We’re committed to improving our ecosystems, quality of life, and communities for the better.
Our passion and commitment to the integration of innovative science and engineering drive us to exceed on behalf of every client.
WP_Query Object ( [query] => Array ( [page] => [pagename] => blog ) [query_vars] => Array ( [page] => 0 [pagename] => blog [error] => [m] => [p] => 0 [post_parent] => [subpost] => [subpost_id] => [attachment] => [attachment_id] => 0 [name] => [page_id] => 0 [second] => [minute] => [hour] => [day] => 0 [monthnum] => 0 [year] => 0 [w] => 0 [category_name] => lake-and-pond-management [tag] => [cat] => 37 [tag_id] => [author] => [author_name] => [feed] => [tb] => [paged] => 1 [meta_key] => [meta_value] => [preview] => [s] => [sentence] => [title] => [fields] => [menu_order] => [embed] => [category__in] => Array ( [0] => 37 ) [category__not_in] => Array ( ) [category__and] => Array ( ) [post__in] => Array ( ) [post__not_in] => Array ( ) [post_name__in] => Array ( ) [tag__in] => Array ( ) [tag__not_in] => Array ( ) [tag__and] => Array ( ) [tag_slug__in] => Array ( ) [tag_slug__and] => Array ( ) [post_parent__in] => Array ( ) [post_parent__not_in] => Array ( ) [author__in] => Array ( ) [author__not_in] => Array ( ) [posts_per_page] => 11 [ignore_sticky_posts] => [suppress_filters] => [cache_results] => 1 [update_post_term_cache] => 1 [lazy_load_term_meta] => 1 [update_post_meta_cache] => 1 [post_type] => [nopaging] => [comments_per_page] => 5 [no_found_rows] => [order] => DESC ) [tax_query] => WP_Tax_Query Object ( [queries] => Array ( [0] => Array ( [taxonomy] => category [terms] => Array ( [0] => 37 ) [field] => term_id [operator] => IN [include_children] => ) ) [relation] => AND [table_aliases:protected] => Array ( [0] => ph_term_relationships ) [queried_terms] => Array ( [category] => Array ( [terms] => Array ( [0] => 37 ) [field] => term_id ) ) [primary_table] => ph_posts [primary_id_column] => ID ) [meta_query] => WP_Meta_Query Object ( [queries] => Array ( ) [relation] => [meta_table] => [meta_id_column] => [primary_table] => [primary_id_column] => [table_aliases:protected] => Array ( ) [clauses:protected] => Array ( ) [has_or_relation:protected] => ) [date_query] => [queried_object] => WP_Post Object ( [ID] => 6 [post_author] => 1 [post_date] => 2021-01-18 12:51:43 [post_date_gmt] => 2021-01-18 12:51:43 [post_content] => [post_title] => Blog [post_excerpt] => [post_status] => publish [comment_status] => closed [ping_status] => closed [post_password] => [post_name] => blog [to_ping] => [pinged] => [post_modified] => 2021-01-18 12:51:43 [post_modified_gmt] => 2021-01-18 12:51:43 [post_content_filtered] => [post_parent] => 0 [guid] => https://princetonhydro.com/?page_id=6 [menu_order] => 0 [post_type] => page [post_mime_type] => [comment_count] => 0 [filter] => raw ) [queried_object_id] => 6 [request] => SELECT SQL_CALC_FOUND_ROWS ph_posts.ID FROM ph_posts LEFT JOIN ph_term_relationships ON (ph_posts.ID = ph_term_relationships.object_id) WHERE 1=1 AND ( ph_term_relationships.term_taxonomy_id IN (37) ) AND ((ph_posts.post_type = 'post' AND (ph_posts.post_status = 'publish' OR ph_posts.post_status = 'acf-disabled'))) GROUP BY ph_posts.ID ORDER BY ph_posts.menu_order, ph_posts.post_date DESC LIMIT 0, 11 [posts] => Array ( [0] => WP_Post Object ( [ID] => 12609 [post_author] => 1 [post_date] => 2023-04-22 17:22:00 [post_date_gmt] => 2023-04-22 17:22:00 [post_content] => This article, written by Princeton Hydro team members, was recently published in the ANJEC Report, a quarterly magazine published by the Association of New Jersey Environmental Commissions. Our lakes in New Jersey are an invaluable resource for clean drinking water, outdoor recreation, and agriculture and provide habitat for aquatic flora and fauna. Home to about 1,700 lakes, the “Garden State” is also the most densely populated state. Excess nutrients from fertilizers, roadway pollutants, overdevelopment, and failing septic systems can end up in our lakes and impair water quality. Larger rain events can also cause erosion and instability of streams, adding to the influx of more excess nutrients to our lakes and ponds. Changes in hydrology, water chemistry, biology, and/or physical properties in these complex ecosystems can have cascading consequences that can alter water quality and the surrounding ecosystem. For example, excess nutrients can fuel algal and plant growth in lakes and lead to issues like harmful algal blooms (HABs) or fish kills. In order to ensure that we protect the overall health of our local waterbodies, it’s important that we look beyond just the lake itself. Implementing holistic watershed-based planning is a critical step in managing stormwater runoff, preventing the spread of HABs, and maintaining water quality. A watershed management plan defines and addresses existing or future water quality problems from both point sources and nonpoint sources of pollutants*. This approach addresses all the beneficial uses of a waterbody, the criteria needed to protect the use, and the strategies required to restore water quality or prevent degradation. When developing a watershed plan, we review all the tools in the toolbox and recommend a variety of best management practices to prevent nutrients from entering lakes or streams. Options include short- and long-term solutions such as green stormwater infrastructure, stream bank stabilization, and stormwater basin retrofits. To reduce nutrient availability in lakes, one innovative tool in our toolbox is floating wetland islands (FWIs). FWIs are a low-cost, effective green infrastructure solution that are designed to mimic natural wetlands in a sustainable, efficient, and powerful way. They improve water quality by assimilating and removing excess nutrients; provide valuable ecological habitat for a variety of beneficial species; help mitigate wave and wind erosion impacts; provide an aesthetic element; and add significant biodiversity enhancement within open freshwater environments. FWIs are also highly effective in a range of waterbodies from big to small, from deep to shallow. [caption id="attachment_4363" align="aligncenter" width="631"] This illustration, sketched by Princeton Hydro Staff Scientist Ivy Babson, conveys the functionality of a floating wetland island.[/caption] Typically, FWIs consist of a constructed floating mat, usually composed of woven, recycled plastic material, with vegetation planted directly into the material. The islands are then launched into the lake and anchored in place, and, once established, require very little maintenance. It estimated that one 250-square-foot FWI has a surface area equal to approximately one acre of natural wetland. These floating ecosystems can remove approximately 10 pounds of phosphorus each year. To put that into perspective, one pound of phosphorus can produce 1,100 pounds of algae each year, so each 250-square-feet of FWI can potentially mitigate up to 11,000 pounds of algae. In addition to removing phosphorus that can feed nuisance aquatic plant growth and algae, FWIs also provide excellent refuge habitat for beneficial forage fish and can provide protection from shoreline erosion. Let's take a look at some examples of FWIs in action: Lake Hopatcong [gallery columns="2" link="none" ids="11071,10666"] Princeton Hydro has been working with Lake Hopatcong, New Jersey’s largest Lake, for 30+ years, restoring the lake, managing the watershed, reducing pollutant loading, and addressing invasive aquatic plants and nuisance algal blooms. Back in 2012, Lake Hopatcong became the first public lake in New Jersey to install FWIs. In the summer of 2022, nine more FWIs were installed in the lake with help from staff and volunteers from the Lake Hopatcong Foundation, Lake Hopatcong Commission, and Princeton Hydro. The lake’s Landing Channel and Ashley Cove were chosen for the installations because they are both fairly shallow and prone to weed growth. The installation of these floating wetland islands is part of a series of water quality initiatives on Lake Hopatcong funded by a NJDEP Harmful Algal Bloom Grant and 319(h) Grant awarded to Lake Hopatcong Commission and Lake Hopatcong Foundation. Greenwood Lake Princeton Hydro partnered with the Greenwood Lake Commission (GWLC) on a FWI installation in Belcher's Creek, the main tributary of Greenwood Lake. The lake, a 1,920-acre waterbody located in both New Jersey and New York, is a highly valued ecological, economical, and recreational resource. The lake also serves as a headwater supply of potable water that flows to the Monksville Reservoir and eventually into the Wanaque Reservoir, where it supplies over 3 million people with drinking water. The goal of the FWI Installation was to help decrease total phosphorus loading, improve water quality, and create important habitat for beneficial aquatic, insect, bird, and wildlife species. The project was partially funded by the NJDEP Water Quality Restoration Grants for Nonpoint Source Pollution Program under Section 319(h) of the federal Clean Water Act. GWLC was awarded one of NJDEP’s matching grants, which provided $2 in funding for every $1 invested by the grant applicant. Harveys Lake Measuring 630+ acres, Harveys Lake is the largest natural lake (by volume) in Pennsylvania and is one of the most heavily used lakes in the area. It is classified as a high quality - cold water fishery habitat (HQ-CWF) and is designated for protection under the classification. Since 2002, The Borough of Harveys Lake and Harveys Lake Environmental Advisory Council has worked with Princeton Hydro on a variety of lake management efforts focused around maintaining high water quality conditions, strengthening stream banks and shorelines, and managing stormwater runoff. Five floating wetland islands were installed in Harveys Lake to assimilate and reduce nutrients already in the lake. The islands were placed in areas with high concentrations of nutrients, placed 50 feet from the shoreline and tethered in place with steel cables and anchored. The FWIs were funded by PADEP. Wesley Lake and Sunset Lake Working with the Deal Lake Commission (DLC), Princeton Hydro designed and installed 12 floating wetland islands at two lakes in Asbury Park, NJ. In order to complete the installation of the floating wetland islands, our team worked with the DLC to train and assist over 30 volunteers to plant plugs in the islands and launch them into the two lakes. Our experts helped disseminate knowledge to the volunteers, not only about how to install the floating wetland islands, but how they scientifically worked to remove excess nutrients from the water. With assistance from Princeton Hydro, DLC acquired the 12 floating islands – six for Wesley Lake and six for Sunset Lake – through a Clean Water Act Section 319(h) grant awarded by NJDEP. In addition to the direct environmental benefits of FWIs, the planting events themselves, which usually involve individuals from the local lake communities, have long-lasting positive impacts. When community members come together to help plant FWIs, it gives them a deepened sense of ownership and strengthens their connection to the lake. This, in turn, encourages continued stewardship of the watershed and creates a broader awareness of how human behaviors impact the lake and its water quality. And, real water quality improvements begin at the watershed level with how people treat their land. For more information on watershed planning or installing FWI in your community, click here to contact us. To learn more about ANJEC, go here. - *U.S. Environmental Protection Agency. 2008. Handbook for Developing Watershed Plans to Restore and Protect Our Waters. [post_title] => Floating Wetland Islands: A Sustainable, Affordable, Effective Lake Management Solution [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => floating-wetland-islands-anjec-2023 [to_ping] => [pinged] => [post_modified] => 2023-04-25 12:36:43 [post_modified_gmt] => 2023-04-25 12:36:43 [post_content_filtered] => [post_parent] => 0 [guid] => https://princetonhydro.com/?p=12609 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [1] => WP_Post Object ( [ID] => 12419 [post_author] => 1 [post_date] => 2023-03-17 18:44:47 [post_date_gmt] => 2023-03-17 18:44:47 [post_content] => [caption id="attachment_12423" align="aligncenter" width="901"] Harveys Lake, Luzerne County, PA in February 2023 (Photo by Jason Miller)[/caption] By Dr. Fred Lubnow, Senior Technical Director of Ecological Services The Winter of 2022 – 2023 is turning out to be a mild one, at least in the Mid-Atlantic region of the United States. Anecdotally, there has been no measurable amount of snowfall in 2023 as of early March. In northeastern Pennsylvania, January and February 2023 mean monthly temperatures were 9.6 and 7.5 degrees warmer relative to their long-term respective average values. In northern New Jersey, January and February 2023 mean monthly temperatures were 11.9 and 5.6 degrees warmer relative to their respective long-term average values (Northeast Regional Climate Center CLIMOD database). [caption id="attachment_12421" align="alignleft" width="239"] Lake Hopatcong, Sussex – Morris Counties, NJ (Photo by Donna Macalle-Holly, Lake Hopatcong Foundation)[/caption] This has had a profound impact on lake ecosystems. For example, in early 2023, both Harveys Lake (Luzerne County, PA) and Lake Hopatcong (Morris and Sussex Counties, NJ) have had no lake-wide ice cover. While measurable amounts of both snowfall and ice cover are still possible in the remaining weeks of March, it highly unlikely that such conditions would persist for weeks. Such ice-free conditions on our lakes, ponds and reservoirs will certainly have a profound impact on these ecosystems as we move into the 2023 growing season. Algae May Grow Earlier in the Season Undoubtably, current conditions are at a minimum partially attributed to climate change and will have a direct impact on the upcoming 2023 growing season. In the absence of ice, and more importantly snow-cover over the ice, aquatic plants and algae can begin to grow earlier in the season. Some plants, such as the invasive species curly-leaved pondweed (Potamogeton crispus), prefer cooler temperatures and tend to attain their highest densities in the spring and early summer. However, under such ice-free conditions, we have seen curly-leaved pondweed growing along the bottom of New Jersey lakes as early as February. This can result in more nuisance plant densities earlier in the year. While most cyanobacteria, the group of algae known to have the potential to produce cyanotoxins, tend to attain their maximum growth and biomass over the hot summer months, there are several genera that are more tolerant of cool temperatures. For example, one filamentous genus, Aphanizomenon, is one of the first cyanobacteria to appear in the plankton in the spring. Indeed, over the last few years Aphanizomenon has been appearing earlier in the year and at higher densities in many of the lakes monitored and managed by Princeton Hydro. Another cyanobacteria known to bloom in cooler waters is Coelosphaerium. Coupled with slightly warmer temperatures over the late winter and early spring, cyanobacteria blooms could become more common and larger in magnitude, earlier in the year. Such blooms are frequently called Harmful Algal Blooms (HABs). Many cyanobacteria produce resting spores called akinetes during conditions of environmental stress, such as colder temperatures and desiccation. These akinetes settle to the bottom and are re-activated as water temperatures increase. Warmer late winter and early spring temperatures, particular over the sediments, could mean more akinetes actively growing into vegetative cells earlier in the growing season. Milder Winters Could Lead to New Invasive Species [caption id="attachment_12439" align="alignright" width="476"] At a lake in Somerset County on March 7, 2023, Spirogyra (a green mat algae that prefers cold waters) is present and curly-leaved pondweed is already growing and well established. Photo by Princeton Hydro.[/caption] Last year (2022), was the first time that the cyanobacteria Cylindrospermopsis was identified in Lake Hopatcong. In fact, this genus was the most abundant cyanobacteria in Lake Hopatcong during our July and August sampling events, but was no longer found by the early October sampling event. The Cylindrospermopsis found in Lake Hopatcong may be an invasive species that historically has been found in tropic and subtropic waterbodies. However, over the years, this cyanobacterium has been found in temperate waterbodies. Milder and warmer winters may mean more invasive species such as Cylindrospermopsis appearing in Mid-Atlantic waterbodies. What Should You Do? In the absence of ice and snow-cover to put the sediments in the dark and prevent photosynthesis, coupled with warmer temperatures in the late winter and early spring, may lead to more aquatic plant and algal growth earlier in the year. So what should be done about this? 1. Sample Early: March or April First, we recommend initiating sampling earlier in the year, sometime in March or April; do not wait until May to begin sampling. Second, in addition to sampling the surface waters, sampling should also be conducted in near-shore areas, immediately above sediments and at the sediment-water interface. Samples should be examined under the microscope for the presence of akinetes and/or inactive colonies of cyanobacteria. Third, near-shore areas should also be surveyed for the presence of submerged, aquatic plants, in particular invasive species such as curly-leaved pondweed or hydrilla. 2. Encourage Residents to Reduce Nutrients Entering the Waterway Finally, while most climate models indicate that HABs will more than likely increase in warmer conditions, the magnitude of this response will be strongly dependent on the availability of nutrients, in particular phosphorus. While phosphorus will drive the growth of cyanobacteria, the availability of external sources of nitrogen can increase the probability of a HAB producing cyanotoxins such as microcystins, which is a nitrogen “heavy” molecule. Thus, if colonies of cyanobacteria or akinetes are found in the sediments over the spring, the lake community and stakeholders should be informed and efforts should be implemented to reduce the availability of nutrients such as using non-phosphorus fertilizers, picking up pet wastes, goose management, routine pump-outs of septic systems once every three years, where possible stabilize exposed soil by planting native vegetation and consider the use of green infrastructure such as rain gardens. By letting the community know that cyanobacteria may be lurking on the sediments over the spring season, it may mobilize efforts to implement both in-lake and watershed measures to minimize the potential development of HABs. Princeton Hydro provides pond and lake management and monitoring services to hundreds of waterbodies in the Northeast. If you would like to learn more about our services for your community, please send us a message through our website. Dr. Fred Lubnow, Princeton Hydro's Senior Technical Director, Ecological Services, is an expert in aquatic and watershed management, restoration ecology, community and ecosystem ecology, and the use of benthic macroinvertebrate and fish in-stream bioassessment protocols. Dr. Lubnow has managed hundreds of lake projects and provides technical expertise for a variety of lake and watershed restoration projects. His experience in lake and reservoir restoration includes the design and implementation of dredging, aeration, chemical control of nuisance species, nutrient inactivation (i.e. alum) and biomanipulation. His experience in watershed restoration includes the design and implementation of structural Best Management Practices (BMPs), the development of Total Maximum Daily Load (TMDL) pollutant budgets, and the design, implementation and analysis of watershed-based monitoring programs. [post_title] => Mild Winter in Mid-Atlantic Raises Concerns For Lakes [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => guest-blog-by-dr-fred-lubnow [to_ping] => [pinged] => [post_modified] => 2023-03-17 18:44:47 [post_modified_gmt] => 2023-03-17 18:44:47 [post_content_filtered] => [post_parent] => 0 [guid] => https://princetonhydro.com/?p=12419 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [2] => WP_Post Object ( [ID] => 12319 [post_author] => 1 [post_date] => 2023-02-24 09:04:33 [post_date_gmt] => 2023-02-24 09:04:33 [post_content] => The New Jersey Highlands Water Protection and Planning Council (Highlands Council) awarded Somerset County with a $59,150 planning grant to support the implementation of a Watershed Management Program for two of its parks: Lord Stirling Park in Bernards Township and Leonard J. Buck Gardens in Far Hills Borough. The grant will be distributed specifically to Somerset County Engineering on behalf of the Somerset County Park Foundation (SCPF), which submitted a Scope of Work prepared by Princeton Hydro to develop a Somerset County Parks Watershed Management Program. “We are grateful for this grant, which will help Somerset County continue its commitment to preserving the ecosystem,” said Somerset County Park Commission Secretary-Director Geoffrey Soriano. “Healthy watersheds support biodiversity, protect nutrients in the soil, decrease carbon emissions, foster the growth of flora and fauna, and help control flooding. All of this is vital for a healthy environment.” The program's Scope of Work includes:
Our lakes in New Jersey are an invaluable resource for clean drinking water, outdoor recreation, and agriculture and provide habitat for aquatic flora and fauna. Home to about 1,700 lakes, the “Garden State” is also the most densely populated state. Excess nutrients from fertilizers, roadway pollutants, overdevelopment, and failing septic systems can end up in our lakes and impair water quality. Larger rain events can also cause erosion and instability of streams, adding to the influx of more excess nutrients to our lakes and ponds. Changes in hydrology, water chemistry, biology, and/or physical properties in these complex ecosystems can have cascading consequences that can alter water quality and the surrounding ecosystem. For example, excess nutrients can fuel algal and plant growth in lakes and lead to issues like harmful algal blooms (HABs) or fish kills.
In order to ensure that we protect the overall health of our local waterbodies, it’s important that we look beyond just the lake itself. Implementing holistic watershed-based planning is a critical step in managing stormwater runoff, preventing the spread of HABs, and maintaining water quality. A watershed management plan defines and addresses existing or future water quality problems from both point sources and nonpoint sources of pollutants*. This approach addresses all the beneficial uses of a waterbody, the criteria needed to protect the use, and the strategies required to restore water quality or prevent degradation. When developing a watershed plan, we review all the tools in the toolbox and recommend a variety of best management practices to prevent nutrients from entering lakes or streams. Options include short- and long-term solutions such as green stormwater infrastructure, stream bank stabilization, and stormwater basin retrofits.
To reduce nutrient availability in lakes, one innovative tool in our toolbox is floating wetland islands (FWIs). FWIs are a low-cost, effective green infrastructure solution that are designed to mimic natural wetlands in a sustainable, efficient, and powerful way. They improve water quality by assimilating and removing excess nutrients; provide valuable ecological habitat for a variety of beneficial species; help mitigate wave and wind erosion impacts; provide an aesthetic element; and add significant biodiversity enhancement within open freshwater environments. FWIs are also highly effective in a range of waterbodies from big to small, from deep to shallow.
Typically, FWIs consist of a constructed floating mat, usually composed of woven, recycled plastic material, with vegetation planted directly into the material. The islands are then launched into the lake and anchored in place, and, once established, require very little maintenance.
It estimated that one 250-square-foot FWI has a surface area equal to approximately one acre of natural wetland. These floating ecosystems can remove approximately 10 pounds of phosphorus each year. To put that into perspective, one pound of phosphorus can produce 1,100 pounds of algae each year, so each 250-square-feet of FWI can potentially mitigate up to 11,000 pounds of algae.
In addition to removing phosphorus that can feed nuisance aquatic plant growth and algae, FWIs also provide excellent refuge habitat for beneficial forage fish and can provide protection from shoreline erosion.
Princeton Hydro has been working with Lake Hopatcong, New Jersey’s largest Lake, for 30+ years, restoring the lake, managing the watershed, reducing pollutant loading, and addressing invasive aquatic plants and nuisance algal blooms. Back in 2012, Lake Hopatcong became the first public lake in New Jersey to install FWIs. In the summer of 2022, nine more FWIs were installed in the lake with help from staff and volunteers from the Lake Hopatcong Foundation, Lake Hopatcong Commission, and Princeton Hydro. The lake’s Landing Channel and Ashley Cove were chosen for the installations because they are both fairly shallow and prone to weed growth. The installation of these floating wetland islands is part of a series of water quality initiatives on Lake Hopatcong funded by a NJDEP Harmful Algal Bloom Grant and 319(h) Grant awarded to Lake Hopatcong Commission and Lake Hopatcong Foundation.
Princeton Hydro partnered with the Greenwood Lake Commission (GWLC) on a FWI installation in Belcher's Creek, the main tributary of Greenwood Lake. The lake, a 1,920-acre waterbody located in both New Jersey and New York, is a highly valued ecological, economical, and recreational resource. The lake also serves as a headwater supply of potable water that flows to the Monksville Reservoir and eventually into the Wanaque Reservoir, where it supplies over 3 million people with drinking water.
The goal of the FWI Installation was to help decrease total phosphorus loading, improve water quality, and create important habitat for beneficial aquatic, insect, bird, and wildlife species. The project was partially funded by the NJDEP Water Quality Restoration Grants for Nonpoint Source Pollution Program under Section 319(h) of the federal Clean Water Act. GWLC was awarded one of NJDEP’s matching grants, which provided $2 in funding for every $1 invested by the grant applicant.
Measuring 630+ acres, Harveys Lake is the largest natural lake (by volume) in Pennsylvania and is one of the most heavily used lakes in the area. It is classified as a high quality - cold water fishery habitat (HQ-CWF) and is designated for protection under the classification. Since 2002, The Borough of Harveys Lake and Harveys Lake Environmental Advisory Council has worked with Princeton Hydro on a variety of lake management efforts focused around maintaining high water quality conditions, strengthening stream banks and shorelines, and managing stormwater runoff. Five floating wetland islands were installed in Harveys Lake to assimilate and reduce nutrients already in the lake. The islands were placed in areas with high concentrations of nutrients, placed 50 feet from the shoreline and tethered in place with steel cables and anchored. The FWIs were funded by PADEP.
Working with the Deal Lake Commission (DLC), Princeton Hydro designed and installed 12 floating wetland islands at two lakes in Asbury Park, NJ. In order to complete the installation of the floating wetland islands, our team worked with the DLC to train and assist over 30 volunteers to plant plugs in the islands and launch them into the two lakes. Our experts helped disseminate knowledge to the volunteers, not only about how to install the floating wetland islands, but how they scientifically worked to remove excess nutrients from the water. With assistance from Princeton Hydro, DLC acquired the 12 floating islands – six for Wesley Lake and six for Sunset Lake – through a Clean Water Act Section 319(h) grant awarded by NJDEP.
In addition to the direct environmental benefits of FWIs, the planting events themselves, which usually involve individuals from the local lake communities, have long-lasting positive impacts. When community members come together to help plant FWIs, it gives them a deepened sense of ownership and strengthens their connection to the lake. This, in turn, encourages continued stewardship of the watershed and creates a broader awareness of how human behaviors impact the lake and its water quality. And, real water quality improvements begin at the watershed level with how people treat their land.
For more information on watershed planning or installing FWI in your community, click here to contact us. To learn more about ANJEC, go here.
The Winter of 2022 – 2023 is turning out to be a mild one, at least in the Mid-Atlantic region of the United States. Anecdotally, there has been no measurable amount of snowfall in 2023 as of early March. In northeastern Pennsylvania, January and February 2023 mean monthly temperatures were 9.6 and 7.5 degrees warmer relative to their long-term respective average values. In northern New Jersey, January and February 2023 mean monthly temperatures were 11.9 and 5.6 degrees warmer relative to their respective long-term average values (Northeast Regional Climate Center CLIMOD database).
This has had a profound impact on lake ecosystems. For example, in early 2023, both Harveys Lake (Luzerne County, PA) and Lake Hopatcong (Morris and Sussex Counties, NJ) have had no lake-wide ice cover. While measurable amounts of both snowfall and ice cover are still possible in the remaining weeks of March, it highly unlikely that such conditions would persist for weeks. Such ice-free conditions on our lakes, ponds and reservoirs will certainly have a profound impact on these ecosystems as we move into the 2023 growing season.
Undoubtably, current conditions are at a minimum partially attributed to climate change and will have a direct impact on the upcoming 2023 growing season. In the absence of ice, and more importantly snow-cover over the ice, aquatic plants and algae can begin to grow earlier in the season. Some plants, such as the invasive species curly-leaved pondweed (Potamogeton crispus), prefer cooler temperatures and tend to attain their highest densities in the spring and early summer. However, under such ice-free conditions, we have seen curly-leaved pondweed growing along the bottom of New Jersey lakes as early as February. This can result in more nuisance plant densities earlier in the year.
While most cyanobacteria, the group of algae known to have the potential to produce cyanotoxins, tend to attain their maximum growth and biomass over the hot summer months, there are several genera that are more tolerant of cool temperatures. For example, one filamentous genus, Aphanizomenon, is one of the first cyanobacteria to appear in the plankton in the spring. Indeed, over the last few years Aphanizomenon has been appearing earlier in the year and at higher densities in many of the lakes monitored and managed by Princeton Hydro. Another cyanobacteria known to bloom in cooler waters is Coelosphaerium. Coupled with slightly warmer temperatures over the late winter and early spring, cyanobacteria blooms could become more common and larger in magnitude, earlier in the year. Such blooms are frequently called Harmful Algal Blooms (HABs).
Many cyanobacteria produce resting spores called akinetes during conditions of environmental stress, such as colder temperatures and desiccation. These akinetes settle to the bottom and are re-activated as water temperatures increase. Warmer late winter and early spring temperatures, particular over the sediments, could mean more akinetes actively growing into vegetative cells earlier in the growing season.
Last year (2022), was the first time that the cyanobacteria Cylindrospermopsis was identified in Lake Hopatcong. In fact, this genus was the most abundant cyanobacteria in Lake Hopatcong during our July and August sampling events, but was no longer found by the early October sampling event. The Cylindrospermopsis found in Lake Hopatcong may be an invasive species that historically has been found in tropic and subtropic waterbodies. However, over the years, this cyanobacterium has been found in temperate waterbodies. Milder and warmer winters may mean more invasive species such as Cylindrospermopsis appearing in Mid-Atlantic waterbodies.
In the absence of ice and snow-cover to put the sediments in the dark and prevent photosynthesis, coupled with warmer temperatures in the late winter and early spring, may lead to more aquatic plant and algal growth earlier in the year. So what should be done about this?
First, we recommend initiating sampling earlier in the year, sometime in March or April; do not wait until May to begin sampling. Second, in addition to sampling the surface waters, sampling should also be conducted in near-shore areas, immediately above sediments and at the sediment-water interface. Samples should be examined under the microscope for the presence of akinetes and/or inactive colonies of cyanobacteria. Third, near-shore areas should also be surveyed for the presence of submerged, aquatic plants, in particular invasive species such as curly-leaved pondweed or hydrilla.
Finally, while most climate models indicate that HABs will more than likely increase in warmer conditions, the magnitude of this response will be strongly dependent on the availability of nutrients, in particular phosphorus. While phosphorus will drive the growth of cyanobacteria, the availability of external sources of nitrogen can increase the probability of a HAB producing cyanotoxins such as microcystins, which is a nitrogen “heavy” molecule.
Thus, if colonies of cyanobacteria or akinetes are found in the sediments over the spring, the lake community and stakeholders should be informed and efforts should be implemented to reduce the availability of nutrients such as using non-phosphorus fertilizers, picking up pet wastes, goose management, routine pump-outs of septic systems once every three years, where possible stabilize exposed soil by planting native vegetation and consider the use of green infrastructure such as rain gardens. By letting the community know that cyanobacteria may be lurking on the sediments over the spring season, it may mobilize efforts to implement both in-lake and watershed measures to minimize the potential development of HABs.
Dr. Fred Lubnow, Princeton Hydro's Senior Technical Director, Ecological Services, is an expert in aquatic and watershed management, restoration ecology, community and ecosystem ecology, and the use of benthic macroinvertebrate and fish in-stream bioassessment protocols. Dr. Lubnow has managed hundreds of lake projects and provides technical expertise for a variety of lake and watershed restoration projects.
His experience in lake and reservoir restoration includes the design and implementation of dredging, aeration, chemical control of nuisance species, nutrient inactivation (i.e. alum) and biomanipulation. His experience in watershed restoration includes the design and implementation of structural Best Management Practices (BMPs), the development of Total Maximum Daily Load (TMDL) pollutant budgets, and the design, implementation and analysis of watershed-based monitoring programs.
The New Jersey Highlands Water Protection and Planning Council (Highlands Council) awarded Somerset County with a $59,150 planning grant to support the implementation of a Watershed Management Program for two of its parks: Lord Stirling Park in Bernards Township and Leonard J. Buck Gardens in Far Hills Borough.
The grant will be distributed specifically to Somerset County Engineering on behalf of the Somerset County Park Foundation (SCPF), which submitted a Scope of Work prepared by Princeton Hydro to develop a Somerset County Parks Watershed Management Program.
“We are grateful for this grant, which will help Somerset County continue its commitment to preserving the ecosystem,” said Somerset County Park Commission Secretary-Director Geoffrey Soriano. “Healthy watersheds support biodiversity, protect nutrients in the soil, decrease carbon emissions, foster the growth of flora and fauna, and help control flooding. All of this is vital for a healthy environment.”
The program's Scope of Work includes:
"We're thrilled to be partnered with Somerset County Engineering and Somerset County Parks on this important initiative to bring together, under one holistic management plan, the lakes within these public parks located in the Highlands Region," said Princeton Hydro’s Senior Project Manager - Aquatics, Christopher Mikolajczyk, who is a Certified Lake Manager and lead designer for this initiative. "Taking a regional approach to watershed management is a forward-thinking way to improve water quality, manage stormwater, and mitigate harmful algal blooms throughout the Highlands Region of New Jersey.”
The Highlands Council is a regional planning agency that works in partnership with both municipalities and counties in the Highlands Region to help those communities take a proactive and regional approach to watershed protection. They provide planning grants to support costs associated with the development and/or revision of local planning and regulatory documents to integrate the land use provisions and resource management protections of the New Jersey Highlands Water Protection and Planning Act (the Highlands Act), so that those documents align with the goals, policies, and objectives of the Highlands Regional Master Plan.
Over half of New Jersey’s drinking water comes from the Highlands Region, which encompasses 88 municipalities in the northwest part of the state. The Highlands Council has funded numerous water-quality-related planning grants throughout the region. Somerset County is the fifth (of six) Highlands-based municipal entities that Princeton Hydro has worked with to secure Highlands Council funding to take a regional approach to lake management. Taking this type of integrated approach to lake and watershed management has much farther-reaching impacts in improving water quality, reducing aquatic invasive species, and preventing harmful algal blooms throughout an entire region.
Somerset County is the latest municipal entity to receive a Highlands Council Planning Grant. In 2019, the Borough of Ringwood became the first municipality in New Jersey to take a regional approach to private lake management through a public-private partnership with four lake associations within six lakes. The borough ultimately became a model for similar Highlands Council planning grants within the region, including West Milford Township, for which the Highlands Council approved funding in 2020 to support a Watershed Assessment of 22 private and public lakes. Subsequently in 2021, Rockaway Township in Morris County received Highlands Council planning grants to complete a Lake Management Planning Study for 11 lakes. And, in 2022, The Township of Byram received Highlands Council grant approval for a Lake and Watershed Management Program for 10 of the township's waterbodies. In January 2023, Vernon Township received approval for Phase I of its plan, which will be underway this year. Princeton Hydro authored the Scope of Work for each of these projects and can serve as a resource to other Highlands communities for lake management planning and grant writing.
To read more about our lake management and HABs mitigation work, click below:
We are pleased to announce that the Lake Hopatcong Foundation (LHF) received the prestigious New Jersey Governor's Environmental Excellence Award in the Environmental Education category for its innovative floating classroom program.
The LHF's floating classroom - a custom-built 40-foot education vessel, named ‘Study Hull’ - gives students an interactive, hands-on education experience to explore Lake Hopatcong, learn about freshwater ecology, and discuss how to protect the watershed.
Princeton Hydro helped the LHF design a teaching curriculum on water quality, and members of our team trained the LHF staff and volunteers on the curriculum and demonstrated various water quality monitoring techniques that could be conducted with the students.
The floating classroom is equipped with laboratory instruments on which the students can study water hydrology, temperatures, plankton, and dissolved oxygen levels. Course instructors assist students in performing tests and experiments designed to help them learn about the general health of the lake. They also discuss the impacts that stormwater runoff and nonpoint source pollutants have on the lake, and how they can protect the lake’s water quality and be good stewards of the water.
The Governor’s Environmental Excellence Awards are given each year to individuals and organizations that demonstrate commitment and leadership on a variety of environmental issues, including environmental justice, climate change, sustainability, education, and protection of natural resources. The Governor's Award is a testament to the hard work and dedication of the LHF and the educators who run the floating classroom. It is also a testament to the value of experiential learning and the importance of connecting young people to the natural world.
“It’s really important to get kids interested in science at an early age and teach them about their surrounding environment – where their drinking water comes from, how it could possibly get polluted, the impacts that pollution then has on the lake’s ecosystem, and what steps can be made to protect the lake’s water quality," said Princeton Hydro Senior Aquatic Ecologist Chris L. Mikolajczyk, CLM, one of the team members responsible for developing the floating classroom curriculum. "We are proud to partner with the Lake Hopatcong Foundation and extend to them our sincerest congratulations on receiving the Governor's Environmental Excellence Award for their innovative and unique floating classroom initiative. Well deserved!”
The 23rd Annual Governor’s Environmental Excellence Awards were announced virtually by the Commissioner of Environmental Protection Shawn M. LaTourette. The video recording is available on DEP’s YouTube channel.
Lake Hopatcong, New Jersey's largest lake, has one of the longest, continuous, long-term ecological databases in New Jersey; almost 30 years of consistently collected water quality data. The data is crucial in assessing the overall health of the lake and proactively guiding its management, identifying and addressing emerging threats, documenting project success, and confirming compliance with New Jersey State Water Quality standards.
The LHF works to foster a vibrant and healthy Lake Hopatcong and its surrounding community through a variety of programs and initiatives in the areas of environment, education, community and historical preservation, public safety, recreation, and arts and culture. The LHF and Princeton Hydro are longtime partners with history dating back to 1983. Princeton Hydro’s recent work for Lake Hopatcong includes the implementation of green infrastructure stormwater management measures, installation of floating wetland islands to improve water quality, and invasive aquatic plant species management programs, community educational training, and surveys. To learn more about LHF, check out our Client Spotlight blog:
The North American Lake Management Society (NALMS) held its 42nd Annual International Symposium from November 14–17 in Minneapolis, Minnesota. Water resource professionals, researchers, students and practitioners came together to share ideas and learn about managing and protecting lakes and their watersheds.
This year’s conference, which was titled, “Leveraging Experience to Manage Diverse Lakes, Landscapes, and People,” featured an exhibitor hall, networking events, and a variety of presentations and workshops. Princeton Hydro, a proud contributing sponsor of the conference, led four presentations and one workshop; below, we provide a free download of each.
On the first day of the conference, Chris and Fred led a half-day workshop about developing Harmful Algal Blooms Management and Restoration Plans for Beaches and Marinas, which are designed as part of a larger, all-encompassing Watershed Implementation Plan. The workshop provided both in-lake, near-shore, and local watershed solutions to preserve water quality and protect the health of people and pets utilizing these waterbodies.
A daring group of symposium participants bundled up and braved the cold temperatures for the Clean Lakes Classic 5k Run, which Princeton Hydro sponsored. The point-to-point course followed along the Mississippi River, through city greenways, and around snowy Minneapolis neighborhoods.
We’re also excited to announce that Chris L. Mikolajczyk won this year’s International Symposium photo contest for this stunning image he captured during a recent visit to Rocky Mountain National Park in Colorado. The photo is titled “Aquatic Plant Management: No Permits Needed!”
The Highlands Region of Northern New Jersey is an 800,000-acre area covering approximately 1,200 square miles and made up of 88 municipalities in seven counties. The Region is an essential source of drinking water for over 5.4 million New Jersey residents.
The New Jersey Highlands Water Protection and Planning Council (Highlands Council) is a regional planning agency that works in partnership with municipalities and counties in the Highlands Region to help those communities take a proactive and regional approach to watershed protection.
Historically, private lake associations and municipalities have worked autonomously to address water quality issues and develop improvement plans. Working together, however, and taking a regional approach to lake and watershed management has much farther-reaching benefits. Taking an integrated approach helps improve water quality and reduce incidents of aquatic invasive species and harmful algal blooms (HABs) not just in one waterbody, but throughout an entire region of lakes and streams.
The Highlands Council was created as part of the New Jersey Highlands Water Protection and Planning Act (the Highlands Act), which was signed into law in 2004. It has funded numerous water-quality-related planning grants throughout the region.
Today, we’re excited to announce that the Township of Byram in Sussex County, New Jersey, is the latest municipality to receive Highlands Council grant approval for a Lake and Watershed Management Program for ten of the Township's waterbodies. The Township chose to engage the services of Princeton Hydro to support the project work. Princeton Hydro also assisted the Township in pursuing the Highlands Council grant opportunity and securing the grant funding.
“Byram Township, the Township of Lakes, is excited to have received the grant funding from the Highlands Council providing the opportunity to develop a Lake and Watershed Management Plan with the goal of improving water quality within the Township’s watersheds," said Joseph Sabatini, Township Manager. "Having an adopted plan will open the door to opportunities to grant funding to implement the recommend improvements.”
Located 55 miles from New York City, the Township of Byram has a population of about 8,000. It is locally known as “The Township of Lakes” because the community has two dozen or more lakes and ponds within its borders, an area of about 22.7 square miles.
The Township chose to engage the services of Princeton Hydro to assist in designing a scope of work for a municipal-wide holistic watershed management plan that identifies and prioritizes watershed management techniques and measures that are best suited for immediate and long-term implementation.
Given the large number of waterbodies in the area, and in an effort to keep the first phase of the Highlands Council funded Lake and Watershed Management Program to a reasonable scope, a selection process occurred with input from the Township offices, the Township Environmental Commission, Princeton Hydro and ultimately, the Highlands Council.
Specifically, the grant guidelines are “to establish tiers of lake management appropriate to management strategies that help protect lake water quality and community value from the impacts of present and future development,” and lake management programs are instructed to focus efforts on lakes that are greater than ten acres in size.
The ten waterbodies included in the Township of Byram's Lake and Watershed Management Program are: Cranberry Lake, Lake Lackawanna, Johnson Lake, Forest Lake, Panther Lake, Wolf Lake, Wright Pond, Jefferson Lake, Stag Pond, and Kofferls Pond.
For the first phase of the Lake and Watershed Management Program, Princeton Hydro will conduct a number of analyses, including watershed modeling; hydrologic and pollutant loading analysis; watershed-based and in-lake water quality assessments; and tropic state assessments.
Once all the lab data is processed, the watershed modeling is complete, and historical data reviewed, Princeton Hydro will create a General Assessment Report that will summarize the data/observations and identify which watershed management techniques and measures are best suited for immediate or long-term implementation.
"We're thrilled to be partnered with Bryam on this important initiative to bring together under one holistic management plan in one form or another ten private and public lakes throughout the township," said Princeton Hydro’s Senior Manager, Christopher Mikolajczyk, a Certified Lake Manager and lead designer for this initiative. "Byram is the fourth Highlands based Township I have worked with to take this regional approach, which will continue to make a significant impact in managing stormwater, improving water quality, and mitigating HABs throughout the Highlands region of New Jersey."
This regional approach to lake management has been implemented by Princeton Hydro in other New Jersey Highland communities. In 2019, the Borough of Ringwood became the first municipality in the state of New Jersey to take a regional approach to private lake management through a public-private partnership with four lake associations within six lakes.
Ringwood ultimately became a model for similar Highlands Council grants within the region, including West Milford Township, for which the Highlands Council approved funding in 2020 to support a watershed assessment of 22 private and public lakes. Rockaway Township in Morris County also received Highlands Council grant approval in 2021 to complete a Lake Management Planning Study for 11 lakes. Princeton Hydro authored the scopes of work for these projects.
To learn more about Princeton Hydro’s natural resource management services, click here. And, click here to learn more about Highlands Council and available grant funding.
Whether you enjoy birding, photography, boating, paddle boarding or simply taking a leisurely stroll in nature, one of the best ways to celebrate your local lake is getting outside to enjoy your favorite lake-related outdoor activities. Check your local lake association calendar for upcoming community events. Invite a friend or family member out for a day of environmentally-friendly fishing. If you're in Pennsylvania, consider joining PALMS at Blue Marsh Lake for a community full moon paddle-out. If you photograph your adventures, share them on social media using the hashtag: #LakesAppreciation, and hopefully you’ll inspire others to show their lake appreciation too.
The “Secchi Dip-In” is an annual citizen science event where lake-goers and associations across North America use a simple Secchi disk to monitor the transparency or turbidity of their local waterway. Created and managed by NALMS, volunteers have been submitting information during the annual Dip-In since 1994. NALMS invites you to join this international effort to track changes in water quality! Get all the Dip-In details here. And, for detailed instructions for how to use a Secchi disk, check out this NALMS student video.
NALMS is hosting a Lakes Appreciation Short Clips Video Contest. Create a 140-second video that best illustrates your love for lakes and inspires others to appreciate lakes too! Submit your clip to the NALMS Twitter feed (@NALMStweets) using the hashtag: #LakesAppreciation. A Twitter poll of the general public will be used to determine the winner. First place gets a $50 Visa gift card. The submission deadline is July 31, polling will run through the month of August, and the winner will be announced August 31, 2022. Click here for more details. And, to see the winning entries from a previous Lakes Appreciation photo contest, go here.
You can support your favorite lake by educating yourself about how to monitor the condition of the lake, identify harmful algal blooms (HABs) and invasive species, and engage in activities that protect water quality and improve fish and wildlife habitat. Consider becoming a member of or volunteering for your lake or watershed association. Learn how to track and report HABs. And, take part in educational opportunities to learn about lake management, like our recent live Q&A session with Princeton Hydro's resident lake experts Dr. Fred Lubnow and Chris L. Mikolajczyk, CLM.
To learn about NALMS and get more ideas on how to celebrate your local lakes, click here.
If you’re interested in learning more about Princeton Hydro’s broad range of award-winning lake management services, click here. And, if you're interested in reading about our work to reduce HABs and increase biodiversity in Lake Latonka, click here.
Before you go, always do your research, educate yourself on fishing laws and regulations, and make sure your fishing license and boat registration is current. Check your local area for information on season dates, size requirements, possession limits, permit requirements, area closures, and other guidelines. These laws protect fish and other aquatic species to ensure that the joys of fishing can be shared by everyone well into the future. The New York State Department of Conservation publishes a very informative Freshwater Fishing Regulations Guide every year. Click here to review the 2022 guide.
Check out this interactive map from TakeMeFishing.org to find great fishing and boating spots in your area, including fish species you can expect to find, logged catches and fishing forecasts.
Reduce the spread of invasive species by thoroughly washing your gear and watercraft before and after your trip. Invasives come in many forms – plants, fungi, and animals – and even those of microscopic size can cause major damage. To learn more about invasive species, read our blog:
Use artificial lures or bait that is native to the area you’re fishing in. Live bait that is non-native can easily introduce invasive species to water sources and cause serious damage to the surrounding environment. Always do your part to keep our precious waterbodies clean and fisheries healthy! Opt for biodegradable fishing lures, properly dispose of your lures, make sure your lure is secure, and check your bait often. Click here for more info on eco-friendly bait and fishing gear.
Before you head out for a day of fishing, familiarize yourself with catch and release best practices. Always keep the health of the fish at the forefront of your activities by using the right gear and employing proper techniques.
NOAA Fisheries says, "Catch and release is a great conservation strategy, but simply letting a fish go does not guarantee it will live. The actions you take before, during, and after you land a fish can improve its chances of survival, keep fish stocks healthy, and keep fishermen fishing." Visit their website for more info and helpful tips.
Stay on designated paths to avoid disrupting sensitive and protected areas, like wetlands, shorelines, stream banks, and meadows. Disturbing and damaging these sensitive areas can jeopardize the health of the many important species living there. We recently worked with the Watershed Institute to present a workshop about stream bank restoration in communities and backyards; click below to watch.
Always, pack out your trash! Bring a bag with you to easily carry out your trash and any litter you may find. Never leave behind fishing line, fish entrails, or bait. Before a fishing trip or any outdoor adventure, familiarize yourself with the seven principles of Leave No Trace and spread the good word to others!
...
As biologists, ecologists, environmentalists, and outdoor enthusiasts, all of us at Princeton Hydro fully enjoy getting outside and having fun in nature. We also take our responsibility to care for and respect our natural surroundings very seriously. We play hard and work hard to protect our natural resources for generations to come.
By following our six tips, you’re doing your part to protect the outdoor spaces and wild places we all love to recreate in! As the old adage goes, “respect nature and it will provide you with abundance!”
Princeton Hydro has designed, permitted, and overseen solutions to reconnect migratory fish to their spawning grounds, including the installation of technical and nature-like fishways and the removal of dozens of small and large dams throughout the Northeast. To learn more, check out our blog:
The New York State Federation of Lake Associations (NYSFOLA) held its Annual Conference in Lake George, NY on April 29th and 30th.
This year’s conference, which was titled, “Maximizing Your Lake Data,” featured a diverse exhibitor hall, networking events, a silent auction, a student poster session and a variety of presentations and workshops. Princeton Hydro, a proud sponsor of the conference, led four presentations and exhibited.
Below, we provide more information and a free download of each presentation:
Presentation Title: Assessing Trends and Quantifying the Internal Phosphorous Load of Lake Hopatcong Utilizing a 30-Year Continuous Database
NYSFOLA was founded in 1983 by a coalition of lake associations concerned about water quality, invasive species, and other issues facing New York's lakes. NYSFOLA, which has 200+ members across the state, is the only NY-statewide voice for lakes and lake associations. NYSFOLA is an Affiliate of the North American Lake Management Society, for which Chris Mikolajczyk is the current Board President.
For more information about NYSFOLA and the Annual Conference, click here. To read about some of Princeton Hydro's upcoming events, click here.
The NJ Department of Environmental Protection (NJDEP) hosted its 3rd Annual Harmful Algal Bloom (HAB) Summit! The all-day, virtual seminar included expert presentations and facilitated open-forum discussions related to HAB science, monitoring, response, management, treatment and communication.
Approximately 220 people from around the country participated in the virtual summit, which was free and open to the public. The audience of stakeholders included government officials (local, state, federal); lake and other environmental commissions; watershed associations; environmental nonprofits; businesses; academics; lake management and HAB treatment experts; and folks interested in protecting their community lakes.
Participants heard presentations about “Keeping Your Pets Safe from HABs,” “The Benefit of Riparian Buffers;” and “Stormwater Management and the Use of Green Infrastructure.” Additionally, two members of the NJDEP HAB Expert Team - Dr. Fred Lubnow Director and Dr. Meiyin Wu - gave a presentation on best management practices to prevent, mitigate, and/or control HABs. The 10-person expert team was established as part of Governor Phil Murphy’s plan to enhance scientific expertise around water quality management and bolster the State’s response to HABs.
The Governor’s HABs Initiative was launched in 2019 after lakes throughout NJ (and the entire Continental U.S.) suffered from HAB outbreaks, which caused local and county health agencies to close off all beaches and issue advisories. These unprecedented conditions had significant negative impacts on lake-related ecological, recreational, and economic resources. The Governor’s initiative designated $13 million in funding to local communities for HABs reduction/prevention; established the aforementioned HABs expert team; and coordinated annual HABs summits in order to encourage continued community education and discussion.
The NJDEP Division of Water Monitoring and Standards has an entire website dedicated to HABs. Click here to access educational fact sheets, stay informed on HAB alerts and advisories, and report a HAB sighting.
For more information about HABs, watch a live interview with Dr. Fred Lubnow on Jersey Matters during which he discusses what steps should be taken to prevent HABs, and check out our recent blog:
Lake Latonka is a 260-acre man-made freshwater lake in Mercer County, Pennsylvania. The lake serves as the centerpiece of the Lake Latonka community, and is used for fishing, boating, swimming, and a variety of recreation activities.
The watershed of Lake Latonka encompasses 8,000+ acres of rural land, which is comprised predominantly by agricultural type land uses (57%) and forest (27%) with low-density residential (12%) occurring along the immediate lake shores. The area is bordered by Ohio to the West and located midway between the cities of Erie and Pittsburgh.
The Lake, which was formed in 1965, has been studied and managed in some form since its formation with a record of consistent management and study since the mid-1990s. This work has included water quality monitoring, academic study of the sediment transport to the lake, herbicide and algaecide applications, and the development of generalized guidance for lake management. Additionally, some advanced management and restoration activities were implemented, including the installation of a community sewer system and maintenance dredging of the lake's inlet area.
Despite these ongoing efforts, the lake has suffered from water quality impairments primarily due to excessive phosphorus from surrounding agricultural land that flows into the waterbody via stormwater runoff. These nutrients fuel algal growth and contribute to the increased deposition of sediment and nutrients at the lake bottom.
Over time, the increase in biological oxygen demand has led to anoxia (i.e. no oxygen) in the lake’s deep waters, which causes phosphorus to be ‘pumped’ from the sediments during the summer months. This process is termed ‘internal loading’ and leads to an acceleration of lake productivity that has fueled harmful algal blooms (HABs).
Recognizing the importance of the lake within the community, the Water Quality Committee (WQC) of Lake Latonka commissioned Princeton Hydro to perform an in-depth diagnostic/feasibility study and, based on the study's findings, develop a comprehensive Lake Management Plan.
The diagnostic/feasibility study, in accordance with USEPA protocol, also analyzed background data; collected site specific water quality and fishery data; and computed the nutrient and hydrologic load. The study also included trophic calculations, the development of SMART (Specific, Measurable, Achievable, Relevant, and Time-based) goals, and the establishment of site-specific management recommendations.
In order to meet Lake Latonka’s water quality goals most expediently, Princeton Hydro recommended five primary management measures:
Although phosphorus is a nutrient utilized for plant growth, excessive phosphorus in waterbodies has problematic effects in that it speeds up weed production, reduces water quality, and can lead to HABs. One of the most sustainable means of controlling nuisance weed and algae proliferation is to control phosphorus inputs or reduce the availability of phosphorus for biological uptake and assimilation.
For Lake Latonka, Princeton Hydro recommended an alum treatment as a primary method for reducing internal phosphorus loading. Alum (aluminum sulfate) is a commonly used nutrient inactivation product that controls the internal recycling of phosphorus from the sediments of the lake bottom. On contact with water, the alum binds with the phosphorus so it can no longer be used as food by algae. On the bottom of the lake, the alum creates a barrier that prevents the phosphorus from releasing into the lake’s sediments under anoxia.
In addition, recommendations were made to address phosphorous loading from the larger agricultural watershed. These recommendations lead to the formation a Watershed Sub-Committee, which has been monitoring water quality and identifying nutrient-loading "hot spots." As these areas are discovered, the community will work with local stakeholders to recommend watershed best management practices (BMPs) to reduce phosphorus and sediment loading at the source.
The diagnostic/feasibility study revealed a major change in Lake Latonka from a previous fishery study conducted in 2016: the establishment of gizzard shad. The gizzard shad, not found in any previous surveys, represented 29% of the total catch in the 2020 survey. These fish can, if present in significant densities, outcompete beneficial fish and aquatic species and alter the zooplankton population, which can lead to water quality impairment, HABs, and cyanobacteria.
Biomanipulation in lake management refers to the deliberate alteration of the lake’s ecosystem by adding or removing species. One of the main recommendations for Lake Latonka is to control the gizzard shad population by stocking the lake with hybrid striped bass (Morone saxatilis x Morone chrysops), which is a cross between striped bass and white bass that are not able to reproduce. The plan includes measures to bolster the walleye, largemouth bass, black crappie, and panfish populations to offer a robust recreational fishery. This "top down" approach to nutrient management serves as a complementary effort to the aforementioned phosphorus loading mitigation activities.
As phosphorus is reduced and water quality conditions improve, algae will diminish in abundance and water clarity will improve, and the shallow areas of the lake will become excellent habitat for increased growth of submerged aquatic vegetation (SAV).
SAV is a critical component of a healthy lake and important habitat for juvenile fish and invertebrates. Additionally, SAV serves to precipitate suspended solids and assimilates nutrients that may otherwise be taken up by algae for growth. Still, elevated levels of SAV may prove to hinder recreational use of the lake.
The Plan for Lake Latonka recommends regular SAV surveys in order to monitor densities, document species composition, and ensure proper management. As SAV increases, pragmatic, measured management will be recommended to maintain an optimal balance of plant growth while allowing for recreational lake access.
Resident populations of Canada Goose (Branta canadensis) contribute acute sources of nitrogen, phosphorus, and bacteria to lakes via waste products.
Using loading coefficients derived from scientific literature, in combination with Canada geese population surveys, the team determined the approximate phosphorus load being contributed by the resident goose population each year is 88.6 lbs per year.
The Plan recommends a variety of deterrent/harassment actions as permitted through Federal and State agencies in order to minimize the resident population of these waterfowl.
The Management Plan also provided recommendations for routine water quality monitoring related to nutrient concentrations, algal types and densities, and safety for lake users. Lake monitoring helps track changes in water quality over time and is utilized to objectively assess the impacts of prescribed management measures. In this manner, monitoring can help to address potential issues before they become large problems.
Specifically, Princeton Hydro recommended growing season monitoring, which entails monitoring for five months each year, in order to build a lake water quality database for nutrients, in-situ measures, and plankton. Additionally, the team recommends robust contact testing at the beach and open water for E. coli sampling, fecal coliform, and cyanotoxins.
Array ( [0] => stdClass Object ( [year] => 2023 [month] => 5 [posts] => 4 ) [1] => stdClass Object ( [year] => 2023 [month] => 4 [posts] => 7 ) [2] => stdClass Object ( [year] => 2023 [month] => 3 [posts] => 4 ) [3] => stdClass Object ( [year] => 2023 [month] => 2 [posts] => 5 ) [4] => stdClass Object ( [year] => 2023 [month] => 1 [posts] => 3 ) [5] => stdClass Object ( [year] => 2022 [month] => 12 [posts] => 6 ) [6] => stdClass Object ( [year] => 2022 [month] => 11 [posts] => 3 ) [7] => stdClass Object ( [year] => 2022 [month] => 10 [posts] => 5 ) [8] => stdClass Object ( [year] => 2022 [month] => 9 [posts] => 2 ) [9] => stdClass Object ( [year] => 2022 [month] => 8 [posts] => 3 ) [10] => stdClass Object ( [year] => 2022 [month] => 7 [posts] => 4 ) [11] => stdClass Object ( [year] => 2022 [month] => 6 [posts] => 3 ) [12] => stdClass Object ( [year] => 2022 [month] => 5 [posts] => 7 ) [13] => stdClass Object ( [year] => 2022 [month] => 4 [posts] => 3 ) [14] => stdClass Object ( [year] => 2022 [month] => 3 [posts] => 8 ) [15] => stdClass Object ( [year] => 2022 [month] => 2 [posts] => 1 ) [16] => stdClass Object ( [year] => 2022 [month] => 1 [posts] => 2 ) [17] => stdClass Object ( [year] => 2021 [month] => 12 [posts] => 5 ) [18] => stdClass Object ( [year] => 2021 [month] => 11 [posts] => 2 ) [19] => stdClass Object ( [year] => 2021 [month] => 10 [posts] => 1 ) [20] => stdClass Object ( [year] => 2021 [month] => 9 [posts] => 5 ) [21] => stdClass Object ( [year] => 2021 [month] => 8 [posts] => 2 ) [22] => stdClass Object ( [year] => 2021 [month] => 7 [posts] => 6 ) [23] => stdClass Object ( [year] => 2021 [month] => 6 [posts] => 5 ) [24] => stdClass Object ( [year] => 2021 [month] => 5 [posts] => 2 ) [25] => stdClass Object ( [year] => 2021 [month] => 4 [posts] => 5 ) [26] => stdClass Object ( [year] => 2021 [month] => 3 [posts] => 1 ) [27] => stdClass Object ( [year] => 2021 [month] => 2 [posts] => 7 ) [28] => stdClass Object ( [year] => 2021 [month] => 1 [posts] => 2 ) [29] => stdClass Object ( [year] => 2020 [month] => 12 [posts] => 4 ) [30] => stdClass Object ( [year] => 2020 [month] => 11 [posts] => 3 ) [31] => stdClass Object ( [year] => 2020 [month] => 10 [posts] => 5 ) [32] => stdClass Object ( [year] => 2020 [month] => 9 [posts] => 1 ) [33] => stdClass Object ( [year] => 2020 [month] => 8 [posts] => 3 ) [34] => stdClass Object ( [year] => 2020 [month] => 7 [posts] => 8 ) [35] => stdClass Object ( [year] => 2020 [month] => 6 [posts] => 3 ) [36] => stdClass Object ( [year] => 2020 [month] => 5 [posts] => 2 ) [37] => stdClass Object ( [year] => 2020 [month] => 4 [posts] => 5 ) [38] => stdClass Object ( [year] => 2020 [month] => 3 [posts] => 3 ) [39] => stdClass Object ( [year] => 2020 [month] => 2 [posts] => 3 ) [40] => stdClass Object ( [year] => 2020 [month] => 1 [posts] => 4 ) [41] => stdClass Object ( [year] => 2019 [month] => 12 [posts] => 3 ) [42] => stdClass Object ( [year] => 2019 [month] => 11 [posts] => 3 ) [43] => stdClass Object ( [year] => 2019 [month] => 10 [posts] => 5 ) [44] => stdClass Object ( [year] => 2019 [month] => 9 [posts] => 3 ) [45] => stdClass Object ( [year] => 2019 [month] => 8 [posts] => 6 ) [46] => stdClass Object ( [year] => 2019 [month] => 7 [posts] => 5 ) [47] => stdClass Object ( [year] => 2019 [month] => 6 [posts] => 4 ) [48] => stdClass Object ( [year] => 2019 [month] => 5 [posts] => 5 ) [49] => stdClass Object ( [year] => 2019 [month] => 4 [posts] => 8 ) [50] => stdClass Object ( [year] => 2019 [month] => 3 [posts] => 2 ) [51] => stdClass Object ( [year] => 2019 [month] => 2 [posts] => 2 ) [52] => stdClass Object ( [year] => 2019 [month] => 1 [posts] => 5 ) [53] => stdClass Object ( [year] => 2018 [month] => 12 [posts] => 5 ) [54] => stdClass Object ( [year] => 2018 [month] => 11 [posts] => 4 ) [55] => stdClass Object ( [year] => 2018 [month] => 10 [posts] => 8 ) [56] => stdClass Object ( [year] => 2018 [month] => 9 [posts] => 3 ) [57] => stdClass Object ( [year] => 2018 [month] => 8 [posts] => 6 ) [58] => stdClass Object ( [year] => 2018 [month] => 7 [posts] => 6 ) [59] => stdClass Object ( [year] => 2018 [month] => 6 [posts] => 7 ) [60] => stdClass Object ( [year] => 2018 [month] => 5 [posts] => 6 ) [61] => stdClass Object ( [year] => 2018 [month] => 4 [posts] => 6 ) [62] => stdClass Object ( [year] => 2018 [month] => 3 [posts] => 5 ) [63] => stdClass Object ( [year] => 2018 [month] => 2 [posts] => 2 ) [64] => stdClass Object ( [year] => 2018 [month] => 1 [posts] => 3 ) [65] => stdClass Object ( [year] => 2017 [month] => 12 [posts] => 3 ) [66] => stdClass Object ( [year] => 2017 [month] => 11 [posts] => 3 ) [67] => stdClass Object ( [year] => 2017 [month] => 10 [posts] => 2 ) [68] => stdClass Object ( [year] => 2017 [month] => 9 [posts] => 2 ) [69] => stdClass Object ( [year] => 2017 [month] => 8 [posts] => 2 ) [70] => stdClass Object ( [year] => 2017 [month] => 7 [posts] => 2 ) [71] => stdClass Object ( [year] => 2017 [month] => 6 [posts] => 1 ) [72] => stdClass Object ( [year] => 2017 [month] => 5 [posts] => 2 ) [73] => stdClass Object ( [year] => 2017 [month] => 4 [posts] => 1 ) [74] => stdClass Object ( [year] => 2017 [month] => 3 [posts] => 1 ) [75] => stdClass Object ( [year] => 2017 [month] => 2 [posts] => 2 ) [76] => stdClass Object ( [year] => 2017 [month] => 1 [posts] => 1 ) [77] => stdClass Object ( [year] => 2016 [month] => 12 [posts] => 2 ) [78] => stdClass Object ( [year] => 2016 [month] => 11 [posts] => 2 ) [79] => stdClass Object ( [year] => 2016 [month] => 10 [posts] => 1 ) [80] => stdClass Object ( [year] => 2016 [month] => 9 [posts] => 1 ) [81] => stdClass Object ( [year] => 2016 [month] => 8 [posts] => 2 ) [82] => stdClass Object ( [year] => 2016 [month] => 7 [posts] => 1 ) [83] => stdClass Object ( [year] => 2016 [month] => 5 [posts] => 2 ) [84] => stdClass Object ( [year] => 2016 [month] => 4 [posts] => 2 ) [85] => stdClass Object ( [year] => 2016 [month] => 3 [posts] => 3 ) [86] => stdClass Object ( [year] => 2016 [month] => 2 [posts] => 2 ) [87] => stdClass Object ( [year] => 2015 [month] => 11 [posts] => 2 ) [88] => stdClass Object ( [year] => 2013 [month] => 8 [posts] => 1 ) [89] => stdClass Object ( [year] => 2013 [month] => 7 [posts] => 2 ) [90] => stdClass Object ( [year] => 2013 [month] => 6 [posts] => 8 ) )
Your Full Name * Phone Number * Your Email * Organization Address Message *
By EmailBy Phone
Submit
Δ
Couldn’t find a match? Check back often as we post new positions throughout the year.