan.
Within the zoo is a 0.25-acre pond that impounds stormwater runoff from adjacent uplands and two stormwater-fed tributaries to Lake Manalapan and Manalapan Brook. There are three tributaries to the pond with varying levels of erosion. The western tributary contains a headcut that is approximately four feet high. A headcut is created by a sudden down-cutting of the stream bottom. Similar to a miniature waterfall, a headcut slowly migrates upstream and becomes deeper as it progresses. The headcut in the Zoo tributary had destabilized the stream by eroding and incising its channel and banks. Additionally, foraging by Zoo inhabitants had removed most ground cover around the pond and associated tributaries, which also caused erosion.
The bare soil conditions, headcut, and manure from the Zoo animals were contributing sediment, nutrient, and pathogen loading to the Zoo pond and subsequently Lake Manalapan. The Zoo pond drains to an outlet structure, a 24-inch reinforced concrete pipe (RCP), and subsequently to a vegetated swale via a stormwater outlet. A second outlet pipe drains stormwater runoff from an asphalt parking lot which discharges to the vegetated swale.
The shoreline of Lake Manalapan where the vegetated swale drains into the lake was the subject of a previous restoration project during which a diverse suite of native plants was installed; however, the swale was not included in this project and a maintained lawn, which does not adequately filter stormwater runoff or provide any ecosystem services. The swale also had little access to its floodplain where vegetation can help filter non-point source (NPS) pollutants from the Zoo pond and adjacent uplands.
In order to increase channel stability, decrease erosion, improve water quality and ecological function, and reduce the NPS pollutants originating from the Zoo, a stormwater management treatment train was designed and constructed.
Middlesex County Office of Parks and Recreation and Office of Planning, the New Jersey Department of Environmental Protection (NJDEP), South Jersey Resource Conservation and Development Council (SJRC&D), Middlesex County Mosquito Extermination Commission, Freehold Soil Conservation District, Rutgers Cooperative Extension, Enviroscapes and Princeton Hydro worked together to fund, design, permit, and construct the following stormwater management measures:
To see the project elements taking shape and being completed, watch our video:
The project is funded by a Water Quality Restoration 319(h) grant awarded to SJRC&D by the NJDEP for continued implementation of watershed-based measures to reduce NPS pollutant loading and compliance with a total phosphorus (TP) Total Maximum Daily Load (TMDL) established by the NJDEP for Lake Manalapan. The TMDL is a regulatory term in the U.S. Clean Water Act, that identifies the maximum amount of a pollutant (in this case phosphorus) that a waterbody can receive while still meeting water quality standards.
“The South Jersey Resource Conservation and Development Council was pleased to participate in this project. Partnering with these various governmental agencies and private entities to implement on the ground conservation and water quality improvements aligns perfectly with our mission. We are thrilled with the great work done at Thompson Park and look forward to continuing this partnership.”Craig McGee, South Jersey Resource Conservation and Development Council District Manager
“The South Jersey Resource Conservation and Development Council was pleased to participate in this project. Partnering with these various governmental agencies and private entities to implement on the ground conservation and water quality improvements aligns perfectly with our mission. We are thrilled with the great work done at Thompson Park and look forward to continuing this partnership.”
Construction of the stormwater treatment train components began in early August 2021 and was completed by the end of September 2021.
The first step of the stormwater treatment train was to stabilize the tributary to Lake Manalapan and its associated headcut. Streambank stabilization measures included grade modifications to create a gradual stream slope and dynamically stable form with improved habitat features, including riffles and pools, with gravel and cobble substrate. On August 17, grading of the floodplain bench began, the RCP was exposed, and the team started excavation for the lower three steps in the step-pool sequence.
On August 20, the rock grade and step-pool sequence were completed. And, fabric was installed along both sides of the rock-lined channel to increase stream-bank stability. Rock was placed within the pools to cover the edge of the fabric. We are very pleased to report that the newly restored channel held up to two large storm events during the construction process.
Bags of BioChar, a pure carbon charcoal-like substance made from organic material, were installed across the Zoo pond using an anchor and line system. The BioChar bags help to remove TP and other nutrients from the water column and bed sediments of the Zoo pond and subsequently Manalapan Brook Watershed. The team also built, planted and installed a floating wetland island, an effective green infrastructure solution that improves water quality by assimilating and removing excess nutrients that could fuel algae growth.
After conclusion of pipe lighting, excavation of the floodplain bench and installation of scour protection, native perennial vegetation was planted within the floodplain and swale in order to provide sediment deposition and nutrient uptake functions, as well as aquatic food web services and water temperature moderation before flows are discharged to Lake Manalapan. The plantings also enhance and create suitable avian and pollinator species habitat, and greater flora and fauna diversity.
This stormwater treatment train project improves the habitat and water quality of the Manalapan Brook Watershed by addressing NPS pollutants that originate from Thompson Park Zoo. The completed work also supports the Watershed Protection and Restoration Plan for the Manalapan Brook Watershed by reducing TSS and TP loads in compliance with the TMDL. Additionally, the project improves the overall ecosystem by stabilizing eroded streambanks, installing native and biodiverse vegetation, and reducing the quantity of pollutants entering Lake Manalapan.
“Thompson Park Zoo is an excellent model for showcasing a successful and comprehensive approach to stormwater management and watershed restoration through a dynamic multi-stakeholder partnership. We are so proud to be a part of this project and continue to support the Manalapan Brook Watershed Protection Plan through a variety of restoration activities.”Amy McNamara, E.I.T, Princeton Hydro Project Manager and Water Resource Engineer
“Thompson Park Zoo is an excellent model for showcasing a successful and comprehensive approach to stormwater management and watershed restoration through a dynamic multi-stakeholder partnership. We are so proud to be a part of this project and continue to support the Manalapan Brook Watershed Protection Plan through a variety of restoration activities.”
At Princeton Hydro, we are experts in stormwater management; we recognize the numerous benefits of green infrastructure; and we’ve been incorporating green infrastructure into our engineering designs since before the term was regularly used in the stormwater lexicon. Click here to learn more about our stormwater management services.
Array ( [0] => WP_Post Object ( [ID] => 4727 [post_author] => 3 [post_date] => 2020-05-29 17:21:35 [post_date_gmt] => 2020-05-29 17:21:35 [post_content] => Hydrology is the study of the properties, distribution, and effects of water on the Earth’s surface, in the soil and underlying rocks, and in the atmosphere. The hydrologic cycle includes all of the ways in which water cycles from land to the atmosphere and back. Hydrologists study natural water-related events such as drought, rainfall, stormwater runoff, and floods, as well as how to predict and manage such events. On the application side, hydrology provides basic laws, equations, algorithms, procedures, and modeling of these events. Hydraulics is the study of the mechanical behavior of water in physical systems. In engineering terms, hydraulics is the analysis of how surface and subsurface waters move from one point to the next, such as calculating the depth of flow in a pipe or open channel. Hydraulic analysis is used to evaluate flow in rivers, streams, stormwater management networks, sewers, and much more. Combined hydrologic and hydraulic data, tools, and models are used for analyzing the impacts that waterflow - precipitation, stormwater, floods, and severe storms - will have on the existing infrastructure. This information is also used to make future land-use decisions and improvements that will work within the constraints of the hydrologic cycle and won’t exacerbate flooding or cause water quality impairment. Simply put, hydrologic and hydraulic modeling is an essential component of any effective flood risk management plan. Putting Hydrologic & Hydraulic Analysis to Work in Philadelphia Eastwick, a low-lying urbanized neighborhood in Southwest Philadelphia, is located in the Schuylkill River Watershed and is almost completely surrounded by water: The Cobbs and Darby creeks to the west, the Delaware River and wetlands to the south, and the Schuylkill River and Mingo Creek to the east. The community is at continual risk of both riverine and coastal flooding, and faces an uncertain future due to sea level rise and riverine flooding exacerbated by climate change. Princeton Hydro, along with project partners KeystoneConservation and University of Pennsylvania, conducted an analysis of Eastwick, the flood impacts created by the Lower Darby Creek, and the viability of several potential flood mitigation strategies. Flood mitigation approaches can be structural and nonstructural. Structural mitigation techniques focus on reconstructing landscapes, including building floodwalls/seawalls and installing floodgates/levees. Nonstructural measures work to reduce damage by removing people and property out of risk areas, including zoning, elevating structures, and conducting property buyouts. For Eastwick, studying stream dynamics is a key component to determining what type of flood mitigation strategies will yield the most success, as well as identifying the approaches that don’t work for this unique area. Princeton Hydro’s study focused on the key problem areas in Eastwick: the confluence of Darby Creek and Cobbs Creek; a constriction at Hook Road and 84th Street; and the Clearview Landfill, which is part of the Lower Darby Creek Superfund site. Additionally, the study sought to answer questions commonly asked by community members related to flooding conditions, with the main question being: What impact does the landfill have on area flooding? The built-up landfill is actually much higher than the stream bed, which creates a major disconnection between the floodplain and the stream channel. If the landfill didn’t exist, would the community still be at risk? If we increased the floodplain into the landfill, would that reduce neighborhood flooding? Princeton Hydro set out to answer these questions by developing riverine flooding models primarily using data from US Army Corps of Engineers (USACE), Federal Emergency Management Agency (FEMA), The National Oceanic and Atmospheric Administration (NOAA), and NOAA's National Weather Service (NWS). FEMA looks at the impacts of 1% storms that are primarily caused by precipitation events as well as coastal storms and storm surge. NOAA looks at the impacts of hurricanes. And, NOAA's NWS estimates sea, lake and overland storm surge heights from hurricanes. The models used 2D animation to show how the water flows in various scenarios, putting long-held assumptions to the test. The models looked at several different strategies, including the complete removal of the Clearview Landfill, which many people anticipated would be the silver bullet to the area’s flooding. The modeling revealed, however, that those long-held assumptions were invalid. Although the landfill removal completely alters the flood dynamics, the neighborhood would still flood even if the landfill weren’t there. Additionally, the modeling showed that the landfill is actually acting as a levee for a large portion of the Eastwick community. Ultimately, the research and modeling helped conclude that for the specific scenarios we studied, altering stream dynamics – a non-structural measure – is not a viable flood mitigation strategy. The USACE is currently undergoing a study in collaboration with the Philadelphia Water Department to test the feasibility of a levee system (a structural control measure), which would protect the Eastwick community by diverting the flood water. Funding for the study is expected to be approved in the coming year. Take a Deeper Look at Eastwick Flood Mitigation Efforts There are many studies highlighting flood mitigation strategies, environmental justice, and climate change vulnerability in Eastwick. Princeton Hydro Senior Project Manager and Senior Ecologist, Christiana Pollack CFM, GISP, presented on the flooding in Eastwick at the Consortium for Climate Risk in the Urban Northeast Seminar held at Drexel University. The seminar also featured presentations from Michael Nairn of the University of Pennsylvania Urban Studies Department, Ashley DiCaro of Interface Studios, and Dr. Philip Orton of Stevens Institute of Technology. You can watch the full seminar here: For more information about Princeton Hydro’s flood management services, go here: http://bit.ly/PHfloodplain. … [post_title] => Analyzing Mitigation Strategies for Flood-Prone Philadelphia Community [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => floodplain-management [to_ping] => [pinged] => [post_modified] => 2021-04-22 13:40:40 [post_modified_gmt] => 2021-04-22 13:40:40 [post_content_filtered] => [post_parent] => 0 [guid] => https://www.princetonhydro.com/blog/?p=4727 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 1 [filter] => raw ) [1] => WP_Post Object ( [ID] => 5431 [post_author] => 3 [post_date] => 2020-10-27 10:27:13 [post_date_gmt] => 2020-10-27 10:27:13 [post_content] => The Dunes at Shoal Harbor, a coastal residential community in Monmouth County, New Jersey, is situated adjacent to both the Raritan Bay and the New York City Ferry channel. In July 2018, Princeton Hydro was contracted to restore this coastal community that was severely impacted by Hurricane Sandy. Today, we are thrilled to report that the shoreline protection design plans have been fully constructed and the project is complete.
Hydrology is the study of the properties, distribution, and effects of water on the Earth’s surface, in the soil and underlying rocks, and in the atmosphere. The hydrologic cycle includes all of the ways in which water cycles from land to the atmosphere and back. Hydrologists study natural water-related events such as drought, rainfall, stormwater runoff, and floods, as well as how to predict and manage such events. On the application side, hydrology provides basic laws, equations, algorithms, procedures, and modeling of these events.
Hydraulics is the study of the mechanical behavior of water in physical systems. In engineering terms, hydraulics is the analysis of how surface and subsurface waters move from one point to the next, such as calculating the depth of flow in a pipe or open channel. Hydraulic analysis is used to evaluate flow in rivers, streams, stormwater management networks, sewers, and much more.
Combined hydrologic and hydraulic data, tools, and models are used for analyzing the impacts that waterflow - precipitation, stormwater, floods, and severe storms - will have on the existing infrastructure. This information is also used to make future land-use decisions and improvements that will work within the constraints of the hydrologic cycle and won’t exacerbate flooding or cause water quality impairment.
Simply put, hydrologic and hydraulic modeling is an essential component of any effective flood risk management plan.
Eastwick, a low-lying urbanized neighborhood in Southwest Philadelphia, is located in the Schuylkill River Watershed and is almost completely surrounded by water: The Cobbs and Darby creeks to the west, the Delaware River and wetlands to the south, and the Schuylkill River and Mingo Creek to the east. The community is at continual risk of both riverine and coastal flooding, and faces an uncertain future due to sea level rise and riverine flooding exacerbated by climate change.
Princeton Hydro, along with project partners KeystoneConservation and University of Pennsylvania, conducted an analysis of Eastwick, the flood impacts created by the Lower Darby Creek, and the viability of several potential flood mitigation strategies.
Flood mitigation approaches can be structural and nonstructural. Structural mitigation techniques focus on reconstructing landscapes, including building floodwalls/seawalls and installing floodgates/levees. Nonstructural measures work to reduce damage by removing people and property out of risk areas, including zoning, elevating structures, and conducting property buyouts.
For Eastwick, studying stream dynamics is a key component to determining what type of flood mitigation strategies will yield the most success, as well as identifying the approaches that don’t work for this unique area.
Princeton Hydro’s study focused on the key problem areas in Eastwick: the confluence of Darby Creek and Cobbs Creek; a constriction at Hook Road and 84th Street; and the Clearview Landfill, which is part of the Lower Darby Creek Superfund site. Additionally, the study sought to answer questions commonly asked by community members related to flooding conditions, with the main question being: What impact does the landfill have on area flooding?
The built-up landfill is actually much higher than the stream bed, which creates a major disconnection between the floodplain and the stream channel. If the landfill didn’t exist, would the community still be at risk? If we increased the floodplain into the landfill, would that reduce neighborhood flooding?
Princeton Hydro set out to answer these questions by developing riverine flooding models primarily using data from US Army Corps of Engineers (USACE), Federal Emergency Management Agency (FEMA), The National Oceanic and Atmospheric Administration (NOAA), and NOAA's National Weather Service (NWS). FEMA looks at the impacts of 1% storms that are primarily caused by precipitation events as well as coastal storms and storm surge. NOAA looks at the impacts of hurricanes. And, NOAA's NWS estimates sea, lake and overland storm surge heights from hurricanes.
The models used 2D animation to show how the water flows in various scenarios, putting long-held assumptions to the test.
The models looked at several different strategies, including the complete removal of the Clearview Landfill, which many people anticipated would be the silver bullet to the area’s flooding. The modeling revealed, however, that those long-held assumptions were invalid. Although the landfill removal completely alters the flood dynamics, the neighborhood would still flood even if the landfill weren’t there. Additionally, the modeling showed that the landfill is actually acting as a levee for a large portion of the Eastwick community.
Ultimately, the research and modeling helped conclude that for the specific scenarios we studied, altering stream dynamics – a non-structural measure – is not a viable flood mitigation strategy.
The USACE is currently undergoing a study in collaboration with the Philadelphia Water Department to test the feasibility of a levee system (a structural control measure), which would protect the Eastwick community by diverting the flood water. Funding for the study is expected to be approved in the coming year.
There are many studies highlighting flood mitigation strategies, environmental justice, and climate change vulnerability in Eastwick. Princeton Hydro Senior Project Manager and Senior Ecologist, Christiana Pollack CFM, GISP, presented on the flooding in Eastwick at the Consortium for Climate Risk in the Urban Northeast Seminar held at Drexel University. The seminar also featured presentations from Michael Nairn of the University of Pennsylvania Urban Studies Department, Ashley DiCaro of Interface Studios, and Dr. Philip Orton of Stevens Institute of Technology.
For more information about Princeton Hydro’s flood management services, go here: http://bit.ly/PHfloodplain.
…
The Dunes at Shoal Harbor, a coastal residential community in Monmouth County, New Jersey, is situated adjacent to both the Raritan Bay and the New York City Ferry channel. In July 2018, Princeton Hydro was contracted to restore this coastal community that was severely impacted by Hurricane Sandy. Today, we are thrilled to report that the shoreline protection design plans have been fully constructed and the project is complete.
In order to protect the coastal community from flooding, a revetment had been constructed on the property many years ago. The revetment, however, was significantly undersized and completely failed during Hurricane Sandy. The community was subjected to direct wave attack and flooding, homes were damaged, beach access was impaired, and the existing site-wide stormwater management basin and outfall was completely destroyed.
The installation of a 15-foot rock revetment (one foot above the 100-year floodplain elevation) constructed with four-foot diameter boulders;
The replacement of a failed elevated timber walkway with a concrete slab-on-grade walkway, restoring portions of the existing bulkhead, clearing invasive plants, and the complete restoration of the failed stormwater basin and outlet; and
The development of natural barriers to reduce the impacts of storm surges and protect the coastal community, including planting stabilizing coastal vegetation to prevent erosion and installing fencing along the dune to facilitate natural dune growth.
During the final walkthrough earlier this month, the Princeton Hydro team captured drone footage of the completed project site. Click below to watch the video:
?
For more images and background information on this project, check out the following photo gallery and read our original blog post from July 2018:
For more information about Princeton Hydro’s engineering services, go here.
The Lake Hopatcong Foundation (LHF) recently launched its newest initiative - a floating classroom. The custom-built 40-foot education vessel, named 'Study Hull', gives students an interactive, hands-on education experience to explore Lake Hopatcong, learn about freshwater ecology, and learn how to protect the watershed.
During its maiden voyage field trip, which was held on May 21, fourth-graders from Nixon Elementary and Kennedy Elementary schools utilized the boat’s laboratory instruments to study water hydrology, temperatures, plankton, and dissolved oxygen levels. They performed a series of tests and experiments designed to help them learn about the general health of the lake. They used Secchi Disks to determine the depth to which light is able to penetrate the water's surface. They also learned about runoff and nonpoint source pollutants, how to protect the lake’s water quality, and how to be good stewards of the water.
Princeton Hydro helped the LHF design a teaching curriculum on water quality. Dr. Jack Szczepanski, Senior Aquatics Scientist, and Christopher L. Mikolajczyk, CLM, Senior Project Scientist, trained the staff and volunteers on the curriculum and demonstrated various water quality monitoring techniques that can be conducted with the students.
“We’re really proud to be a part of this exciting initiative,” said Mikolajczyk. “It’s really important to get kids interested in science at an early age and teach them about their surrounding environment – where their drinking water comes from, how it gets polluted, the impacts pollution has on the lake’s ecosystem, and what steps can be made to protect the lake’s water quality. We're hoping the floating classroom field trip program will make a lasting, valuable impression with these kids.”
In the first year of operation it is expected that the Study Hull will host 1,000 fourth grade students. The long-term goal is to develop lesson plans for students in every grade from kindergarten through high school. Starting in July, the LHF is also offering the public tours of the floating classroom on Mondays at Hopatcong State Park.
The purchase of the floating classroom was made possible by financial support from USATODAY Network’s “A Community Thrives” program, which awarded the LHF with a $50,000 grant. The program recognizes three categories: arts and culture, education, and wellness. In each category, the first place winner received a $100,000 grant and the second and third place winners received $50,000 grants. The James P. Verhalen Family Foundation and the Szigethy Family also provided significant donations to help bring the floating classroom to life.
The LHF and Princeton Hydro are longtime partners. Starting back in 1983, Princeton Hydro’s Dr. Stephen Souza conducted the USEPA funded Diagnostic Feasibility study of the lake and then authored the Lake Hopatcong Restoration Plan. That document continues to be the backbone of why and how to restore the lake, manage the watershed, reduce pollutant loading, and address invasive aquatic plants and nuisance algae blooms.
Lake Hopatcong has one of the longest, continuous, long-term ecological databases in New Jersey; almost 30 years of consistently collected water quality data. The data is crucial in assessing the overall ecological health of the lake and proactively guiding its management, identifying and addressing emerging threats, documenting project success (a mandatory element of funding initiatives) and confirming compliance with New Jersey State Water Quality standards.
Princeton Hydro’s most recent work for Lake Hopatcong includes the implementation of green infrastructure stormwater management measures, installation of floating wetland islands to improve water quality, and invasive aquatic plant species management programs, community educational training, and surveys.
For more information about the Lake Hopatcong Foundation or the floating classroom, click here. For more information about Princeton Hydro’s lake management services, go here.
For over 100 years, the Old Mill Pond Dam in Spring Lake Heights, New Jersey has blocked critical anadromous fish species from reaching optimal spawning habitat. Today, we are thrilled to announce that, thanks to a fish ladder installed by the American Littoral Society (ALS), migratory fish can now scale the dam and access upstream spawning grounds.
The 60-foot-long fish ladder is a device that allows a channel of water to flow through it and is engineered to create both the proper water depth and velocity for fish to navigate through. In this case, it will enable fish to scale the 10-foot-high dam and go deeper into Wreck Pond Brook.
This video from ALS provides an up-close look at the Alaska-Steeppass Fish Ladder and more details about the project:
Re-opening river passage for migratory species improves not only the health of Wreck Pond Brook and its watershed, but it also benefits the overall ecosystem of the Atlantic shoreline and its coastal rivers. It also supports important recreational and commercial species, such as cod, haddock, and striped bass, which leads to a healthier economy.
For over a century, the dam blocked anadromous fish like Alewife and Blueback river herring, from entering the Wreck Pond Brook Watershed. These fish spend most of their lives in the ocean but need freshwater in order to spawn. The Old Mill Pond Dam, an impassable obstruction for these migrating fish, was identified as a key contributor to the decline of Atlantic coast river herring populations. Subsequently, river herring were classified as National Oceanic and Atmospheric Administration (NOAA) Species of Special Concern and identified as requiring Concentrated Conservation Actions.
The fish ladder, which was funded through the US Fish and Wildlife Service and implemented by ALS along with a variety of project partners, including Princeton Hydro, is one more major step in the ongoing effort to restore critical migratory fish spawning grounds, support a vibrant food web to the area, and rehabilitate Wreck Pond and its watershed.
According to the ALS, “Now, instead of Old Mill Dam acting as the furthest migration destination for Alewife and Blueback river herring, these fish have the ability to navigate up the dam through the fish ladder and utilize roughly an additional mile of optimal spawning habitat. The ALS will add the Old Mill Dam fish ladder and newly accessible spawning habitat into its ongoing river herring monitoring surveys.”
American Littoral Society promotes the study and conservation of marine life and habitat, protects the coast from harm, and empowers others to do the same. Learn more and get involved: littoralsociety.org.
Princeton Hydro has designed, permitted, and overseen solutions for fish passage including the installation of technical and nature-like fishways and the removal of dozens of small and large dams throughout the Northeast. To learn more about our fish passage and dam removal engineering services, visit: bit.ly/DamBarrier.
Images provided by the American Littoral Society.
To prevent further erosion at the Slade Dale Sanctuary in Point Pleasant, dozens of volunteers helped stabilize the shoreline using a technique that has never been done before in New Jersey. On Saturday, American Littoral Society, in partnership with Princeton Hydro, Borough of Point Pleasant, New Jersey Nature Conservancy, New Jersey Corporate Wetlands Restoration Partnership, and the Point Pleasant Rotary Club, organized dozens of volunteers to restore the shoreline and prevent further erosion at the Slade Dale Sanctuary using recycled Christmas trees.
As one of only a few areas of open space left in Point Pleasant, the 13-acre Slade Dale Sanctuary is an important part of the local ecosystem, and is home to a number of unique animals and plants. This waterfront preserve along the North Branch Beaver Dam Creek is predominantly tidal marsh, which provides habitat for various birds, including osprey, as well as passive recreation opportunities for the community.
Unfortunately, the Slade Dale Sanctuary is disappearing. Since 1930, the shoreline of Slade Dale Sanctuary has retreated approximately 300 feet, equal to the length of a football field, and the channels into the marsh have increased in number and size, according to a study we conducted on behalf of American Littoral Society, for which we provide engineering and natural resources management consulting services.
In order to stabilize the shoreline, restore the marsh, and enhance the ecological function and integrity of the preserve, Princeton Hydro developed a conceptual and engineering design using living shoreline features to enhance ecological value and reduce erosion. The final conceptual plan for restoration uses tree vane structures to attenuate wave action, foster sediment accretion, and reduce erosion along the coast.
To implement this vision and begin building back marsh, the project team is constructing several Christmas tree breakwaters and Christmas tree vanes that mimic naturally occurring debris structures in tidal systems and enhance habitat opportunity and shelter for aquatic life. Volunteers came together on Saturday, May 11 to help with the construction. The Mayor of Point Pleasant Robert A. Sabosik also attended the event, "The Barnegat Bay is an attribute that we all enjoy, and it's something we have to protect."
After the 2018 holiday season, the Good Sheppard Lutheran Church in Point Pleasant provided space to collect and store donated Christmas trees, which were then moved to the marsh a few days before the event. On the day of the event, recycled Christmas trees were transported from their staged locations on the marsh to the breakwater sections that were previously installed in the water. To transport them across the water to the pilings, volunteers used two methods: by walking a skiff boat loaded with trees through the water to the pilings or by forming assembly line from the shore to pilings to guide floating trees through the water (check out the album below!). Then, they stuffed the Christmas trees between the pilings, securely tied them down, and staked Christmas trees directly into the creek bottom. For extra assurance, the placed and tied heavy bags of used oyster shells on top of the tree line. Oyster shells were donated by local Monmouth County restaurants in an effort to reduce waste streams.
"We really enjoyed participating in this event with American Littoral Society and so many wonderful volunteers,” Christiana L. Pollack, GISP, CFM, Princeton Hydro's Project Manager for this restoration effort. “It is so wonderful to see this project coming to fruition. We’re so proud of our partnership with American Littoral Society and our combined efforts to revitalize and rehabilitate our precious coastal habitats.”
Many thanks to everyone who came out in support of this important restoration effort at Slade Dale Sanctuary American Littoral Society hosts volunteer events throughout the year. Go here to get involved.
The nonprofit Schuylkill River Greenways, in partnership with Berks Nature, Bartram’s Garden, The Schuylkill Center for Environmental Education, Stroud Water Research Center, and Princeton Hydro, is kicking off a Water Quality Monitoring Project for the Schuylkill River on World Habitat Day, Monday, October 5, 2020. This project, focused on the main stem of the river from Berks Nature in Reading to Bartram’s Garden in southwest Philadelphia, is aimed to document the current ecological status and health of the river and seeks to engage and educate a diverse set of river users and residents.
"An important aspect of our mission is to connect communities to the Schuylkill River through recreational and educational activities," said Tim Fenchel, Deputy Director of Schuylkill River Greenways. "To fully achieve the river’s potential, we must help the public understand the current health status and what they can do to continue to improve its quality for this generation and generations to come."
In order to monitor the presence and/or distribution of litter along the Schuylkill River, the team is launching a campaign to recruit “Community Scientists” to conduct 5-minute Visual Monitoring Assessments. Using their mobile device, these volunteers can simply record the trash accumulation or dumping points along a 100-foot section of the Schuylkill River via a user-friendly form accessed via a cell phone: bit.ly/litterform.
“Trash is important to address when talking about the health of a waterway because it’s often the most visually obvious form of pollution. Bacterial and chemical pollution are generally less directly observable, but when we see trash, it instantly informs our impression of a body of water,” said Chloe Wang, River Programs Coordinator at Bartram's Garden. “And, it can point to larger problems. For example, near Bartram’s Garden, a lot of trash washes into the river from combined sewer overflows, which also introduce harmful bacteria into the water. It will be interesting to see how the presence of trash differs along various stretches of the Schuylkill.”
The Community Scientist visual assessments require no formal training and are meant to be a simple effort that any resident can complete. We’ve developed an assessment survey, which can be accessed and submitted via a smartphone or tablet by opening the link in the phone/tablet’s browser.
“This is an opportunity for anyone with an interest in the Schuylkill River to spend time on the river and provide valuable feedback on the conditions of the river,” said David Bressler, Project Facilitator at Stroud Water Research Center. “Schuylkill River Greenways and its partners in this project are looking for motivated and dependable individuals to help them learn about the Schuylkill River and move in positive directions toward making the river more accessible to the community. Support from volunteers is very important and is greatly appreciated."
The goal is to document critical areas of trash accumulation or dumping points in order to guide management efforts to better deal with this pollution. In addition to the multiple-choice questions to rank trash levels and quantities, this platform asks volunteers to submit a photo of the area and collects the GPS location. By utilizing this user-friendly platform, the data collected under this effort will be summarized and visualized by the project team.
“This project is an important study that we can use to connect people back to the river and show that the Schuylkill River is a place to be enjoyed by the entire community surrounding it and beyond,” said Michael Griffith, Education & Watershed Specialist at Berks Nature.
In 1985 the United Nations designated the first Monday of October every year as World Habitat Day. The idea is to reflect on the state of our towns and cities and the basic right of all to adequate shelter and to remind the world of its collective responsibility for the future of the human habitat. By understanding and improving water quality in the Schuylkill River, we are creating a place that enables community members to access public green and open spaces. This effort also supports UN Sustainable Development Goal 11, which aims for resilient, inclusive, safe, diverse cities by 2030.
In addition to the Community Scientist visual assessments, the stakeholder team is conducting water quality sampling and monitoring over the next year at four locations along the main stem of the Schuylkill River. This scientific documentation of critical water quality parameters will be performed by the stakeholder group’s employees and long term volunteers, who are trained in data collection and scientific methods. We will collect data on bacterial concentrations in the river using a combination of 3-M Petrifilm kits and laboratory-based analytical measures. In addition, in-situ temperature, oxygen, pH, and turbidity data will be collected utilizing Mayfly dataloggers.
"Our research shows that residents care about the river, but are not confident whether it is clean or safe to use for recreational activity. So we’ve designed a volunteer survey and scientific water quality assessment to document the ecological health of the Schuylkill River," said Michael Hartshorne, Aquatic Resources Project Manager at Princeton Hydro. "By studying bacterial inputs and identifying hotspots for trash, we can communicate the status of the river, provide recommendations on areas of improvement, and ultimately, change the current public perception of the river."
For the water quality monitoring, Princeton Hydro scientists will provide training to the partner nonprofit organizations’ staff and review the methods and protocols to assure the highest level of quality. This long-term data collection effort is slated to begin this month and continue for approximately one year. The results of this assessment will allow us to determine potential hotspots related to nutrient and bacteria inputs and to understand the overall ecological health of the Schuylkill River.
Overall, through this effort, the stakeholder team hopes to connect residents and communities with the Schuylkill River and to encourage engagement with this special resource.
River herring are diadromous fish, which means they migrate between fresh and salt water. On Long Island in Nassau, New York, they migrate between Mill Pond Creek and the ocean, using Bellmore Creek as a highway. The river herring live much of their adult life in the ocean and travel to the freshwaters of Mill Pond Creek in order to spawn.
There is a dam located at the point where Bellmore Creek meets Mill Pond. When the water level isn’t high enough, the river herring can be blocked from swimming upstream to reach their spawning habitat. This not only has negative implications for river herring species, it also negatively impacts the entire ecosystem. The herring are a vital food source for countless other fish, birds and animals, and play a critical role in transferring marine derived nutrients into surrounding estuarine, freshwater and upland habitats.
River Herring have been documented at the base of the dam at Mill Pond for the past several migration seasons. Bellmore Creek is one of only two-dozen streams on Long Island where remnant runs of this ecologically valuable, diadromous fish still exist.
The project goals not only include increasing river herring spawning habitat, but also are focused on improving the ecological condition of Bellmore Creek, maintaining and enhancing recreational values, and improving site resiliency to climate change and sea level rise.
To provide guidance on the project, Seatuck assembled an advisory committee with representation from Nassau County (dam owner), New York State Office of Parks, NYS Department of Environmental Conservation, Nassau County Soil and Water District, Town of Hempstead, the South Shore Estuary Reserve, Trout Unlimited, The Nature Conservancy, South Shore Audubon, and the Bellmore Civic Association.
On June 8 2021, Seatuck, Nassau County and Princeton Hydro held a virtual meeting to get the public’s input on each of the fish passage designs. Emily Hall, Conservation Policy Advocate for Seatuck, also put together an informative presentation in which she provides a synopsis of Bellmore Creek's history, describes the project goals, and discusses the community engagement process and the results of the public opinion survey. Watch it now:
Additionally, Princeton Hydro completed a site investigation including topographic survey, sediment probing and sampling, and assessment of structures to identify project opportunities and site constraints. Sediment sampling and analysis indicated no major concerns with contamination. By performing analysis of the longitudinal profile, Princeton Hydro determined that the full dam removal (option 3 listed above) was not recommended due to the potential for initiating uncontrolled channel incision below the original river grade into Mill Pond and upstream reaches.
Ultimately, the technical fish ladder (option 2 listed above) was chosen as the most appropriate solution for restoring fish passage to Mill Pond and maintaining existing recreational values. Princeton Hydro is currently developing preliminary engineering design plans for this selected alternative as part of this phase of the project.
The focus on Bellmore Creek is just one of many projects included in Seatuck’s River Revival program, which has sought to clear similarly blocked waterways across Long Island. If you’re interested in learning more about Seatuck’s conservation work and getting involved, click here.
Princeton Hydro has designed, permitted, and overseen solutions for fish passage including the installation of technical and nature-like fishways and the removal of dozens of small and large dams throughout the Northeast. To learn more about our fish passage and dam removal engineering services, click here and check out our blog:
add comment
Δ
Your Full Name * Phone Number * Your Email * Organization Address Message *
By EmailBy Phone
Submit
Couldn’t find a match? Check back often as we post new positions throughout the year.
Array ( [0] => stdClass Object ( [year] => 2023 [month] => 3 [posts] => 4 ) [1] => stdClass Object ( [year] => 2023 [month] => 2 [posts] => 5 ) [2] => stdClass Object ( [year] => 2023 [month] => 1 [posts] => 3 ) [3] => stdClass Object ( [year] => 2022 [month] => 12 [posts] => 6 ) [4] => stdClass Object ( [year] => 2022 [month] => 11 [posts] => 3 ) [5] => stdClass Object ( [year] => 2022 [month] => 10 [posts] => 5 ) [6] => stdClass Object ( [year] => 2022 [month] => 9 [posts] => 2 ) [7] => stdClass Object ( [year] => 2022 [month] => 8 [posts] => 3 ) [8] => stdClass Object ( [year] => 2022 [month] => 7 [posts] => 5 ) [9] => stdClass Object ( [year] => 2022 [month] => 6 [posts] => 3 ) [10] => stdClass Object ( [year] => 2022 [month] => 5 [posts] => 7 ) [11] => stdClass Object ( [year] => 2022 [month] => 4 [posts] => 3 ) [12] => stdClass Object ( [year] => 2022 [month] => 3 [posts] => 8 ) [13] => stdClass Object ( [year] => 2022 [month] => 2 [posts] => 1 ) [14] => stdClass Object ( [year] => 2022 [month] => 1 [posts] => 2 ) [15] => stdClass Object ( [year] => 2021 [month] => 12 [posts] => 5 ) [16] => stdClass Object ( [year] => 2021 [month] => 11 [posts] => 2 ) [17] => stdClass Object ( [year] => 2021 [month] => 10 [posts] => 1 ) [18] => stdClass Object ( [year] => 2021 [month] => 9 [posts] => 5 ) [19] => stdClass Object ( [year] => 2021 [month] => 8 [posts] => 2 ) [20] => stdClass Object ( [year] => 2021 [month] => 7 [posts] => 6 ) [21] => stdClass Object ( [year] => 2021 [month] => 6 [posts] => 5 ) [22] => stdClass Object ( [year] => 2021 [month] => 5 [posts] => 2 ) [23] => stdClass Object ( [year] => 2021 [month] => 4 [posts] => 5 ) [24] => stdClass Object ( [year] => 2021 [month] => 3 [posts] => 1 ) [25] => stdClass Object ( [year] => 2021 [month] => 2 [posts] => 7 ) [26] => stdClass Object ( [year] => 2021 [month] => 1 [posts] => 2 ) [27] => stdClass Object ( [year] => 2020 [month] => 12 [posts] => 4 ) [28] => stdClass Object ( [year] => 2020 [month] => 11 [posts] => 3 ) [29] => stdClass Object ( [year] => 2020 [month] => 10 [posts] => 5 ) [30] => stdClass Object ( [year] => 2020 [month] => 9 [posts] => 1 ) [31] => stdClass Object ( [year] => 2020 [month] => 8 [posts] => 3 ) [32] => stdClass Object ( [year] => 2020 [month] => 7 [posts] => 8 ) [33] => stdClass Object ( [year] => 2020 [month] => 6 [posts] => 3 ) [34] => stdClass Object ( [year] => 2020 [month] => 5 [posts] => 2 ) [35] => stdClass Object ( [year] => 2020 [month] => 4 [posts] => 5 ) [36] => stdClass Object ( [year] => 2020 [month] => 3 [posts] => 3 ) [37] => stdClass Object ( [year] => 2020 [month] => 2 [posts] => 3 ) [38] => stdClass Object ( [year] => 2020 [month] => 1 [posts] => 4 ) [39] => stdClass Object ( [year] => 2019 [month] => 12 [posts] => 3 ) [40] => stdClass Object ( [year] => 2019 [month] => 11 [posts] => 3 ) [41] => stdClass Object ( [year] => 2019 [month] => 10 [posts] => 5 ) [42] => stdClass Object ( [year] => 2019 [month] => 9 [posts] => 3 ) [43] => stdClass Object ( [year] => 2019 [month] => 8 [posts] => 6 ) [44] => stdClass Object ( [year] => 2019 [month] => 7 [posts] => 5 ) [45] => stdClass Object ( [year] => 2019 [month] => 6 [posts] => 4 ) [46] => stdClass Object ( [year] => 2019 [month] => 5 [posts] => 5 ) [47] => stdClass Object ( [year] => 2019 [month] => 4 [posts] => 8 ) [48] => stdClass Object ( [year] => 2019 [month] => 3 [posts] => 2 ) [49] => stdClass Object ( [year] => 2019 [month] => 2 [posts] => 2 ) [50] => stdClass Object ( [year] => 2019 [month] => 1 [posts] => 5 ) [51] => stdClass Object ( [year] => 2018 [month] => 12 [posts] => 5 ) [52] => stdClass Object ( [year] => 2018 [month] => 11 [posts] => 4 ) [53] => stdClass Object ( [year] => 2018 [month] => 10 [posts] => 8 ) [54] => stdClass Object ( [year] => 2018 [month] => 9 [posts] => 3 ) [55] => stdClass Object ( [year] => 2018 [month] => 8 [posts] => 6 ) [56] => stdClass Object ( [year] => 2018 [month] => 7 [posts] => 6 ) [57] => stdClass Object ( [year] => 2018 [month] => 6 [posts] => 7 ) [58] => stdClass Object ( [year] => 2018 [month] => 5 [posts] => 6 ) [59] => stdClass Object ( [year] => 2018 [month] => 4 [posts] => 6 ) [60] => stdClass Object ( [year] => 2018 [month] => 3 [posts] => 5 ) [61] => stdClass Object ( [year] => 2018 [month] => 2 [posts] => 2 ) [62] => stdClass Object ( [year] => 2018 [month] => 1 [posts] => 3 ) [63] => stdClass Object ( [year] => 2017 [month] => 12 [posts] => 3 ) [64] => stdClass Object ( [year] => 2017 [month] => 11 [posts] => 3 ) [65] => stdClass Object ( [year] => 2017 [month] => 10 [posts] => 2 ) [66] => stdClass Object ( [year] => 2017 [month] => 9 [posts] => 2 ) [67] => stdClass Object ( [year] => 2017 [month] => 8 [posts] => 2 ) [68] => stdClass Object ( [year] => 2017 [month] => 7 [posts] => 2 ) [69] => stdClass Object ( [year] => 2017 [month] => 6 [posts] => 1 ) [70] => stdClass Object ( [year] => 2017 [month] => 5 [posts] => 2 ) [71] => stdClass Object ( [year] => 2017 [month] => 4 [posts] => 1 ) [72] => stdClass Object ( [year] => 2017 [month] => 3 [posts] => 1 ) [73] => stdClass Object ( [year] => 2017 [month] => 2 [posts] => 2 ) [74] => stdClass Object ( [year] => 2017 [month] => 1 [posts] => 1 ) [75] => stdClass Object ( [year] => 2016 [month] => 12 [posts] => 2 ) [76] => stdClass Object ( [year] => 2016 [month] => 11 [posts] => 2 ) [77] => stdClass Object ( [year] => 2016 [month] => 10 [posts] => 1 ) [78] => stdClass Object ( [year] => 2016 [month] => 9 [posts] => 1 ) [79] => stdClass Object ( [year] => 2016 [month] => 8 [posts] => 2 ) [80] => stdClass Object ( [year] => 2016 [month] => 7 [posts] => 1 ) [81] => stdClass Object ( [year] => 2016 [month] => 5 [posts] => 2 ) [82] => stdClass Object ( [year] => 2016 [month] => 4 [posts] => 2 ) [83] => stdClass Object ( [year] => 2016 [month] => 3 [posts] => 3 ) [84] => stdClass Object ( [year] => 2016 [month] => 2 [posts] => 2 ) [85] => stdClass Object ( [year] => 2015 [month] => 11 [posts] => 2 ) [86] => stdClass Object ( [year] => 2013 [month] => 8 [posts] => 1 ) [87] => stdClass Object ( [year] => 2013 [month] => 7 [posts] => 2 ) [88] => stdClass Object ( [year] => 2013 [month] => 6 [posts] => 8 ) )