search
WP_Query Object
(
    [query] => Array
        (
            [page] => 
            [pagename] => blog
        )

    [query_vars] => Array
        (
            [page] => 0
            [pagename] => blog
            [error] => 
            [m] => 
            [p] => 0
            [post_parent] => 
            [subpost] => 
            [subpost_id] => 
            [attachment] => 
            [attachment_id] => 0
            [name] => 
            [page_id] => 0
            [second] => 
            [minute] => 
            [hour] => 
            [day] => 0
            [monthnum] => 0
            [year] => 0
            [w] => 0
            [category_name] => green-infrastructure
            [tag] => 
            [cat] => 1481
            [tag_id] => 
            [author] => 
            [author_name] => 
            [feed] => 
            [tb] => 
            [paged] => 1
            [meta_key] => 
            [meta_value] => 
            [preview] => 
            [s] => 
            [sentence] => 
            [title] => 
            [fields] => 
            [menu_order] => 
            [embed] => 
            [category__in] => Array
                (
                    [0] => 1481
                )

            [category__not_in] => Array
                (
                )

            [category__and] => Array
                (
                )

            [post__in] => Array
                (
                )

            [post__not_in] => Array
                (
                )

            [post_name__in] => Array
                (
                )

            [tag__in] => Array
                (
                )

            [tag__not_in] => Array
                (
                )

            [tag__and] => Array
                (
                )

            [tag_slug__in] => Array
                (
                )

            [tag_slug__and] => Array
                (
                )

            [post_parent__in] => Array
                (
                )

            [post_parent__not_in] => Array
                (
                )

            [author__in] => Array
                (
                )

            [author__not_in] => Array
                (
                )

            [posts_per_page] => 11
            [ignore_sticky_posts] => 
            [suppress_filters] => 
            [cache_results] => 1
            [update_post_term_cache] => 1
            [lazy_load_term_meta] => 1
            [update_post_meta_cache] => 1
            [post_type] => 
            [nopaging] => 
            [comments_per_page] => 5
            [no_found_rows] => 
            [order] => DESC
        )

    [tax_query] => WP_Tax_Query Object
        (
            [queries] => Array
                (
                    [0] => Array
                        (
                            [taxonomy] => category
                            [terms] => Array
                                (
                                    [0] => 1481
                                )

                            [field] => term_id
                            [operator] => IN
                            [include_children] => 
                        )

                )

            [relation] => AND
            [table_aliases:protected] => Array
                (
                    [0] => ph_term_relationships
                )

            [queried_terms] => Array
                (
                    [category] => Array
                        (
                            [terms] => Array
                                (
                                    [0] => 1481
                                )

                            [field] => term_id
                        )

                )

            [primary_table] => ph_posts
            [primary_id_column] => ID
        )

    [meta_query] => WP_Meta_Query Object
        (
            [queries] => Array
                (
                )

            [relation] => 
            [meta_table] => 
            [meta_id_column] => 
            [primary_table] => 
            [primary_id_column] => 
            [table_aliases:protected] => Array
                (
                )

            [clauses:protected] => Array
                (
                )

            [has_or_relation:protected] => 
        )

    [date_query] => 
    [queried_object] => WP_Post Object
        (
            [ID] => 6
            [post_author] => 1
            [post_date] => 2021-01-18 12:51:43
            [post_date_gmt] => 2021-01-18 12:51:43
            [post_content] => 
            [post_title] => Blog
            [post_excerpt] => 
            [post_status] => publish
            [comment_status] => closed
            [ping_status] => closed
            [post_password] => 
            [post_name] => blog
            [to_ping] => 
            [pinged] => 
            [post_modified] => 2021-01-18 12:51:43
            [post_modified_gmt] => 2021-01-18 12:51:43
            [post_content_filtered] => 
            [post_parent] => 0
            [guid] => https://princetonhydro.com/?page_id=6
            [menu_order] => 0
            [post_type] => page
            [post_mime_type] => 
            [comment_count] => 0
            [filter] => raw
        )

    [queried_object_id] => 6
    [request] => 
					SELECT SQL_CALC_FOUND_ROWS  ph_posts.ID
					FROM ph_posts  LEFT JOIN ph_term_relationships ON (ph_posts.ID = ph_term_relationships.object_id)
					WHERE 1=1  AND ( 
  ph_term_relationships.term_taxonomy_id IN (1481)
) AND ((ph_posts.post_type = 'post' AND (ph_posts.post_status = 'publish' OR ph_posts.post_status = 'acf-disabled')))
					GROUP BY ph_posts.ID
					ORDER BY ph_posts.post_date DESC
					LIMIT 0, 11
				
    [posts] => Array
        (
            [0] => WP_Post Object
                (
                    [ID] => 11558
                    [post_author] => 1
                    [post_date] => 2022-12-20 05:17:55
                    [post_date_gmt] => 2022-12-20 05:17:55
                    [post_content] => 

When New Jersey Manufacturers Insurance Group
(NJM) developed their new Regional Operations Facility, a 55-acre corporate campus in Hammonton, New Jersey, they approached the construction with one major goal at the forefront: stormwater management.

Fundamental to that goal was designing a green infrastructure stormwater management system capable of containing on site nearly all the stormwater runoff generated by storm events up to and including a 100-year frequency, 24-hour duration storm.

The group hired Princeton Hydro, recognized as a leader in innovative, cost-effective, and environmentally sound stormwater management, to develop a concept plan that could be built within the context of proper stormwater management and meet the stringent requirements of the NJ Pinelands Comprehensive Management Plan.

To accomplish the ambitious stormwater management goals, the project team designed and implemented an integrated stormwater management system that combined traditional and green infrastructure components, and consisted of bioinfiltration basins, parking lot islands, a wetland basin, and a bioretention island. These features were designed to promote the interception, evapotranspiration, and infiltration of stormwater runoff at its source.

Emphasis was given to green infrastructure BMPs specifically capable of treating and infiltrating large volumes of runoff. Thus, all of the infiltration areas were designed using a soil amendment process where the underlying soils were excavated and amended with organic material to improve the underlying recharge capabilities of the soils. To complement the BMPs, the team designed and installed 120,000 gallon below-grade rainwater capture and reuse system. The system captures roof runoff to be used for on-site irrigation, which not only reduces stormwater volume but also decreases the facility’s water usage.

The project is one of the first projects in New Jersey built to infiltrate nearly 100% of the on-site runoff and uses site-design-based stormwater capacity to determine allowable impervious cover.

[gallery link="none" ids="11591,11590,11592"]

Before construction began, the team implemented a comprehensive study, which began with a detailed analysis of the site’s soils, with particular attention given to physical properties of the soil and the depth to seasonal high water (groundwater). During construction, Princeton Hydro provided monitoring services for all earthwork activities. Our team was on site full-time during critical activities to ensure that the project was built in accordance with the intent of the original design and ensure the maintenance of the project schedule. The team also provided environmental and geotechnical design and engineering services throughout the corporate campus construction, including the analysis of subsurface structures shop drawings and providing consultation support to the general contractor.

For the project, we partnered with Burgis Associates, Inc. who created site designs, provided landscape architectural and professional planning services, and helped to obtain agency approvals. The landscape program sought to establish native plant communities that filter runoff, provide an aesthetically pleasing visual, reduce invasive species, create habitat for pollinators and other critical species, and require limited maintenance to stay healthy and flourishing.

Post construction, the Princeton Hydro team led the preparation of the scope of services, budget, and proposal for the Stormwater Basin Maintenance, which included mowing and clearing the vegetation in nine infiltration basins. The basins were inspected monthly for functionality and for the presence of invasive plants. And, we are happy to report that the basins are all working properly and invasive plants have been eradicated.

At Princeton Hydro, we are experts in stormwater management; we recognize the numerous benefits of green infrastructure; and we’ve been incorporating green infrastructure into our engineering designs since before the term was regularly used in the stormwater lexicon. Click below to read about a Stormwater Treatment Train we designed and implemented in Thompson Park, a 675-acre recreation area in Middlesex County, New Jersey.

  [post_title] => Designing a Stormwater Management System for a 55-Acre Corporate Campus [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => designing-a-stormwater-management-system-for-a-55-acre-corporate-campus [to_ping] => [pinged] => [post_modified] => 2022-12-20 23:39:23 [post_modified_gmt] => 2022-12-20 23:39:23 [post_content_filtered] => [post_parent] => 0 [guid] => https://princetonhydro.com/?p=11558 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [1] => WP_Post Object ( [ID] => 11837 [post_author] => 1 [post_date] => 2022-11-23 19:13:46 [post_date_gmt] => 2022-11-23 19:13:46 [post_content] =>

The Metedeconk River flows through over 40 miles of New Jersey's woodlands, freshwater wetlands, forested wetlands, tidal wetlands, and densely developed areas before emptying into the Barnegat Bay. The river and its watershed provide drinking water from ground and surface water sources to about 100,000 homes in Ocean and Monmouth Counties.

A tributary to the North Branch of the Metedeconk River that flows directly through Ocean County Park in Lakewood, NJ. This tributary was deemed to have water quality impairments, including fecal coliform due to the Canada Goose population and high temperature due to the exposed stream channels, which lack a significant tree-canopy. The increasing amounts of impervious land cover associated with the continued urbanization of the Metedeconk River’s Watershed was also a primary cause of water quality impairments.

American Littoral Society (ALS) partnered with Princeton Hydro and local stakeholders to implement green infrastructure projects with the goal of remedying the fecal coliform and water temperature impairments in the Park's tributary as well as improving the overall health and water quality of the Metedeconk River, its surrounding watershed, and, ultimately, the greater Barnegat Bay.

 

Green Infrastructure Design & Implementation Project

The project team designed and implemented a stormwater treatment train, which combined multiple green infrastructure stormwater management best management practices (BMPs) that work in unison to decrease NPS pollutant loading to the Metedeconk River and increase ecological diversity in Ocean County Park.

The project, which was funded by a New Jersey Department of Environmental Protection 2014 319(h) Implementation Grant, included four primary BMPs in Ocean County Park: 1. Installation of two Filterra curb-side tree boxes; 2. Construction of a vegetated bioretention/biofiltration swale; 3. Creation of a section of living shoreline along the banks of Duck Pond; and 4. Installation of two floating wetland islands in Duck Pond.

 
 

Filterra curb-side tree boxes

 

Built at street level, the Filterra™ tree box is a pre-manufactured, in-ground concrete box filled with soil media and planted with a native, noninvasive tree or shrub. It is designed to collect stormwater, absorb nutrients, and treat water before it discharges into surrounding waterbodies.

For this project, two Filterra™ tree box units were installed in the parking lot to the north of Ocean County Park's swimming beach and each planted with serviceberry shrubs. The boxes serve to catch and treat stormwater runoff flowing from the parking lot.


Vegetated Bioswale

 

Unlike a traditional drainage basin that simply collects water, a vegetated bioswale uses native plants to reduce the volume of stormwater runoff, decrease total phosphorus loading, and prevent debris, sediment, and pollutants from flowing into the Metedeconk River and other surrounding waterbodies.

For this project, the team designed and implemented a .07-acre bioswale adjacent to the park's main parking lot. Installation of the vegetated bioswale began by removing existing vegetation, excavating the ground north of the parking lot, and then regrading it per the specifications on the plans. Once proper grading was established, the basin was planted with native species including Joe Pye Weed, Blue Mistflower, Jacob Cline Bee Balm, Orange Coneflower, and Wrinkleleaf Goldenrod.


Living Shoreline Along Duck Pond

[caption id="attachment_11850" align="aligncenter" width="767"] Photo by American Littoral Society[/caption]  

Living shorelines use a variety of native plants to filter runoff, create and improve habitat for aquatic animals, increase water quality, and protect the shoreline from erosion. Two sections of bulkhead along the North and South edges of Ocean County Park's Duck Pond were removed so that the bank could be sloped naturally into the pond and populated with vegetation. The design serves as an additional point of stormwater collection and filtration, significantly reducing the amount of water flowing into nearby paved parking areas.

The northern portion of the living shoreline encompasses 0.06 acres and spans 100 feet along the shore. The southern portion  encompasses 0.18 acres and spans 40 feet along the shore. The living shorelines were seeded and then planted with Green Bulrush, Helen’s Flower, Switchgrass, Blue Mistflower, New England Aster, Upright Sedge, and Little BlueStem.


Floating Wetland Islands in Duck Pond

A floating wetland island is made up of a plastic matrix that is planted with water-loving native vegetation. The matrix promotes the growth of a healthy microbial community. The biofilm that develops on the plants' roots and within the island matrix, contribute toward the uptake of nutrients within the waterbody thus improving water quality. Floating wetland islands are anticipated to remove an estimated 17.33 lbs of phosphorus and 566.67 lbs of nitrogen each year, as well as promote a balanced ecosystem through the promotion of “healthy” bacteria and plankton.

Two 250-square-foot floating wetland islands made of polyethylene terephthalate layers were populated with native wetland plants and installed in Duck Pond. The plant pockets were then filled with a biomix of soil and peat, and a variety of native plant species were planted on both islands, including: Swamp Milkweed, Upright Sedge, Common Boneset, Crimson Eyed Rosemallow, and Blue Flag Iris.


Volunteer Involvement & Community Education

Given the magnitude of the project and the high-profile nature of Barnegat Bay, community education and outreach was an essential element of the project and its long-term success. Throughout the course of the project, efforts were made to increase public understanding of the project and to encourage public input in the design of the green infrastructure BMPs and the living shoreline.

The education and outreach was a collaborative effort led by ALS, with support provided by the Ocean County Department of Parks and Recreation, Georgian Court University, Brick Municipal utilities Authority, NJDEP, and Princeton Hydro.

The team conducted public presentations and meetings, installed educational signs to accompany the water quality improvement techniques that were implemented, created a website dedicated to providing project details and updates, and invited local residents to participate in shoreline restoration and floating wetland island planting efforts.


Successful Outcome

Following the project, in-situ and discrete water quality monitoring was conducted in stream in order to assess the effectiveness of the above BMPs. The combined green infrastructure and living shoreline elements of this project set the stage for a much needed effort to reduce nonpoint source pollution loading and address waterfowl-related pathogen impacts to Ocean County Park’s lakes and the Metedeconk River. It also heightened public awareness of nonpoint source pollution and the benefits of green infrastructure measures in the abatement of water quality problems.

The project serves as a model for proper stormwater management and living shoreline creation throughout both the Metedeconk River and Barnegat Bay Watersheds.


To learn more about Princeton Hydro’s robust natural resource management and restoration services, click here. Click here to read about another stormwater management green infrastructure project recently completed in Thompson Park, the largest developed park in the New Jersey's Middlesex County park system.  

[post_title] => Designing & Implementing Green Infrastructure in the Metedeconk River Watershed [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => designing-implementing-green-infrastructure-in-the-metedeconk-river-watershed [to_ping] => [pinged] => [post_modified] => 2022-12-02 15:20:03 [post_modified_gmt] => 2022-12-02 15:20:03 [post_content_filtered] => [post_parent] => 0 [guid] => https://princetonhydro.com/?p=11837 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [2] => WP_Post Object ( [ID] => 11506 [post_author] => 1 [post_date] => 2022-09-27 19:04:51 [post_date_gmt] => 2022-09-27 19:04:51 [post_content] =>

The Lion’s Gate Park and Urban Wetland Floodplain Creation Project has been chosen as a winner of the New Jersey Future “Smart Growth Awards” for 2022. The project transformed a densely developed, flood-prone, industrial site into a thriving public active recreation park with 4.2 acres of wetlands.

As stated in the New Jersey Future award announcement, “The park is representative of smart growth values, with walkable trails in the middle of a residential area, a regenerated protected wetland which helps to mitigate flooding from storms like Hurricane Ida, and mixed-use opportunities for recreation. The dual roles of Lion Gate Park as both a source of resilience and recreation demonstrate a model of land use and planning that values the accessibility of public spaces while acknowledging and addressing the urgent need to adapt to the growing impacts of climate change in New Jersey.”

The restoration project site is located in Bloomfield Township and includes 1,360 feet along the east bank of the Third River and 3,040 feet along the banks of the Spring Brook. These waterways are freshwater tributaries of the Passaic River and share a history of flooding above the site’s 100-year floodplain. The Third River, like many urban streams, tends to be the victim of excessive volume and is subjected to erosion and chronic, uncontrolled flooding.

By removing a little over four acres of upland historic fill in this density developed area and restoring the natural floodplain connection, we significantly improved the land’s ecological value; enhanced the aquatic and wildlife habitat; increased flood storage capacity for urban stormwater runoff; replaced invasive plant species with thriving native wetland and riparian plant communities; and provided outdoor recreation accessibility to Bloomfield Township.

  [gallery columns="2" link="none" ids="4704,9172"]  

The Lion Gate Park project is the culmination of nearly two decades of collaborative work. The primary project team includes the Township of Bloomfield, NY/NJ Baykeeper, Bloomfield Third River Association, CME Associates, PPD Design, GK+A Architects, Enviroscapes, Strauss and Associates/Planners, and Princeton Hydro. The project recieved $1.76 million in funding from the New Jersey Freshwater Wetlands Mitigation Council and another several million dollars from NJDEP’s Office of Natural Resource Restoration.

Princeton Hydro served as the ecological engineer to Bloomfield Township. Our scientists and engineers assisted in obtaining grants, collected background ecological data through field sampling and surveying, created a water budget, completed all necessary permitting, designed both the conceptual and final restoration plans, and conducted construction oversight throughout the project. Enviroscapes and Princeton Hydro are currently monitoring the site on behalf of the Township.

  [gallery link="none" columns="2" ids="4710,9319"]  

“Local residents are already benefiting from this floodplain creation project. During Tropical Storm Ida, the area held significant flood waters,” said Mark Gallagher, Vice President of Princeton Hydro. “This restoration project really exemplifies how a diverse group of public and private entities can work together to prioritize urban and underserved areas to mitigate flooding and create new open space. We’re honored to be recognized by NJ Future and selected as a winner of this important award.”

  [gallery link="none" columns="2" ids="9318,9294"]  

Since 2002, New Jersey Future has honored smart planning and redevelopment in New Jersey through its "Smart Growth Awards." The projects and plans chosen each year represent some of the best examples of sustainable growth and redevelopment in the state. For a complete list of 2022 Award Winners, click here. For more info on New Jersey Future, click here.

To learn more about the Bloomfield restoration project and see drone images of it all coming together, click below: [visual-link-preview encoded="eyJ0eXBlIjoiaW50ZXJuYWwiLCJwb3N0Ijo1ODU5LCJwb3N0X2xhYmVsIjoiQXJ0aWNsZSA1ODU5IC0gQmxvb21maWVsZDogUmVzdG9yYXRpb24gRWZmb3J0cyBUcmFuc2Zvcm1pbmcgSW5kdXN0cmlhbCBTaXRlIEludG8gVGhyaXZpbmcgUHVibGljIFBhcmsiLCJ1cmwiOiIiLCJpbWFnZV9pZCI6MCwiaW1hZ2VfdXJsIjoiIiwidGl0bGUiOiJCbG9vbWZpZWxkOiBSZXN0b3JhdGlvbiBFZmZvcnRzIFRyYW5zZm9ybWluZyBJbmR1c3RyaWFsIFNpdGUgSW50byBUaHJpdmluZyBQdWJsaWMgUGFyayIsInN1bW1hcnkiOiJBIGRlbnNlbHkgZGV2ZWxvcGVkLCBmbG9vZC1wcm9uZSwgZm9ybWVyIGluZHVzdHJpYWwgc2l0ZSBpbiBCbG9vbWZpZWxkLCBOZXcgSmVyc2V5IGlzIGJlaW5nIHRyYW5zZm9ybWVkIGludG8gYSB0aHJpdmluZyBwdWJsaWMgcGFyayBhbmQgNC4yIGFjcmVzIG9mIHdldGxhbmRzLiBUaGlzIGlzIHRoYW5rcyB0byB0aGUgVGhpcmQgUml2ZXIgRmxvb2RwbGFpbiBXZXRsYW5kIEVuaGFuY2VtZW50IFByb2plY3QsIHdoaWNoIGJyb2tlIGdyb3VuZCBpbiBNYXJjaCBvZiAyMDE5LiBUaGUgcHJvamVjdCB3aWxsIHJlc3RvcmUgdmFsdWFibGUgZWNvbG9naWNhbCBmdW5jdGlvbnMgYW5kIG5hdHVyYWwgZmxvb2RwbGFpbiBjb25uZWN0aW9uLCBlbmhhbmNlIGFxdWF0aWMuLi4iLCJ0ZW1wbGF0ZSI6InNpbXBsZSJ9"] [post_title] => Bloomfield's Lion’s Gate Park Restoration Wins 2022 Smart Growth Award [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => lion-gate-park-wins-smart-growth-award [to_ping] => [pinged] => [post_modified] => 2022-11-07 16:41:26 [post_modified_gmt] => 2022-11-07 16:41:26 [post_content_filtered] => [post_parent] => 0 [guid] => https://princetonhydro.com/?p=11506 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [3] => WP_Post Object ( [ID] => 11289 [post_author] => 1 [post_date] => 2022-08-26 19:06:38 [post_date_gmt] => 2022-08-26 19:06:38 [post_content] =>

The New Jersey Department of Environmental Protection (NJDEP) launched a Youth Inclusion Initiative to help the State of New Jersey develop the next generation of environmental protection, conservation and stewardship leaders while also providing an avenue for young adults from open space-constrained communities to engage with nature as they provide valuable stewardship services to the public through jobs at NJDEP. 

This year, the youth inclusion program is partnering with Groundwork Elizabeth, Rutgers University Camden, and Newark’s Ironbound Community Corporation to create a workforce development curriculum for people ages 17 to 24. Groundwork Elizabeth sent 12 participants to this year’s program, and Rutgers Camden and the Ironbound Community Corporation each sent 10.

[caption id="attachment_11299" align="aligncenter" width="771"] Photo by NJDEP[/caption]

The curriculum provides career education in the environmental protection field and helps the young participants develop the skills necessary to pursue those career paths in New Jersey. Participants learn through classroom instruction and by working across sectors regulated by the NJDEP, including water resources, air quality, energy and sustainability, public lands management, and wildlife. 

Susan Lockwood of NJDEP’s Division of Land Resource Protection’s Mitigation Unit reached out to Princeton Hydro to showcase ecosystem restoration and mitigation efforts across the state as well as discuss the variety of career roles that make these projects possible. Our portion of the curriculum entailed each group of students visiting two sites to learn about the benefits of restoring a landscape with native vegetation. Our discussion explored different fields of work related to urban environmental restoration and water resource protection and the job responsibilities of environmental scientists, water resource engineers, geologists, ecologists, pesticide applicators, and regulatory compliance specialists. 

The Abbott Marshlands in Trenton, New Jersey

[gallery link="none" ids="11287,11288,11281"]

After a quick stop at NJDEP’s office in Trenton to learn about NJ invasive species, all three groups popped over to the Tulpehaking Nature Center in Mercer County’s John A. Roebling Park to see the restoration site in the Abbott Marshlands. The 3,000-acre Abbott Marshlands is the northernmost freshwater tidal marsh on the Delaware River and contains valuable habitat for many rare species like River Otter, American Eel, Bald Eagle, and various species of wading birds. Unfortunately, the area has experienced a significant amount of loss and degradation, partially due to the introduction of the invasive Common Reed (Phragmites australis). For Mercer County Park Commission, Princeton Hydro implemented a restoration plan to remove Common Reed and expose the native seed bank in 40-acres of the marsh to increase biodiversity, improve recreational opportunities, and enhance visitor experience. Students learned how to tell the difference between the invasive Common Reed vs. native Wild Rice (Zizania palustris L.). They utilized tools of the trade like field guides and binoculars to identify flora and fauna in the marsh. Learn more about this project.


Mullica River Wetland Mitigation Site in Evesham, New Jersey

[gallery link="none" ids="11343,11342,11282"]

After visiting the Roebling site, students from Camden traveled down to Evesham Township in Burlington County to visit the Mullica River Wetland Mitigation Site. For this project, Princeton Hydro worked with GreenVest, LLC to restore a highly degraded 34-acre parcel of land which was previously used for cranberry cultivation. Through the implementation of restoration activities focused on removing the site’s agricultural infrastructure, Princeton Hydro and GreenVest were able to restore a natural wetland system on the site and over 1,600 linear feet of stream, providing forested, scrub-shrub, and emergent wetlands, forested uplands, headwater stream and riparian buffer, and critical wildlife habitat. The project also significantly uplifted threatened and endangered species habitats including Timber Rattlesnake.

Susan Lockwood of NJDEP, Owen McEnroe of GreenVest, and Dana Patterson of Princeton Hydro, lead the group of 10 students. They learned the difference between restoration and mitigation and got to experience the remoteness of Pinelands habitat. Walking through the site, we shared how the dam and dike removal helped to restore the river back to its natural free-flowing state and the numerous resulting environmental benefits.The site was chosen for the Camden students in order to demonstrate that successful mitigation and restoration projects happen throughout the State and not far from urban centers like Camden. Learn more about this project.


3. Third River Floodplain Wetland Enhancement Project in Bloomfield, New Jersey

[gallery link="none" ids="11344,11279,11277"]

After visiting the Roebling site, students from Newark and Elizabeth trekked up to Essex County to visit an urban wetland creation project now known as Lion Gate Park. The once densely developed, abandoned Scientific Glass Factory in Bloomfield Township was transformed into a thriving public park with 4.2 acres of wetlands. Students heard the story of how this project came to be; decades of advocacy and litigation by community members and environmental nonprofits to stop redevelopment of the site into 148 townhomes. Bloomfield Township eventually secured the property to preserve as open space through a range of grants from NJDEP. Serving as the ecological engineer to Bloomfield Township, Princeton Hydro designed, permitted, and oversaw construction for the restoration project and is currently monitoring the site. The restoration work brought back to the land valuable ecological functions and natural floodplain connection, enhanced aquatic and wildlife habitat, and increased flood storage capacity for urban stormwater runoff. Learn more about this project.


 

The NJDEP Youth Inclusion Initiative began on July 5 with a week of orientation classes, and continued through August with classroom and in-field learning. The initiative culminates on August 26 with a graduation and NJDEP Career Day, during which students will have the opportunity to meet with and discuss career options with various organizations tabling at the event, including Princeton Hydro.

Click here to learn more about the NJDEP education program. If you’re interested in learning more about Princeton Hydro’s ecological restoration services, click here.

[post_title] => Students from NJDEP's Youth Inclusion Initiative Tour Restored Landscapes with Princeton Hydro [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => njdep-youth-inclusion-initiative [to_ping] => [pinged] => [post_modified] => 2022-08-26 19:13:55 [post_modified_gmt] => 2022-08-26 19:13:55 [post_content_filtered] => [post_parent] => 0 [guid] => https://princetonhydro.com/?p=11289 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [4] => WP_Post Object ( [ID] => 11118 [post_author] => 1 [post_date] => 2022-07-13 13:03:18 [post_date_gmt] => 2022-07-13 13:03:18 [post_content] =>

A green roof is a roof fully or partially covered in plants and waterproof media that helps reduce the volume and velocity of stormwater runoff from roofs by temporarily storing stormwater, slowing excess stormwater release, and promoting evaporation.

Green roofs offer many benefits. They can help regulate a building’s internal temperature, which leads to heating and cooling energy savings; reduce stormwater runoff; mitigate the urban heat island effect; and increase biodiversity. 

From the planted rooftop of a building in Berwyn, Pennsylvania, we spoke with Philadelphia Green Roofs Principal and Owner Jeanne Weber, BSLA, GRP about the basics and benefits of green roofs for stormwater management. Click below to watch:

[embed]https://youtu.be/aD-c7rFTci8[/embed]

To learn more about green infrastructure and stormwater management, check out our blog:

[post_title] => Green Roofs for Stormwater Management: Learning the Basics & Benefits from Philadelphia Green Roofs [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => green-roofs-for-stormwater-management-learning-the-basics-benefits-from-philadelphia-green-roofs [to_ping] => [pinged] => [post_modified] => 2022-07-13 13:03:18 [post_modified_gmt] => 2022-07-13 13:03:18 [post_content_filtered] => [post_parent] => 0 [guid] => https://princetonhydro.com/?p=11118 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [5] => WP_Post Object ( [ID] => 10630 [post_author] => 1 [post_date] => 2022-05-06 12:15:24 [post_date_gmt] => 2022-05-06 12:15:24 [post_content] =>

In October 2021, the largest stream restoration in Maryland was completed. Over 7 miles (41,000 linear feet) of Tinkers Creek and its tributaries were stabilized and restored.

The project was designed by Princeton Hydro for GV-Petro, a partnership between GreenVest and Petro Design Build Group. Working with Prince George’s County Department of the Environment and coordinating with the Maryland-National Capital Parks and Planning Commission, this full-delivery project was designed to meet the County’s Watershed Implementation Plan total maximum daily load (TMDL) requirements and its National Pollutant Discharge Elimination System Municipal Separate Storm Sewer System (MS4) Discharge Permit conditions.

Today, we are thrilled to report that the once highly urbanized watershed is flourishing and teeming with life:

[gallery columns="2" size="medium" link="none" ids="10632,10631"]

We used nature-based design and bioengineering techniques like riparian zone planting and live staking to prevent erosion and restore wildlife habitat.

[gallery columns="2" size="medium" ids="10635,10634"]

10,985 native trees and shrubs were planted in the riparian area, and 10,910 trees were planted as live stakes along the streambank.

[gallery columns="2" size="medium" ids="10637,10636"]

For more information about the project visit GreenVest's website and check out our blog:

[post_title] => Revisiting Tinkers Creek Stream Restoration [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => revisiting-tinkers-creek-stream-restoration [to_ping] => [pinged] => [post_modified] => 2022-05-06 16:15:35 [post_modified_gmt] => 2022-05-06 16:15:35 [post_content_filtered] => [post_parent] => 0 [guid] => https://princetonhydro.com/?p=10630 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [6] => WP_Post Object ( [ID] => 6498 [post_author] => 1 [post_date] => 2022-01-31 08:24:00 [post_date_gmt] => 2022-01-31 08:24:00 [post_content] =>

Dr. Jack Szczepanski, CBLP, Princeton Hydro Senior Aquatic Ecologist, was recently featured on the Native Plants, Healthy Planet Podcast, which is ranked as a Top 20 Nature Apple podcast with 7k+ listeners per month. Hosts Fran Chismar and Tom Knezick interview some of the top minds in ecology, restoration, conservation, and native plants.

For the episode featuring Jack, the podcast explores floating wetland islands (FWIs).

FWIs are designed to mimic natural wetlands in a sustainable, efficient, and powerful way. They improve water quality by assimilating and removing excess nutrients that could fuel algae growth; provide valuable ecological habitat for a variety of beneficial species; help mitigate wave and wind erosion impacts; provide an aesthetic element; and add significant biodiversity enhancement within open freshwater environments. Installing FWIs is a low-cost, effective green infrastructure solution used to mitigate phosphorus and nitrogen stormwater pollution often emanating from highly developed communities and/or agricultural lands.

In the podcast, they discuss the benefits of FWIs, the science and design behind them, how to choose the appropriate native plants for them, and the different applications in which FWIs can be used. Jack also provides listeners with an overview of Princeton Hydro, our history, and the many ecological restoration services our team provides.

To listen to the full podcast, click here!

Jack is an expert in FWIs and is certified in green infrastructure. Recently, Jack led the Princeton Hydro team in an effort to install FWIs on Wesley and Sunset Lakes in Asbury Park, New Jersey. Learn more:

[post_title] => LISTEN: Floating Wetland Islands Podcast [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => floating-wetland-island-podcast [to_ping] => [pinged] => [post_modified] => 2022-02-18 13:20:31 [post_modified_gmt] => 2022-02-18 13:20:31 [post_content_filtered] => [post_parent] => 0 [guid] => https://princetonhydro.com/?p=6498 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [7] => WP_Post Object ( [ID] => 9813 [post_author] => 1 [post_date] => 2021-12-28 02:38:00 [post_date_gmt] => 2021-12-28 02:38:00 [post_content] =>

Thousands of native flowering plants and grasses were planted at Thompson Park in Middlesex County, New Jersey. Once established, the native plant meadow will not only look beautiful, it will reduce stormwater runoff and increase habitat for birds, pollinators, and other critical species.

The planting was completed by community volunteers along with Eric Gehring of  Kramer+Marks Architects, Middlesex County Youth Conservation Corps, Rutgers Cooperative Extension of Middlesex County, South Jersey Resource Conservation and Development Council, and Princeton Hydro Landscape Architect Cory Speroff, PLA, ASLA, CBLP. 

All of the plants that were installed are native to the north-central region of New Jersey. Volunteers planted switchgrass (panicum virgatum), orange coneflower (rudbeckia fulgida), blue wild indigo (baptisia australis), partridge pea (chamaecrista fasciculata), Virginia mountain mint (pycnanhemum virginianum), and aromatic aster (symphyotrichum oblongifolium). In selecting the location for each of the plants, special consideration was given to each species' drought tolerance and sunlight and shade requirements. The selected plant species all provide important wildlife value, including providing food and shelter for migratory birds.

Photos provided by: Michele Bakacs

The planting initiative is one part of a multi-faceted Stormwater Treatment Train project recently completed in Thompson Park. The project is funded by a Water Quality Restoration 319(h) grant awarded to South Jersey Resource Conservation and Development Council by the NJDEP.

Middlesex County Office of Parks and Recreation and Office of Planning, NJDEP, South Jersey Resource Conservation and Development Council, Middlesex County Mosquito Extermination Commission, Freehold Soil Conservation District, Rutgers Cooperative Extension, Enviroscapes, and Princeton Hydro worked together to bring this project to fruition.

To learn more about the Thompson Park Zoo stormwater project, check out our recent blog:

[post_title] => Thousands of Native Plants Installed in Thompson Park [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => thompson-park-native-plant-meadow [to_ping] => [pinged] => [post_modified] => 2021-12-27 12:58:34 [post_modified_gmt] => 2021-12-27 12:58:34 [post_content_filtered] => [post_parent] => 0 [guid] => https://princetonhydro.com/?p=9813 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [8] => WP_Post Object ( [ID] => 9403 [post_author] => 1 [post_date] => 2021-12-27 12:55:10 [post_date_gmt] => 2021-12-27 12:55:10 [post_content] =>

What is Stormwater Runoff?

Stormwater runoff is all of the rainfall or snowmelt water that is not absorbed into the ground and instead flows over land. When not managed properly, stormwater runoff causes issues like pollution in our waterways, flooding, and erosion. Stormwater runoff has been cited in multiple studies as a leading cause of water quality impairment to our local lakes and rivers. And, with increasing levels of rainfall from climate change impacts, stormwater management is an especially critical issue for communities all across the U.S.  

What is Stormwater Management?

Stormwater management focuses on reducing runoff and improving water quality through a variety of techniques. 

Traditional stormwater management methods include things like storm drains, retention ponds, and culverts. Green stormwater infrastructure uses vegetation, soil, and other natural components to manage stormwater. Green stormwater infrastructure systems mimic natural hydrology to take advantage of interception, evapotranspiration, and infiltration of stormwater runoff at its source. Examples include rain gardens, constructed wetlands, vegetated bioswales, and living shorelines.  Many stormwater systems include a combination of grey and green infrastructure management practices. 

Stormwater management treatment "trains" combine multiple stormwater management processes in order to prevent pollution and decrease stormwater flow volumes that negatively affect the receiving waterbody.

Let’s Take a Look at a Stormwater Treatment Train in Action

The Thompson Park Zoo in New Jersey

Thompson Park is a 675-acre recreation area - the largest developed park in the Middlesex County park system - with numerous attractions including playgrounds, ballfields, hiking trails, and a zoo. The zoo is an animal haven that houses over 50 geese and fowl, goats, and approximately 90 deer in a fenced enclosure. The park also features Lake Manalapan. 

Within the zoo is a 0.25-acre pond that impounds stormwater runoff from adjacent uplands and two stormwater-fed tributaries to Lake Manalapan and Manalapan Brook. There are three tributaries to the pond  with varying levels of erosion. The western tributary contains a headcut that is approximately four feet high. A headcut is created by a sudden down-cutting of the stream bottom. Similar to a miniature waterfall, a headcut slowly migrates upstream and becomes deeper as it progresses. The headcut in the Zoo tributary had destabilized the stream by eroding and incising its channel and banks. Additionally, foraging by Zoo inhabitants had removed most ground cover around the pond and associated tributaries, which also caused erosion. 

The bare soil conditions, headcut, and manure from the Zoo animals were contributing sediment, nutrient, and pathogen loading to the Zoo pond and subsequently Lake Manalapan. The Zoo pond drains to an outlet structure, a 24-inch reinforced concrete pipe (RCP), and subsequently to a vegetated swale via a stormwater outlet. A second outlet pipe drains stormwater runoff from an asphalt parking lot which discharges to the vegetated swale. 

The shoreline of Lake Manalapan where the vegetated swale drains into the lake was the subject of a previous restoration project during which a diverse suite of native plants was installed; however, the swale was not included in this project and a maintained lawn, which does not adequately filter stormwater runoff or provide any ecosystem services. The swale also had little access to its floodplain where vegetation can help filter non-point source (NPS) pollutants from the Zoo pond and adjacent uplands.

Implementing a Stormwater Management Treatment Train

In order to increase channel stability, decrease erosion, improve water quality and ecological function, and reduce the NPS pollutants originating from the Zoo, a stormwater management treatment train was designed and constructed. 

Middlesex County Office of Parks and Recreation and Office of Planning, the New Jersey Department of Environmental Protection (NJDEP), South Jersey Resource Conservation and Development Council (SJRC&D), Middlesex County Mosquito Extermination Commission, Freehold Soil Conservation District, Rutgers Cooperative Extension, Enviroscapes and Princeton Hydro worked together to fund,  design, permit,  and construct the following stormwater management measures: 

  • stabilizing the western tributary to Lake Manalapan and its existing headcut by constructing a rock step-pool sequence; 
  • installing BioChar filter bags within the Zoo pond to remove excess nutrients from the water column and bed sediments; 
  • daylighting a portion of the existing 24-inch RCP in order to widen the stream channel and allow for more stormwater absorption 
  • grading the vegetated swale to provide positive drainage and reduce mosquito breeding habitat; 
  • grading a floodplain bench adjacent to the swale to allow for increased water storage and absorption times and thus greater nutrient removal; 
  • installing outlet protection measures to reduce stormwater velocity and prevent scour within the swale; and 
  • replacing the manicured grass with native vegetation within transition areas to reduce erosion potential and increase biodiversity.

To see the project elements taking shape and being completed, watch our video:

https://www.youtube.com/watch?v=qXqDjH8knDY

The project is funded by a Water Quality Restoration 319(h) grant awarded to SJRC&D by the NJDEP for continued implementation of watershed-based measures to reduce NPS pollutant loading and compliance with a total phosphorus (TP) Total Maximum Daily Load (TMDL) established by the NJDEP for Lake Manalapan. The TMDL is a regulatory term in the U.S. Clean Water Act, that identifies the maximum amount of a pollutant (in this case phosphorus) that a waterbody can receive while still meeting water quality standards. 

“The South Jersey Resource Conservation and Development Council was pleased to participate in this project. Partnering with these various governmental agencies and private entities to implement on the ground conservation and water quality improvements aligns perfectly with our mission.  We are thrilled with the great work done at Thompson Park and look forward to continuing this partnership.”

Craig McGee, South Jersey Resource Conservation and Development Council District Manager

Construction of the stormwater treatment train components began in early August 2021 and was completed by the end of September 2021. 

The first step of the stormwater treatment train was to stabilize the tributary to Lake Manalapan and its associated headcut. Streambank stabilization measures included grade modifications to create a gradual stream slope and dynamically stable form with improved habitat features, including riffles and pools, with gravel and cobble substrate. On August 17, grading of the floodplain bench began, the RCP was exposed, and the team started  excavation for the lower three steps in the step-pool sequence.

On August 20, the rock grade and step-pool sequence were completed. And, fabric was installed along both sides of the rock-lined channel to increase stream-bank stability. Rock was placed within the pools to cover the edge of the fabric. We are very pleased to report that the newly restored channel held up to two large storm events during the construction process.

Bags of BioChar, a pure carbon charcoal-like substance made from organic material, were installed across the Zoo pond using an anchor and line system. The BioChar bags help to remove TP and other nutrients from the water column and bed sediments of the Zoo pond and subsequently Manalapan Brook Watershed. The team also built, planted and installed a floating wetland island, an effective green infrastructure solution that improves water quality by assimilating and removing excess nutrients that could fuel algae growth.

After conclusion of pipe lighting, excavation of the floodplain bench and installation of scour protection, native perennial vegetation was planted within the floodplain and swale in order to provide sediment deposition and nutrient uptake functions, as well as aquatic food web services and water temperature moderation before flows are discharged to Lake Manalapan. The plantings also enhance and create suitable avian and pollinator species habitat, and greater flora and fauna diversity.


This stormwater treatment train project improves the habitat and water quality of the Manalapan Brook Watershed by addressing NPS pollutants that originate from Thompson Park Zoo. The completed work also supports the Watershed Protection and Restoration Plan for the Manalapan Brook Watershed by reducing TSS and TP loads in compliance with the TMDL. Additionally, the project improves the overall ecosystem by stabilizing eroded streambanks, installing native and biodiverse vegetation, and reducing the quantity of pollutants entering Lake Manalapan. 

“Thompson Park Zoo is an excellent model for showcasing a successful and comprehensive approach to stormwater management and watershed restoration through a dynamic multi-stakeholder partnership. We are so proud to be a part of this project and continue to support the Manalapan Brook Watershed Protection Plan through a variety of restoration activities.”

Amy McNamara, E.I.T, Princeton Hydro Project Manager and Water Resource Engineer

At Princeton Hydro, we are experts in stormwater management; we recognize the numerous benefits of green infrastructure; and we’ve been incorporating green infrastructure into our engineering designs since before the term was regularly used in the stormwater lexicon. Click here to learn more about our stormwater management services.

[post_title] => Stormwater Management at Thompson Park Zoo [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => stormwater-management-at-thompson-park-zoo [to_ping] => [pinged] => [post_modified] => 2021-12-27 12:55:12 [post_modified_gmt] => 2021-12-27 12:55:12 [post_content_filtered] => [post_parent] => 0 [guid] => https://princetonhydro.com/?p=9403 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [9] => WP_Post Object ( [ID] => 9891 [post_author] => 1 [post_date] => 2021-11-24 08:48:53 [post_date_gmt] => 2021-11-24 08:48:53 [post_content] =>

Over the past year, the Deal Lake Commission (DLC) has implemented a variety of stormwater management projects aimed at reducing the volume of stormwater runoff, decreasing total phosphorus loading, and preventing debris, sediment, and pollutants from flowing into waterbodies throughout the Deal Lake, Wesley Lake, and Sunset Lake Watersheds.

These projects encompass a strategic combination of stormwater best management practices (BMPs), including structural BMPs, non-structural controls, and green infrastructure techniques. These stormwater management projects were funded by a Clean Water Act Section 319(h) grant awarded by the New Jersey Department of Environmental Protection to the DLC.

Let’s take a look at some of the recently completed initiatives:

 

Manufactured Treatment Devices

Manufactured Treatment Devices (MTDs) are pre-fabricated stormwater treatment structures used to address stormwater issues in highly developed, urban areas. MTDs capture and remove sediments, metals, hydrocarbons, and other pollutants from stormwater runoff before the runoff reaches surrounding waterbodies and/or storm sewer systems.

This year, Princeton Hydro worked with the DLC and Leon S. Avakian Engineers to design and install three MTDs throughout Asbury Park, NJ with the purpose of improving water quality in Sunset Lake.

[gallery columns="2" ids="9896,9897,9894,9895"]  

Students from the Asbury Park High School Engineering Academy, led by their teacher Kevin Gould, were invited to observe one of the MTD installations. The educational field trip was combined with a presentation from Princeton Hydro’s Senior Aquatic Ecologist Dr. Jack Szczepanski, which was titled, “Ecology and Engineering in Asbury Park.”

Click below to watch one of the recent MTD installations: [visual-link-preview encoded="eyJ0eXBlIjoiZXh0ZXJuYWwiLCJwb3N0IjowLCJwb3N0X2xhYmVsIjoiIiwidXJsIjoiaHR0cHM6Ly9mYi53YXRjaC85akFMUm01M1g1LyIsImltYWdlX2lkIjo5ODk1LCJpbWFnZV91cmwiOiJodHRwczovL3ByaW5jZXRvbmh5ZHJvLmNvbS93cC1jb250ZW50L3VwbG9hZHMvMjAyMS8xMS9ETEMtTVRELTIwMjEuanBnIiwidGl0bGUiOiJEZWFsIExha2UgQ29tbWlzc2lvbiBvbiBGYWNlYm9vayBXYXRjaCIsInN1bW1hcnkiOiJNYW51ZmFjdHVyZWQgVHJlYXRtZW50IERldmljZSBpbnN0YWxsIGF0IDV0aCBhbmQgZ3JhbmQgdG9kYXkuIDQxLDAwMCBwb3VuZHMgb2YgaXQuIEZvciBpbmZvIFNlZSB0aGlzIGxpbmsuIGh0dHBzOi8vd3d3LnlvdXR1YmUuY29tL3dhdGNoP3Y9Ui1DMUd4bXR4MEkiLCJ0ZW1wbGF0ZSI6InNpbXBsZSJ9"]  

Rain Garden Renovation

Rain gardens are a cost effective, attractive, and sustainable way to minimize stormwater runoff and filter out pollutants. This aesthetic, low-maintenance addition to any outdoor landscape creates a functioning habitat that attracts pollinators, beneficial insects, and birds. And, in a small way, it helps reduce erosion, promote groundwater recharge, and minimize flooding.

The DLC along with the Deal Lake Watershed Alliance, Asbury Park's Environmental Shade Tree Commission (ESTC), Asbury Park Department of Public Works (DPW) and Princeton Hydro completed a major renovation to an existing rain garden located in front of the Asbury Park bus terminal and municipal building.

The rain garden, which was originally constructed by the ESTC, was not functioning properly due to one of the inlets being completely obstructed by sediment. The DPW helped clear the sediment and regrade it, while the ESTC removed invasive weeds and replanted it with native shrubs, perennials, and flowers.

For more information about rain gardens and instructions on how to build your own, check out our recent blog: [visual-link-preview encoded="eyJ0eXBlIjoiaW50ZXJuYWwiLCJwb3N0Ijo5NjQ2LCJwb3N0X2xhYmVsIjoiQXJ0aWNsZSA5NjQ2IC0gSG93IFRvIEJ1aWxkIGEgUmFpbiBHYXJkZW4gaW4gMTAgU3RlcHMiLCJ1cmwiOiIiLCJpbWFnZV9pZCI6OTY1NSwiaW1hZ2VfdXJsIjoiaHR0cHM6Ly9wcmluY2V0b25oeWRyby5jb20vd3AtY29udGVudC91cGxvYWRzLzIwMjEvMDkvSU1HXzk2Mzktc2NhbGVkLmpwZyIsInRpdGxlIjoiSG93IFRvIEJ1aWxkIGEgUmFpbiBHYXJkZW4gaW4gMTAgU3RlcHMiLCJzdW1tYXJ5IjoiRWFybGllciB0aGlzIHllYXIsIFByaW5jZXRvbiBIeWRybyBQcmVzaWRlbnQgR2VvZmZyZXkgR29sbCwgUC5FLiBjb25zdHJ1Y3RlZCBhIHJhaW4gZ2FyZGVuIGluIGhpcyBmcm9udCB5YXJkLiBIZSBkb2N1bWVudGVkIHRoZSBwcm9jZXNzIGFuZCBwdXQgdG9nZXRoZXIgc3RlcC1ieS1zdGVwIGluc3RydWN0aW9ucyBvbiBob3cgdG8gYnVpbGQgeW91ciBvd24uIiwidGVtcGxhdGUiOiJzaW1wbGUifQ=="]

Floating Wetland Islands

Floating Wetland Islands (FWIs) are a low-cost, effective green infrastructure solution used to mitigate phosphorus and nitrogen stormwater pollution. FWIs are designed to mimic natural wetlands in a sustainable, efficient, and powerful way. They improve water quality by assimilating and removing excess nutrients that could fuel harmful algae blooms; provide valuable ecological habitat for a variety of beneficial species; help mitigate wave and wind erosion impacts; provide an aesthetic element; and add significant biodiversity enhancement within open freshwater environments.

The DLC worked with Princeton Hydro to design and install a total of 12 floating wetland islands, six in Sunset Lake and six in Wesley Lake. A team of volunteers, led by the DLC and Princeton Hydro, planted vegetation in each of the FWIs and launched and secured each island into the lakes.

[gallery link="none" columns="2" ids="8942,8945,8936,8935"]  

Clean Water Act Section 319(h) grant related efforts will continue in the Spring of 2022 with the design and installation of “bioscape” gardens and tree boxes. Stay tuned for updates!

...

To learn more about the Deal Lake Commission, click here. To read about one of Princeton Hydro’s recently completed stormwater management projects, click here.

[post_title] => 3 Techniques to Manage Stormwater & Improve Water Quality [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => 3-stormwater-management-techniques [to_ping] => [pinged] => [post_modified] => 2021-12-10 17:21:05 [post_modified_gmt] => 2021-12-10 17:21:05 [post_content_filtered] => [post_parent] => 0 [guid] => https://princetonhydro.com/?p=9891 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [10] => WP_Post Object ( [ID] => 9646 [post_author] => 1 [post_date] => 2021-09-28 00:55:54 [post_date_gmt] => 2021-09-28 00:55:54 [post_content] =>

If you’re looking for a way to solve drainage issues in your yard and put rainwater to good use, look no further than a rain garden. Rain gardens are a cost effective, attractive, and sustainable way to minimize stormwater runoff and filter out pollutants. This aesthetic, low-maintenance addition to any outdoor landscape creates a functioning habitat that attracts pollinators, beneficial insects, and birds. And, in a small way, it helps reduce erosion, promote groundwater recharge, and minimize flooding

WHAT IS A RAIN GARDEN? 

A rain garden is an excavated depression in the landscape that is planted with wetland or wet-tolerant plants. It captures a portion of stormwater runoff from a targeted area (i.e., rooftop, walkway, or driveway).  Even if it intercepts the first one inch of rain and the rest overflows, it will still capture about 90% of the total annual rainfall. 

The concept of rain gardens are becoming mainstream and there are many, many online resources to obtain design guidelines. In fact, even “This Old House”, a PBS stalwart, has an instructional page to help guide the design process!

"After repeated stormwater drainage issues near my home’s foundation due to flat topography, I opted to go the environmentally-friendly route of installing a rain garden in my front yard."

Princeton Hydro President Geoff Goll, P.E. recently installed a rain garden at his home and documented the process and put together step-by-step instructions on how to build your own:


STEP 1: CHOOSE THE BEST LOCATION

Where does your stormwater flow? A rain garden is designed to infiltrate water, so it is best to build your rain garden in an area where rainwater will feed into it from downspouts, driveways or low points in your yard. 

  • At least 15 feet away from your home and downhill from any foundation.
  • Should not be placed over a septic tank or underground utility lines. 
  • Ensure there is a way to direct the rainwater runoff from the area to be treated (i.e., run a drainage pipe from a roof leader or grade the landscape so the water flows into the rain garden).
  • Keep it outside the drip line of any trees you want to keep. 
  • Do not select an area that is already wet due to high groundwater or an area that already receives water from other locations, so you do not overwhelm your rain garden, and divert other water away (it will defeat the benefit of the rain garden).
  • Consider the soil types. It is best to have soils that are sandy or silty sands. With compost added and blended in, a siltier type of soil can be improved too. However, clay soils are not conducive to a rain garden. A good source to check is the USDA National Database Mapping of Soils and/or dig down 2 feet to view the soils. Click here for a clear explanation for determining your soil type.

STEP 2: TEST THE SOIL AT YOUR SELECTED LOCATION

In order to determine if the soil at your selected location will readily infiltrate runoff, dig a few test holes. An optimal location will achieve one inch per hour of infiltration (i.e. the hole empties in 8 hours) and a good location will achieve one-half inch per hour (empties in 16 hours). If it is slower than 24 hours, you should consider a new location.

  • Dig a 12 inch diameter by 12 inch deep hole in the selected location.
  • Place a 12 inch ruler in the hole and fill it with 8 inches of water.
  • Record the total time it takes for the water to completely escape.

STEP 3: DESIGN THE SIZE & CAPACITY

Determine the size and shape of your garden. Geoff chose a circular shape for his garden. 

  • Choose your shape.  A circular shape or kidney shape are the most common. 
  • Measure the total area to be treated (i.e. size of water coming rooftop or driveway into the rain garden). This can be done on foot, or even more quickly by finding your home on Google Earth and using the measuring tool. 
  • Choose how large the rain garden will be. A rule-of-thumb is to make the bottom surface of the rain garden 1/10th to 1/6th the size of the area to be treated. So, if you have an 800 square foot roof to be treated, the bottom area of the rain garden will be from 80 square feet to 133 square feet. (Note: Even if the size is 1/15th the area due to budget or location constraints, you are still doing good for the environment. Build on!)
  • Choose the appropriate depth of your garden. Generally, 6 to 8 inches of ponded depth is used. Using the runoff area calculations above and these depths, you can capture 85% to 90% of all runoff that occurs during the year, or about one inch of rainfall (in the Northeastern US). By capturing this much rain, the rain garden mimics the infiltration rate of a forest or meadow. What a great feeling, right?

STEP 4:  DIG YOUR HOLE

IMPORTANT! Before you dig, you MUST call your state’s dig-safe number (811) at least 72 hours before putting a shovel in the ground. It’s the law! They will mark-out your property for free so that you don’t unintentionally dig into any underground utility lines.

Depending on whether you will hand-dig your rain garden (as Geoff did) or rent a small excavator (you can rent one from Home Depot or local equipment rental centers), will dictate how much time the effort will take.  Prepare your garden by removing all of the grass.  If you can, separate the topsoil for later use or for other areas of your property.

Start digging out the area until you reach the proposed bottom depth. In some cases, you may have to dig a little further down to reach more adequate soils for infiltration. The sides of the hole should form a gentle slope toward the middle and create a berm around the perimeter that ensures the garden will hold water in when it rains.

Tip: For excavated soil that’s not reused in your rain garden, find it a home by filling in low areas in your lawn or stockpile it for later use.

STEP 5: CREATE THE OVERFLOW PATHWAY 

Carve out a spillway by creating a small indentation in the berm of the rain garden, lining it with permeable weed control fabric, and filling it with decorative stone.The spillway will allow excess rain water to overtop and flow out of the garden should it overfill during a storm event. 

STEP 6:  ADD SOIL, SAND, &  ROCKS

Use some of the excavated soil to create a berm around the rain garden. Once depth for adequate infiltration is reached, begin filling the hole with sand, and continue to backfill it to the proposed final grade, making sure the bottom of the rain garden is 6 to 8 inches below the surrounding lawn. (Note: Geoff ordered 3 tons of sand for his project, however, this quantity will be custom to your site, so use your best judgement to determine how much you’ll need). Add leaf compost (about 4 lbs per square foot) to the top of the sand and hand-till the compost with a shovel to a depth of 12 inches.

STEP 7: SELECT & PLANT THE PLANTS 

Having native wetland or wet tolerant plants that can withstand periods of drought is the key to success. Use hardy perennial species with well-established root systems. For guidance, look to your local garden center and a niche plant nursery. Make the plant palette your own. (Note: Be on the lookout for deer resistant plantings if this is an issue in your area). 

When it’s time for planting, place each plant 12 inches apart and dig each hole twice as wide as the plant plug. The crown of the plant should be level with the ground.  Apply wood mulch over the bed. Water frequently until the plants are established. Later on, no watering will be necessary. The vegetation will fill in nicely over the next few seasons.

STEP 8: CONNECT YOUR RAIN GUTTER (OPTIONAL)

If you’re planning to connect your gutter to the rain garden, it’s a good idea to install the drainage pipe last so the project is not inundated with water after a rainstorm while it is still under construction. 

  • Dig a trench for a pipe that will carry water from one or more gutter downspouts to the rain garden.  (Tip: First peel up the turf over the trench, roll it up, and put it to the side. Once you backfill the area, you can simply roll the turf back. It is not a perfect method by any means, but the grass will grow back quicker than re-seeding.)
  • Line the trench with stones to prevent erosion. 
  • Install the PVC piping. Make sure the pipe has a positive slope for its entire length and that the spillway of your rain garden is at least 12 inches in elevation below the ground surface at your foundation so that water does not back up to the house during rain events. Use a level to make sure there is at least a ¼” per foot of pipe run. The slope keeps the pipe from collecting soil and debris and clogging. This will help prevent the water from shooting out of the connection between the downspout leader and your drainage pipe! 
  • Optional: Install a pop up emitter at least 10 feet from the house to allow any backed up water to safely drain away from the house. The emitter acts as a relief valve to allow water to discharge without getting to your foundation or basement.
  • Extend the piping into the rain garden basin by approximately one foot. 
  • When the piping is in place, fill in the trench with soil.

STEP 9: LET IT RAIN! (IS IT WORKING?)

It is very important to keep an eye on your rain garden, especially after rain, to ensure that it is emptying in a timely manner. The last thing you want is to have the neighbors complaining about the “mosquito pond” next door. Generally, all the water should be infiltrated into the soil within 24 hours. 

“A week after I completed the installation of the rain garden, we received over 4 inches of rain within a 5 day period, and then, we were hit with Tropical Storm Ida with 4.29 inches of rain (from my home rain gage) in a period of less than 24 hours. The rain garden worked very well, and even after Ida, the rain garden infiltrated all the water retained in the bottom within an 8 hour period (about an inch per hour).”

STEP 10: MAINTAIN YOUR GARDEN

Each season, pull weeds, remove debris, and replenish the mulch as needed in order to help retain moisture and block weeds. 

“During the construction, I’m sure my neighbors were judging the ugly hole in my front lawn. And, my wife even marked herself as “Safe from the Hole” on Facebook! However, when it was finished, she was pleasantly surprised at how pretty the rain garden looked and amazed at how it managed stormwater,” said Geoff. “If everyone in my neighborhood installed a rain garden, imagine the positive reduction in stormwater and flooding that would occur downstream.  Plus, we’d have some pretty awesome looking native flowers and grasses around for the pollinators and wildlife.”  

[post_title] => How To Build a Rain Garden in 10 Steps [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => how-to-build-a-rain-garden-in-10-steps [to_ping] => [pinged] => [post_modified] => 2021-10-07 13:21:56 [post_modified_gmt] => 2021-10-07 13:21:56 [post_content_filtered] => [post_parent] => 0 [guid] => https://princetonhydro.com/?p=9646 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) ) [post_count] => 11 [current_post] => -1 [in_the_loop] => [post] => WP_Post Object ( [ID] => 11558 [post_author] => 1 [post_date] => 2022-12-20 05:17:55 [post_date_gmt] => 2022-12-20 05:17:55 [post_content] =>

When New Jersey Manufacturers Insurance Group
(NJM) developed their new Regional Operations Facility, a 55-acre corporate campus in Hammonton, New Jersey, they approached the construction with one major goal at the forefront: stormwater management.

Fundamental to that goal was designing a green infrastructure stormwater management system capable of containing on site nearly all the stormwater runoff generated by storm events up to and including a 100-year frequency, 24-hour duration storm.

The group hired Princeton Hydro, recognized as a leader in innovative, cost-effective, and environmentally sound stormwater management, to develop a concept plan that could be built within the context of proper stormwater management and meet the stringent requirements of the NJ Pinelands Comprehensive Management Plan.

To accomplish the ambitious stormwater management goals, the project team designed and implemented an integrated stormwater management system that combined traditional and green infrastructure components, and consisted of bioinfiltration basins, parking lot islands, a wetland basin, and a bioretention island. These features were designed to promote the interception, evapotranspiration, and infiltration of stormwater runoff at its source.

Emphasis was given to green infrastructure BMPs specifically capable of treating and infiltrating large volumes of runoff. Thus, all of the infiltration areas were designed using a soil amendment process where the underlying soils were excavated and amended with organic material to improve the underlying recharge capabilities of the soils. To complement the BMPs, the team designed and installed 120,000 gallon below-grade rainwater capture and reuse system. The system captures roof runoff to be used for on-site irrigation, which not only reduces stormwater volume but also decreases the facility’s water usage.

The project is one of the first projects in New Jersey built to infiltrate nearly 100% of the on-site runoff and uses site-design-based stormwater capacity to determine allowable impervious cover.

[gallery link="none" ids="11591,11590,11592"]

Before construction began, the team implemented a comprehensive study, which began with a detailed analysis of the site’s soils, with particular attention given to physical properties of the soil and the depth to seasonal high water (groundwater). During construction, Princeton Hydro provided monitoring services for all earthwork activities. Our team was on site full-time during critical activities to ensure that the project was built in accordance with the intent of the original design and ensure the maintenance of the project schedule. The team also provided environmental and geotechnical design and engineering services throughout the corporate campus construction, including the analysis of subsurface structures shop drawings and providing consultation support to the general contractor.

For the project, we partnered with Burgis Associates, Inc. who created site designs, provided landscape architectural and professional planning services, and helped to obtain agency approvals. The landscape program sought to establish native plant communities that filter runoff, provide an aesthetically pleasing visual, reduce invasive species, create habitat for pollinators and other critical species, and require limited maintenance to stay healthy and flourishing.

Post construction, the Princeton Hydro team led the preparation of the scope of services, budget, and proposal for the Stormwater Basin Maintenance, which included mowing and clearing the vegetation in nine infiltration basins. The basins were inspected monthly for functionality and for the presence of invasive plants. And, we are happy to report that the basins are all working properly and invasive plants have been eradicated.

At Princeton Hydro, we are experts in stormwater management; we recognize the numerous benefits of green infrastructure; and we’ve been incorporating green infrastructure into our engineering designs since before the term was regularly used in the stormwater lexicon. Click below to read about a Stormwater Treatment Train we designed and implemented in Thompson Park, a 675-acre recreation area in Middlesex County, New Jersey.

  [post_title] => Designing a Stormwater Management System for a 55-Acre Corporate Campus [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => designing-a-stormwater-management-system-for-a-55-acre-corporate-campus [to_ping] => [pinged] => [post_modified] => 2022-12-20 23:39:23 [post_modified_gmt] => 2022-12-20 23:39:23 [post_content_filtered] => [post_parent] => 0 [guid] => https://princetonhydro.com/?p=11558 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [comment_count] => 0 [current_comment] => -1 [found_posts] => 19 [max_num_pages] => 2 [max_num_comment_pages] => 0 [is_single] => [is_preview] => [is_page] => [is_archive] => [is_date] => [is_year] => [is_month] => [is_day] => [is_time] => [is_author] => [is_category] => [is_tag] => [is_tax] => [is_search] => [is_feed] => [is_comment_feed] => [is_trackback] => [is_home] => 1 [is_privacy_policy] => [is_404] => [is_embed] => [is_paged] => [is_admin] => [is_attachment] => [is_singular] => [is_robots] => [is_favicon] => [is_posts_page] => 1 [is_post_type_archive] => [query_vars_hash:WP_Query:private] => 4f216fe0bb6ccbb7273c8cb23d4c8ce4 [query_vars_changed:WP_Query:private] => 1 [thumbnails_cached] => [allow_query_attachment_by_filename:protected] => [stopwords:WP_Query:private] => [compat_fields:WP_Query:private] => Array ( [0] => query_vars_hash [1] => query_vars_changed ) [compat_methods:WP_Query:private] => Array ( [0] => init_query_flags [1] => parse_tax_query ) )

Blog

archive
 
Topics
Select Topics