search
WP_Query Object
(
    [query] => Array
        (
            [page] => 
            [pagename] => blog
        )

    [query_vars] => Array
        (
            [page] => 0
            [pagename] => blog
            [error] => 
            [m] => 
            [p] => 0
            [post_parent] => 
            [subpost] => 
            [subpost_id] => 
            [attachment] => 
            [attachment_id] => 0
            [name] => 
            [page_id] => 0
            [second] => 
            [minute] => 
            [hour] => 
            [day] => 0
            [monthnum] => 0
            [year] => 0
            [w] => 0
            [category_name] => stream_restoration
            [tag] => 
            [cat] => 41
            [tag_id] => 
            [author] => 
            [author_name] => 
            [feed] => 
            [tb] => 
            [paged] => 1
            [meta_key] => 
            [meta_value] => 
            [preview] => 
            [s] => 
            [sentence] => 
            [title] => 
            [fields] => 
            [menu_order] => 
            [embed] => 
            [category__in] => Array
                (
                    [0] => 41
                )

            [category__not_in] => Array
                (
                )

            [category__and] => Array
                (
                )

            [post__in] => Array
                (
                )

            [post__not_in] => Array
                (
                )

            [post_name__in] => Array
                (
                )

            [tag__in] => Array
                (
                )

            [tag__not_in] => Array
                (
                )

            [tag__and] => Array
                (
                )

            [tag_slug__in] => Array
                (
                )

            [tag_slug__and] => Array
                (
                )

            [post_parent__in] => Array
                (
                )

            [post_parent__not_in] => Array
                (
                )

            [author__in] => Array
                (
                )

            [author__not_in] => Array
                (
                )

            [posts_per_page] => 11
            [ignore_sticky_posts] => 
            [suppress_filters] => 
            [cache_results] => 1
            [update_post_term_cache] => 1
            [lazy_load_term_meta] => 1
            [update_post_meta_cache] => 1
            [post_type] => 
            [nopaging] => 
            [comments_per_page] => 5
            [no_found_rows] => 
            [order] => DESC
        )

    [tax_query] => WP_Tax_Query Object
        (
            [queries] => Array
                (
                    [0] => Array
                        (
                            [taxonomy] => category
                            [terms] => Array
                                (
                                    [0] => 41
                                )

                            [field] => term_id
                            [operator] => IN
                            [include_children] => 
                        )

                )

            [relation] => AND
            [table_aliases:protected] => Array
                (
                    [0] => ph_term_relationships
                )

            [queried_terms] => Array
                (
                    [category] => Array
                        (
                            [terms] => Array
                                (
                                    [0] => 41
                                )

                            [field] => term_id
                        )

                )

            [primary_table] => ph_posts
            [primary_id_column] => ID
        )

    [meta_query] => WP_Meta_Query Object
        (
            [queries] => Array
                (
                )

            [relation] => 
            [meta_table] => 
            [meta_id_column] => 
            [primary_table] => 
            [primary_id_column] => 
            [table_aliases:protected] => Array
                (
                )

            [clauses:protected] => Array
                (
                )

            [has_or_relation:protected] => 
        )

    [date_query] => 
    [queried_object] => WP_Post Object
        (
            [ID] => 6
            [post_author] => 1
            [post_date] => 2021-01-18 12:51:43
            [post_date_gmt] => 2021-01-18 12:51:43
            [post_content] => 
            [post_title] => Blog
            [post_excerpt] => 
            [post_status] => publish
            [comment_status] => closed
            [ping_status] => closed
            [post_password] => 
            [post_name] => blog
            [to_ping] => 
            [pinged] => 
            [post_modified] => 2021-01-18 12:51:43
            [post_modified_gmt] => 2021-01-18 12:51:43
            [post_content_filtered] => 
            [post_parent] => 0
            [guid] => https://princetonhydro.com/?page_id=6
            [menu_order] => 0
            [post_type] => page
            [post_mime_type] => 
            [comment_count] => 0
            [filter] => raw
        )

    [queried_object_id] => 6
    [request] => SELECT SQL_CALC_FOUND_ROWS  ph_posts.ID FROM ph_posts  LEFT JOIN ph_term_relationships ON (ph_posts.ID = ph_term_relationships.object_id) WHERE 1=1  AND ( 
  ph_term_relationships.term_taxonomy_id IN (41)
) AND ph_posts.post_type = 'post' AND (ph_posts.post_status = 'publish' OR ph_posts.post_status = 'acf-disabled') GROUP BY ph_posts.ID ORDER BY ph_posts.post_date DESC LIMIT 0, 11
    [posts] => Array
        (
            [0] => WP_Post Object
                (
                    [ID] => 7716
                    [post_author] => 3
                    [post_date] => 2021-06-04 16:18:30
                    [post_date_gmt] => 2021-06-04 16:18:30
                    [post_content] => 

UPDATE: THIS PROJECT WAS SUCCESSFULLY COMPLETED IN OCTOBER 2021.

Just east of Washington D.C. in Prince George’s County, what will soon be the largest stream restoration in Maryland, is well underway. In this highly urbanized watershed, over 7 miles (41,000 linear feet) of Tinkers Creek and its tributaries, Meetinghouse Branch and Paynes Branch, will be stabilized and restored using nature-based design techniques.

The project was designed by Princeton Hydro for GV-Petro, a partnership between GreenVest and Petro Design Build Group. The project aims to prevent erosion and restore wildlife habitat using bioengineering techniques like riparian zone planting and live staking. 10,985 native trees and shrubs will be planted in the riparian area, and 10,910 trees will be planted as live stakes along the streambank. Recently, this project was expanded to include the stabilization and restoration of stormwater outfalls and headwater tributaries.

Working with Prince George’s County Department of the Environment and coordinating with the Maryland-National Capital Parks and Planning Commission, this full-delivery project is designed to meet the County’s Watershed Implementation Plan (WIP) total maximum daily load (TMDL) requirements and its National Pollutant Discharge Elimination System (NPDES) Municipal Separate Storm Sewer System (MS4) Discharge Permit conditions.

[caption id="attachment_7741" align="aligncenter" width="936"] This photo, taken during a site visit in January 2021, documents the Tinkers Creek Stream Restoration progress[/caption]

Prince George’s County borders the eastern portion of Washington, D.C and is the second-most populous county in Maryland. Tinkers Creek is located on a five-mile stretch of stream valley, from Old Branch Avenue to Temple Hills Road, in Clinton and Temple Hills, Maryland. The tributary system of Tinkers Creek is described as "flashy," meaning there is a quick rise in stream level due to rainfall as a result of its high proportion of directly connected urbanized impervious areas. Its streams have storm flow rates many times higher than that from the rural and forested sub-watersheds in the southeast.

[caption id="attachment_7890" align="aligncenter" width="360"] Unstable stormwater outlet in the Tinkers Creek Restoration area (before).[/caption]

This stream restoration project was identified as a priority due to the significant levels of channel incision and the severity of erosion and its impacts on surrounding neighborhoods. Additionally, the project’s proximity to the headwater reaches located on Joint Base Andrews (JBA), so the ability to improve water quality and wildlife habitat made this project a high priority. It provides an important opportunity to create a safe, sustainable, and resilient stream valley in the community.

The design for the stream, and all of the tributaries within the restoration area, will restore these channels to their naturally-stable form. During the preliminary assessment of onsite conditions, the stream and tributaries within the restoration area were classified using geomorphic assessments and hydrologic and hydraulic analysis.

Once the stream types and conditions were identified, a series of restoration approaches were designed, including floodplain creation, bank stabilization using natural materials and plantings, re-aligning straightened stream channels to have a more natural sinuosity, stormwater conveyance, and natural material grade control structures. These changes will help to reduce channel flow velocities and shear stress for flows greater than bankfull; reduce bank erosion and maintain bank stability; treat and attenuate stormwater flows; stabilize outfalls and the receiving stream channels; and stabilize vertically unstable channels.

[caption id="attachment_7742" align="alignnone" width="1024"] Streambank stabilization measures in place, post construction (2019).[/caption]

The project area contained various subsurface utilities like sanitary sewer along the entire reach and fiber-optics and natural gas lines crossing the corridor. Once constructed, the project will improve hydraulic, geomorphic, physicochemical, and biological stream functions. It will also increase floodplain connectivity, improve bedform diversity, restore riparian buffers, and protect public subsurface utilities. In addition to water quality benefits, this project will preserve and enhance the forested floodplain and provide ecological uplift throughout the entire stream corridor.

Planning and design for Tinkers Creek Stream Restoration began in early 2018 and construction is expected to finish ahead of schedule in Spring of 2022. Princeton Hydro is providing construction oversight of all critical structures, such as grade controls, headwater step-pool grade controls, bank stabilization structures, and stormwater outfalls.

The below photos, taken during a site visit in January, showcase some of the exciting progress made by the project team thus far.

[gallery link="none" columns="2" size="medium" ids="7744,7746"]

Stay tuned for more project updates!

Princeton Hydro specializes in the planning, design, permitting, implementing, and maintenance of ecological rehabilitation projects. To learn more about our watershed restoration services, click here. We have partnered with GreenVest on a number of projects, including the award-winning Pin Oak Forest Conservation Area freshwater wetland restoration project and the Mattawoman Creek Mitigation Site wetland enhancement and restoration initiative. To learn more about GreenVest, click here.

[post_title] => Tinkers Creek: Largest Stream Restoration in Maryland is Underway [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => tinkers-creek-stream-restoration [to_ping] => [pinged] => [post_modified] => 2021-11-30 13:41:38 [post_modified_gmt] => 2021-11-30 13:41:38 [post_content_filtered] => [post_parent] => 0 [guid] => https://www.princetonhydro.com/blog/?p=6028 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [1] => WP_Post Object ( [ID] => 7724 [post_author] => 3 [post_date] => 2021-03-11 16:46:08 [post_date_gmt] => 2021-03-11 16:46:08 [post_content] =>

In addition to providing drinking water to nearly 2 million people, the Schuylkill River is the largest tributary of the Delaware River and supports crucial ecological and social functions for the millions of residents who live near its banks.

The Industrial Revolution and coal operations had severe and lasting negative impacts on the river’s water quality and ecological health. Over the years, thanks to the hard work of many scientists, conservationists, and concerned citizens, the Schuylkill River is making a comeback; and you can help!

Princeton Hydro is working with project partners Schuylkill River Greenways, Berks Nature, Bartram’s Garden, The Schuylkill Center for Environmental Education, and Stroud Water Research Center to conduct a water quality project on the Schuylkill River. The project, which focuses on the main stem of the river - from Berks Nature in Reading to Bartram’s Gardens in southwest Philadelphia - has four main components:

  1. Gather opinion and perceptions via a community survey.
  2. Perform water quality monitoring to understand the ecological status.
  3. Launch a Community Scientist program for perform litter assessments.
  4. Develop a community engagement plan with educational outreach.

Becoming a Community Scientist for the Schuylkill River is an easy way for everyone to get involved and is a crucial component to protecting and restoring this precious resource. The Community Scientist Visual Assessment takes only five minutes and can be conducted from a mobile device:

  1. Find a spot along the Schuylkill River.
  2. Open the survey using your phone's browser: bit.ly/litterform
  3. Select your location on the map.
  4. Upload a photo.
  5. Rate the 100 foot section of the river.

We created a video, featuring Aquatic Ecologist Michael Hartshorne, that provides a brief walkthrough of how to assess litter and fill out the monitoring form.

WATCH NOW:

[embed]https://www.youtube.com/watch?v=mfJByAzthT4&t=3s[/embed] Take a hike, walk, or bike ride, grab your phone, and join the endeavor to preserve the Schuylkill River! And, check out Schuylkill River Greenways to learn about more ways to get involved.

[post_title] => WATCH: How to Become a Schuylkill River Community Scientist [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => community-science [to_ping] => [pinged] => [post_modified] => 2021-04-20 02:41:03 [post_modified_gmt] => 2021-04-20 02:41:03 [post_content_filtered] => [post_parent] => 0 [guid] => https://www.princetonhydro.com/blog/?p=6047 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [2] => WP_Post Object ( [ID] => 7723 [post_author] => 3 [post_date] => 2021-02-24 08:35:52 [post_date_gmt] => 2021-02-24 08:35:52 [post_content] =>

It’s been two and a half years since the removal of the Columbia Dam on the Paulins Kill in Northern New Jersey. In that time, American Shad have been discovered upstream of the former dam, a major indicator of improved water quality. The following time-lapse videos highlight the amazing efforts by the project team to reconnect the floodplain and restore fish passage, enabling the river to return to its former ecological state.

[embed]https://www.youtube.com/watch?v=DzIcjCRXXSA&feature=youtu.be[/embed]

Removal of the Columbia Dam. Courtesy of U.S. Fish and Wildlife Service

Contracted by New Jersey Nature Conservancy and American Rivers, our team of engineers and ecologists designed, permitted, and oversaw the removal of the Columbia Dam, the largest dam removal to date in New Jersey. Additional project partners include U.S. Fish and Wildlife Service, NJ Department of Environmental Protection, Riverlogic, and SumCo EcoContracting.

[embed]https://www.youtube.com/watch?v=ZvRHQCXLwyg&feature=youtu.be[/embed]

Construction of fish passage structures. Courtesy of U.S. Fish and Wildlife Service

[embed]https://www.youtube.com/watch?v=qdkF1K8HLbQ&feature=youtu.be[/embed]

Removal of the Remnant Dam. Courtesy of U.S. Fish and Wildlife Service

 

Princeton Hydro has designed, permitted, and overseen the reconstruction, repair, and removal of dozens of small and large dams in the Northeast. To learn more about our fish passage and dam removal engineering services, visit: bit.ly/DamBarrier.

[post_title] => WATCH: Time-Lapse of Columbia Dam Removal [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => time-lapse-columbia-dam-removal [to_ping] => [pinged] => [post_modified] => 2021-04-19 20:40:17 [post_modified_gmt] => 2021-04-19 20:40:17 [post_content_filtered] => [post_parent] => 0 [guid] => https://www.princetonhydro.com/blog/?p=5979 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [3] => WP_Post Object ( [ID] => 7721 [post_author] => 3 [post_date] => 2021-02-23 16:12:00 [post_date_gmt] => 2021-02-23 16:12:00 [post_content] =>  

The Hudson River provides habitat for approximately 85% of New York State’s fish and wildlife species, 200 of which rely on the Hudson River for spawning, nursery, and forage habitat. According to Riverkeeper, a nonprofit focused on protecting and restoring the Hudson River, there are approximately 1,600 dams, mostly obsolete, fragmenting the rivers and streams of the Hudson Valley and blocking fish from reaching critical habitat.

The recent removal of two defunct dams – The Strooks Felt Dam and Furnace Brook Barrier #1 – marks an important milestone in the Riverkeeper’s journey to “Undam the Hudson River” and restore fish passage between the Hudson and the Atlantic Ocean. 

The removal of these dams, located on tributaries of the Hudson River, are especially important to depleted populations of migratory fish like river herring and American eel, who are a vital part of the coastal ecosystem and spawn in freshwater tributaries. 

Funding for both projects was provided by the Environmental Protection Fund and administered by the Department of Environmental Conservation (DEC). Riverkeeper led the effort to remove the obsolete dams, with Princeton Hydro providing dam and stream assessment, surveying, engineering design, and permitting assistance. 


Strooks Felt Dam

For the first time in 300 years, fish in the Quassaick Creek will be able to move upstream thanks to the dismantling of the 106-year-old, 4-foot-high Strooks Felt Dam in Newburgh, New York, located 60 miles north of New York City in the critical estuary of the Hudson River. 

The dam site was dominated by gravel, cobble, boulder, and even bedrock steps, indicating a high-energy stream with a high sediment transport potential. This dam removal, like many others, released this coarse sediment and allowed the creek to carry it to downstream reaches. This coarse sediment forms habitat features like riffes, bars, and pools that are crucial components of healthy streams and rivers. Releasing the impounded bedload by removing these dams is key to increasing the resilience of freshwater streams like Quassaick Creek. 

The dam removal, which was completed in October 2020, involved excavating the concrete spillway before reshaping and re-grading bedload sediment behind the dam.

Historically, the Strooks Felt Dam was part of a series of older dams that sat in slightly different positions in the same area and supplied former mill operations. Other nonobstructive structures associated with the former mill were left as part of an enduring history, allowing anyone who visits the site or combs through the records to visualize what was there before. The obsolete dam, however, will no longer block water, sediment, or critical fish passage

Project collaborators included: Riverkeeper, Orange County and the City of Newburgh, the Town of New Windsor, DEC Hudson River Estuary Program, Quassaick Creek Watershed Alliance, Steelways Inc, RiverLogic Solutions, and Princeton Hydro. 

Two additional dams farther upstream from the former Strooks Felt Dam site are in the early planning stages for removal.


Furnace Brook Barrier #1

The 5-foot-high, 75-foot-long Furnace Brook Barrier #1 was dismantled in Westchester County, New York in mid-November 2020. The removal of this dam brings migratory fish one-step closer to reconnecting with their ancestral habitat.

The positive results were immediate. Riverkeeper stated in a recently published article, “As soon as a path was cleared, we spotted two fish – white suckers, a freshwater species – darting up to the previously unreachable part of the brook. We can’t wait to come back in the spring and see whether herring, returning from the ocean, are migrating upstream…”

The dam clearing process at Furnace Brook involved the removal of the dam and an existing collapsed former concrete bridge span downstream of the dam. Stone masonry boulders from the former spillway were then redistributed and partially embedded in the restored channel to enhance aquatic habitat and increase bank stabilization

Project collaborators included Rivekeeper, NYSDEC’s Hudson River Estuary Program, Westchester County Parks Department, Westchester County, the dam owner, the town of Cortlandt, the Friends of the McAndrews Estate, and Princeton Hydro. 

Upstream of this project, Princeton Hydro is developing an initial engineering design and sediment management plan for the removal of another, larger dam.

 

Princeton Hydro has designed, permitted, and overseen the reconstruction, repair, and removal of dozens of small and large dams throughout the Northeast. To learn more about our dam engineering and removal services, visit: bit.ly/DamBarrier.

...

[post_title] => Two Dams Removed in the Hudson River Watershed [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => hudson-river-dam-removals [to_ping] => [pinged] => [post_modified] => 2021-04-22 13:10:34 [post_modified_gmt] => 2021-04-22 13:10:34 [post_content_filtered] => [post_parent] => 0 [guid] => https://www.princetonhydro.com/blog/?p=5895 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [4] => WP_Post Object ( [ID] => 5548 [post_author] => 3 [post_date] => 2020-11-13 06:32:19 [post_date_gmt] => 2020-11-13 06:32:19 [post_content] =>

Highland Falls, New York, which is 40 miles north of Manhattan, stretches along the Hudson River and is populated by many lakes and ponds, including the Cragston Lakes (a.k.a. Lower Cragston). For the community’s 4,000 residents, living in an area where water is abundant has many benefits, but the benefits are not without flood risk.

The 9-acre Lower Cragston Lake, the second largest lake in the Highland Falls area,   contains the Lower Cragston Dam, which is owned by the United States Military Academy at West Point and managed through the U.S. Army Corps of Engineers New York District (USACE NYD). According to the Office of the New York State Comptroller, Lower Cragston Dam is classified as a “High Hazard” dam. The dam is approximately 10 feet high and 210 feet long, and consists of an earthen embankment with a concrete core wall, a concrete ogee spillway, and a low level outlet.

In order to ensure safety to the surrounding community and mitigate any potential flood risk associated with the dam's operations, Princeton Hydro was contracted by the USACE NYD to perform an Engineering Assessment for Lower Cragston Dam. Engineering Assessments and periodic safety inspections are intended to provide an independent review of an existing dam structure to ensure that all components are functioning properly and in compliance with current dam safety regulations.

Princeton Hydro utilized a multidisciplinary approach to perform the Lower Cragston Dam Engineering Assessment, which consisted of:

  • Document Review: In order to understand the site and to develop a proper drilling scope and methodology, our team conducted a thorough review of existing documentation, including historic engineering plans, dam inspection reports, and an Emergency Action Plan.
  • Geotechnical and Geophysical Investigation and Reporting: This is one of the most significant aspects of a dam safety evaluation and is often the most efficient means of obtaining critical subsurface information. The information obtained from these field studies is used to devise safety improvements if determined to be necessary.
  • Bathymetric and Topographic Survey: The bathymetric survey entails the accurate mapping of water depths and the quantification of the amount of accumulated, unconsolidated sediment. The topographic survey looks at the height, depth, size, and location of the dam and surrounding area.
  • Hydrologic & Hydraulic Analysis: This analysis looks at the watershed and spillway structure related to the extent of potential flooding from storm recurrence intervals within the study area. The data helps to evaluate measures that can reduce and mitigate existing and anticipated flood risk.
  • Structural Analysis: Our team utilized various methods, to assess the structural integrity of the dam and to evaluate the internal stresses and stability under usual, unusual, and extreme loading combinations.
  • Seepage & Stability Analysis: Seepage through an earthen dam generally correlates with the reservoir water level of the dam. A careful analysis helps to detect any abnormal seepage issues and associated consequences.
  • Dam Break Analysis: This type of analysis is used to estimate the potential hazards associated with a failure of the dam structure and features.

The geotechnical investigation for the Lower Cragston Dam Engineering Assessment involved performing soil borings and rock coring within the dam embankment, for which Princeton Hydro developed a Drilling Program Plan (DPP) to ensure the activities were performed successfully and safely. The DPP, which also required our team to have a comprehensive understanding of bedrock and surficial geologic formations in the area, was ultimately approved by the USACE Dam Safety Officer and successfully executed in the field. The collected samples were tested at Princeton Hydro’s AASHTO accredited and USACE validated soil laboratory.

Ultimately, the geotechnical investigation and subsequent soil analysis were used to inform the slope stability and seepage analysis. The geotechnical analyses, hydrologic & hydraulic study, structural inspection, bathymetry, and dam break analysis were used to provide USACE and West Point with recommendations for repair options, replacement options, and decommissioning options for the dam.

Engineering Assessments are vital to the longevity of dams and the safety of the communities they protect. By providing detailed analysis, effective repair, and management programs can be designed and implemented efficiently. This helps to ensure dam systems are providing the level of protection they were designed to deliver.

Princeton Hydro has designed, permitted, and overseen the reconstruction, repair, and removal of dozens of small and large dams. Our Geoscience and Water Resources Engineering teams perform dam inspections and conduct dam feasibility studies throughout the Northeast. For more info, visit: bit.ly/PHEngineering.

[post_title] => Engineering Assessment of West Point's Lower Cragston Dam [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => lower-cragston-dam-usace [to_ping] => [pinged] => [post_modified] => 2020-11-13 06:32:19 [post_modified_gmt] => 2020-11-13 06:32:19 [post_content_filtered] => [post_parent] => 0 [guid] => https://www.princetonhydro.com/blog/?p=5548 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [5] => WP_Post Object ( [ID] => 5534 [post_author] => 3 [post_date] => 2020-11-10 14:35:03 [post_date_gmt] => 2020-11-10 14:35:03 [post_content] =>

Photo by the American Littoral SocietyFor over 100 years, the Old Mill Pond Dam in Spring Lake Heights, New Jersey has blocked critical anadromous fish species from reaching optimal spawning habitat. Today, we are thrilled to announce that, thanks to a fish ladder installed by the American Littoral Society (ALS), migratory fish can now scale the dam and access upstream spawning grounds.

The 60-foot-long fish ladder is a device that allows a channel of water to flow through it and is engineered to create both the proper water depth and velocity for fish to navigate through. In this case, it will enable fish to scale the 10-foot-high dam and go deeper into Wreck Pond Brook.

This video from ALS provides an up-close look at the Alaska-Steeppass Fish Ladder and more details about the project:

[embed]https://youtu.be/b6FyQTu23lM[/embed]

Re-opening river passage for migratory species improves not only the health of Wreck Pond Brook and its watershed, but it also benefits the overall ecosystem of the Atlantic shoreline and its coastal rivers. It also supports important recreational and commercial species, such as cod, haddock, and striped bass, which leads to a healthier economy.

For over a century, the dam blocked anadromous fish like Alewife and Blueback river herring, from entering the Wreck Pond Brook Watershed. These fish spend most of their lives in the ocean but need freshwater in order to spawn. The Old Mill Pond Dam, an impassable obstruction for these migrating fish, was identified as a key contributor to the decline of Atlantic coast river herring populations. Subsequently, river herring were classified as National Oceanic and Atmospheric Administration (NOAA) Species of Special Concern and identified as requiring Concentrated Conservation Actions.

Design rendering provided by the American Littoral SocietyThe fish ladder, which was funded through the US Fish and Wildlife Service and implemented by ALS along with a variety of project partners, including Princeton Hydro, is one more major step in the ongoing effort to restore critical migratory fish spawning grounds, support a vibrant food web to the area, and rehabilitate Wreck Pond and its watershed.

According to the ALS, “Now, instead of Old Mill Dam acting as the furthest migration destination for Alewife and Blueback river herring, these fish have the ability to navigate up the dam through the fish ladder and utilize roughly an additional mile of optimal spawning habitat. The ALS will add the Old Mill Dam fish ladder and newly accessible spawning habitat into its ongoing river herring monitoring surveys.”

American Littoral Society promotes the study and conservation of marine life and habitat, protects the coast from harm, and empowers others to do the same. Learn more and get involved: littoralsociety.org.

Princeton Hydro has designed, permitted, and overseen solutions for fish passage including the installation of technical and nature-like fishways and the removal of dozens of small and large dams throughout the Northeast. To learn more about our fish passage and dam removal engineering services, visit: bit.ly/DamBarrier.

Images provided by the American Littoral Society. 

Photo by the American Littoral Society

[post_title] => After 100 Years, Fish Passage is Restored at Critical Migratory Fish Spawning Grounds in NJ [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => fish-ladder-old-mill-pond-dam [to_ping] => [pinged] => [post_modified] => 2021-02-25 06:29:53 [post_modified_gmt] => 2021-02-25 06:29:53 [post_content_filtered] => [post_parent] => 0 [guid] => https://www.princetonhydro.com/blog/?p=5534 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [6] => WP_Post Object ( [ID] => 4493 [post_author] => 3 [post_date] => 2020-02-11 17:32:27 [post_date_gmt] => 2020-02-11 17:32:27 [post_content] =>

The Resource Institute hosted its 9th Annual Mid-Atlantic Stream Restoration Conference in Baltimore, Maryland, where water resource professionals, researchers, and practitioners come together for three days to share ideas and learn about stream restoration planning, assessment, design, construction, evaluation, and other topical stream issues. The conference, which was themed Building Resilient Streams in the Mid-Atlantic and Northeast regions, included presentations, discussions, exhibits, and pre-conference workshops. Princeton Hydro participated in three presentations on a variety of topics. Below, we provide a synopsis and free download of each presentation:

Innovative Design and Funding Approaches for Dam Removal Projects Where an Unfunded Mandate Exists
Lead Presenter: Kirk Mantay, PWS, GreenTrust Alliance, Inc. Co-Authors: Geoffrey Goll, P.E.; Princeton Hydro President; John Roche, Maryland Department of Environment; and Brett Berkley, GreenVest.

The presentation provides a detailed look at the removal of the Martin Dam in Fallston, Maryland, and how project partners were able to drastically expand the footprint of this emergency dam removal to generate enough ecological restoration benefits to adequately fund the dam removal itself.

The Martin Dam was constructed in 1965 as part of USDA’s sustainable farms pond construction initiative, which promoted aquaculture and subsistence fish production on small farms across the region as an income source for agricultural producers. Dam-related impacts included the permanent loss of spring-fed sedge wetlands, ditching of forested floodplain wetlands, pollution from stream bank entrenchment, and thermal impacts to a wild brook trout population downstream.

Overtime, the dam structure began to degrade. With each state and local agency inspection that was conducted, the dam increased in hazard category. In 2016, the Maryland Department of the Environment (MDE) was forced to list the dam as a, “public safety hazard at risk of immanent failure.” The landowner, unable to fund the dam removal, contacted GreenTrust Alliance (GTA), a regional green infrastructure nonprofit organization, for help.

By emphasizing the ecological benefits of restored wetlands and streams above and below the dam as well as the critical public safety hazard faced by residents and motorists downstream, GTA, in partnership with Princeton Hydro and GreenVest, was able to secure restoration funding for the site. The design and permitting was lead by Princeton Hydro, and the dam was safely breached as part of restoration construction in January 2019.

Learn more and download the full presentation.  
Columbia Lake Dam Removal; Using Drones for Quantitative Evaluation of River Restoration
Lead Presenter: Beth Styler-Barry of The Nature Conservancy Co-Authors from Princeton Hydro: Geoffrey Goll, P.E., President; Casey Schrading, EIT, Staff Engineer; Kelly Klein, Senior Project Manager, Natural Resources; and Christiana Pollack, CFM, GISP, Senior Project Manager, Environmental Scientist.

In order to explore the use of drone or UAV technology to evaluate the effects of dam removals, the presentation showcases the Columbia Lake Dam removal, the largest dam removal in New Jersey to date.

The Columbia Lake Dam, built in 1909, was 18 feet high, 330 feet long dam, and stretched more than 1.5 miles on the Paulins Kill less than 0.25 miles upstream from its confluence with the Delaware River. As part of The Nature Conservancy’s (TNC) mission to improve the quality of the Paulins Kill, removing this “first blockage” was the cornerstone of the larger mission. Princeton Hydro served as the engineer-of-record, designing and permitting this project. Dam removal activities commenced in 2018 and were finalized in 2019. Its removal opens 10 miles of river for fish migration and improves recreation access, floodplain reconnection, habitat enhancement and higher water quality.

TNC will conduct five years of monitoring, a vitally important component of this project, to determine long-term ecological uplift, short-term positive and negative effects, and to develop data to provide information for future dam removals. And, as a result of the programmable and repeatable nature of drone flight paths, such monitoring will be able to be conducted for years and decades, producing invaluable data for research and future project design.

The presentation reviews the various parameters investigated, the results and significance of the data retrieved, and recommendations for the use of drone technology for future ecosystem restoration projects.

Learn more and download the full presentation.
Modeling 3D Rivers in AutoCAD to Enhance Design and Deliverables
Lead Presenter: Daniel Ketzer, PE, Princeton Hydro Senior Project Manager, River Restoration Co-Authors from Princeton Hydro: Eric Daley, Water Resources Engineer; Cory Speroff, MLA, ASLA, CBLP, Landscape Designer; and Sumantha Prasad, PE, ENV SP, Water Resource Engineer

This presentation provides an overview on how to create 3D river models based on geomorphic input to enhance the overall accuracy and quality of a river restoration project.

In river restoration, the proposed geometry of the river channel is the key part of the design. It impacts earthwork, utility conflicts, plan set layout, and many other aspects of the project. In larger projects with reaches measuring thousands of feet and greater, manual grading is extremely time consuming and tedious; and determining the entire implication of the proposed design is difficult to achieve when simply analyzing proposed cross-sections and profiles. To increase efficiency and maintain uniformity throughout the subject reach developing a 3D-surface model of the proposed restoration reduces design time and increases quality. AutoCAD Civil 3D can be used to convert the proposed profiles and cross-sections from a geomorphic design into a 3D surface of the river corridor.

The presentation goes through the key steps that need to be taken and strategic questions that need to be asked when modeling 3D rivers in AutoCAD along with important tips and reminders.

Learn more and download the full presentation.

Stay tuned for our Spring Events Spotlight to learn how you can participate in upcoming environmental events! Click here to read more about Princeton Hydro’s river restoration services.

[post_title] => FREE DOWNLOADS: Mid-Atlantic Stream Restoration Conference Presentations [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => stream-restoration-presentations [to_ping] => [pinged] => [post_modified] => 2020-02-11 17:32:27 [post_modified_gmt] => 2020-02-11 17:32:27 [post_content_filtered] => [post_parent] => 0 [guid] => https://www.princetonhydro.com/blog/?p=4493 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 1 [filter] => raw ) [7] => WP_Post Object ( [ID] => 3240 [post_author] => 3 [post_date] => 2019-02-20 22:31:51 [post_date_gmt] => 2019-02-20 22:31:51 [post_content] => [caption id="attachment_2294" align="alignright" width="2560"] A view of the Columbia Dam at the beginning of the removal process.[/caption]

On the Paulins Kill, the 100-year old Columbia Lake Dam has almost been completely removed, and fish passage has been restored!  Since the first cut was executed on the main dam in August, many exciting advances have been made towards restoring the Paulins Kill back to its natural state. Check out the video below, courtesy of the New Jersey Nature Conservancy Volunteer Drone Team. 

Piece by piece, the dam was notched out throughout the fall season and is now completely removed with the exception of the dam apron, the horizontal concrete structure that sits downstream of the dam, and the section of the dam that sits below the riverbed. The part of the dam in the riverbed is now being removed all the way down  to three feet under the ground. The full removal is estimated to be complete by mid-March. In mid-August, the first cut was widened to 80 feet, allowing for better management of high flows during storm events, which had been posing a challenge immediately following the first cut.

In late August, the installation of rock vanes at the Brugler Road Bridge began. Rock vanes are engineered, in-stream structures that help to stabilize a channel while enhancing aquatic habitat and movement.

The rock vanes installed at the Brugler Road Bridge site are cross vanes. Cross vanes consist of a set of boulders angled upstream on a river, with another section of smaller rocks placed upstream. The taller sections of the cross vanes deflect the streamflow away from the banks, decreasing scouring effects. Instead, the flow travels over the rock walls and concentrates down the center of the channel, creating a deep and elongated pool in the middle of the stream.  

Velocities between the notches in the rock vanes were evaluated using a velocity meter in accordance with the design specifications originally proposed. Based on the U.S. Fish and Wildlife Service fish passage design criteria, velocities in the notches could not be greater than 8.25 feet per second. All of the velocity measurements in this rock vane were below the maximum thresholds, ensuring no blockage of fish passage is made through the vanes.

Since the removal of the dam began, vegetative growth from the natural seedbed of the upper impoundment has been observed (see photo below).

In October, scour protection installation commenced at the Warrington Road Bridge site. After the team conducted geotechnical test pits, they discovered that a concrete scour wall that slopes out to the Paulins Kill was present and deep enough to be able to install rock at the necessary depth. They also found that the existing gabions, caged baskets filled with rock or concrete often used to protect against erosion, were intact and could be left in place. The team installed four (4) feet of riprap under and around the bridge in the riverbed and tied it into the existing grade of the banks.

The original notch in the dam was lowered one foot per day starting in mid-December, reducing water surface elevations down to the apron elevation during the month of January.

To accommodate NJ Fish and Wildlife’s request for animal passage under the I-80 bridges, an area of the previously installed riprap on the northwest abutment wall was flattened out and filled in with river cobble. This path will promote wildlife movement under the bridge as opposed to through the existing tunnel.

Currently, rock vanes are being installed under the I-80 bridges specifically to enhance fish passage. These structures vary slightly from the rock vanes at the Brugler Road Bridge site, as they are designed to slow river flow, helping migrating fish travel upstream and traverse a 5-foot elevation difference in the streambed, much like a fish ladder

These rock vanes are more than halfway completed and are on track to be finished in time for fish populations to make full use of them.  The next steps are to finish the demolition of the dam and the construction of the fish passage rock vanes under the I-80 bridges, plant vegetation throughout the upper impoundment, create a recreational trail through the upper impoundment, and plan for fishing and boating access! Stay tuned for more exciting developments on this incredible project.

Thank you to our project partners: The Nature Conservancy, American Rivers, U.S. Fish and Wildlife Service, and NJDEP Division of Fish and Wildlife Service.

...

Princeton Hydro has designed, permitted, and overseen the reconstruction, repair, and removal of a dozens of small and large dams in the Northeast. To learn more about our fish passage and dam removal engineering services, visitbit.ly/DamBarrier.

[post_title] => Fish Passage Restored on the Paulins Kill [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => fish-passage-restored-on-the-paulins-kill [to_ping] => [pinged] => [post_modified] => 2021-05-11 20:18:56 [post_modified_gmt] => 2021-05-11 20:18:56 [post_content_filtered] => [post_parent] => 0 [guid] => https://www.princetonhydro.com/blog/?p=3240 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [8] => WP_Post Object ( [ID] => 2650 [post_author] => 3 [post_date] => 2018-10-12 09:02:20 [post_date_gmt] => 2018-10-12 09:02:20 [post_content] => [caption id="attachment_2732" align="aligncenter" width="1243"]Photo courtesy of GreenVest  [/caption]

As one of the Chesapeake Bay’s most productive tributaries and a vital part of Maryland's natural resources, Mattawoman Creek supports some of the largest populations of finfish, amphibians, and birds in the state. A collaborative team of private and public sector entities have designed the "Mattawoman Creek Mitigation Site" in Pomfret, Charles County, Maryland, an effort that will enhance or create 64+ acres of wetlands and restore nearly 3,800 linear feet of this perennial stream.  With over 28,500 native trees and shrubs to be planted, this mitigation project will result in 80+ acres of continuous, forested wetland with complex and diverse vegetative communities. It is expected to provide a wide array of habitat to resident and transient wildlife, including birds, reptiles, invertebrates, amphibians and rare, threatened and endangered species.

Unique to this project, Mattawoman Creek Mitigation Site is Maryland’s first-ever Umbrella Mitigation Banking Instrument (UMBI) for federal and other government agency use.   A UMBI is the bundling of multiple mitigation banks into one agreement in order to streamline the regulatory approval process, thereby eliminating steps and involving fewer resources. The Maryland UMBI document helps the USAF and other public agencies secure certainty of cost and schedule, facilitate timely permit issuance, and expedite the satisfaction of their permitted requirements for planned capital improvement projects. This approach also maximizes the scale of restoration and resulting land protection and efforts, creating contiguous blocks of habitat with greatly enhanced benefits compared to single, permittee-responsible projects. This precedent was a result of a partnership between United States Air Force (USAF) and Joint Base Andrews (JBA), U.S. Army Corps of Engineers (USACE), Maryland Department of the Environment (MDE), GreenTrust Alliance, GreenVest, and Princeton Hydro.

Projects completed under the UMBI will reduce federal and state workload expediting the regulatory review and issuance of permits by the MDE and USACE. Additionally, projects completed under this UMBI will aid in compliance with the Federal Paperwork Reduction Act where federal regulatory staff can evaluate success and performance issues for multiple permittees at one single habitat restoration or mitigation site. In addition, federal costs are capped, and liabilities  are transferred through to GreenVest, the private sector operator, and GreenTrust Alliance, the nonprofit bank sponsor, who will also serve as the long-term steward of sites restored under this program.

Pictured is the southern restoration area after sorghum germination, prior to wetland creation and reestablishment.
 

Design, engineering/modeling, and permitting of the site was completed by  Princeton Hydro and GreenVest under our currently Ecosystem Restoration contract with the USACE. Princeton Hydro also provided an Environmental Assessment and Environmental Baseline Survey, and conducted a geotechnical investigation, which included the advancement of test pits, visual and manual investigation techniques and logging, infiltration testing, laboratory soils testing, and seasonal high-water table estimations.

A wetland water budget was also developed for the proposed wetland creation and restoration to determine if sufficient water is available to establish or reestablish wetlands on the site. It was also used to inform design development including proposed grading and plant community composition. The establishment and re-establishment of wetlands on the site will be accomplished through directed grading, ditch plugging and stream restoration designed to maximize the retention of surface water, floodplain re-connection, and groundwater inputs.

Highlights from the Mattawoman Creek Wetland and Stream Mitigation project:
  • 80 acres of land were placed into conservation easement and removed from active row crop production and cattle pasture. The easement, which is held by GreenTrust Alliance, provides permanent protection for all 80 acres.
  • Over 64 acres of wetlands will be restored, created, enhanced or preserved, which will sequester approximately 75 tons of carbon per year.
  • 3,798 linear feet of perennial stream will be restored by re-establishing, historic floodplain access during more frequent storm events, stabilizing hydraulics and geomorphology, and adding aquatic habitat value.
  • Full integration of the wetland and stream restoration elements will occur exponentially, increasing anticipated functions and values in the post construction condition. Functions include: storm damage and flood attenuation, groundwater recharge and discharge, nutrient cycling and sequestration, local water quality improvement, and wildlife habitat enhancements.
  • This project will also create and enhance the forested wetland and stream habitat for the State-listed Threatened Selys’ Sundragon (Helocordulia selysii).
  • As part of the site design, over 28,500 native trees and shrubs will be planted.
  • The Mattawoman Creek Mitigation Site is located within a Tier 3 Biodiversity Conservation Network area. These areas are classified by the Department of Natural Resources as “highly significant for biodiversity conservation” and are priority conservation areas that support critical species and habitats.
  • The project will yield advanced mitigation values: 7.913 in wetland credits and 1,595 in stream credits. These credits are durable and will be available for JBA’s use in order to satisfy permitted impacts associated with planned capital improvement projects.

Over 6,000 acres (25%) of the Mattawoman Creek watershed has been protected by public ownership and various conservation and agricultural easements, which, in addition to the Mattawoman Creek Mitigation Site, help ensure that Mattawoman Creek forever remains a high-quality destination for outdoor recreation.

Princeton Hydro specializes in the planning, design, permitting, implementing, and maintenance of tidal and freshwater wetland rehabilitation projects. To learn more about our wetland restoration, creation, and enhancement services, visit: http://bit.ly/PHwetland

[post_title] => Mitigation Milestone Reached at Mattawoman Creek Mitigation Site [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => mattawoman-creek-mitigation-site [to_ping] => [pinged] => [post_modified] => 2021-05-17 17:41:17 [post_modified_gmt] => 2021-05-17 17:41:17 [post_content_filtered] => [post_parent] => 0 [guid] => https://www.princetonhydro.com/blog/?p=2650 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 4 [filter] => raw ) [9] => WP_Post Object ( [ID] => 2624 [post_author] => 3 [post_date] => 2018-10-01 16:15:57 [post_date_gmt] => 2018-10-01 16:15:57 [post_content] =>

The Pin Oak Forest Conservation Area is a 97-acre tract of open space that contains an extremely valuable wetland complex at the headwaters of Woodbridge Creek. The site is located in a heavily developed landscape of northern Middlesex County and is surrounded by industrial, commercial, and residential development. As such, the area suffered from wetland and stream channel degradation, habitat fragmentation, decreased biodiversity due to invasive species, and ecological impairment. The site was viewed as one of only a few large-scale freshwater wetland restoration opportunities remaining in this highly developed region of New Jersey.

Recognizing the unique qualities and great potential for rehabilitating and enhancing ecological function on this county-owned parkland, a dynamic partnership between government agencies, NGOs, and private industry, was formed to restore the natural function of the wetlands complex, transform the Pin Oak Forest site into thriving habitat teeming with wildlife, and steward this property back to life. The team designed a restoration plan that converted 28.94 acres of degraded freshwater wetlands, 0.33 acres of disturbed uplands dominated by invasive species, and 1,018 linear feet of degraded or channelized streams into a species-rich and highly functional headwater wetland complex.

BEFORE
AFTER
View of stream restoration area upon commencement of excavation activities. View of containerized plant material staged prior to installation.
 

We used an innovative approach to restore the hydraulic connection of the stream channel with its floodplain in order to support wetland enhancement. Additionally, to further enhance wetlands with hydrologic uplift, the team incorporated microtopography techniques, which creates a variable surface that increases groundwater infiltration and niches that support multiple habitat communities. This resulted in a spectrum of wetland and stream habitats, including the establishment of a functional system of floodplain forest, scrub shrub, emergent wetlands and open water. Biodiversity was also increased through invasive species management, which opened the door for establishing key native flora such as red maple, pin oak, swamp white oak, and swamp rose. The restored headwater wetland system also provides stormwater quality management, floodplain storage, enhanced groundwater recharge onsite, and surface water flows to Woodbridge Creek.

Completed in 2017, the integrated complex of various wetland and upland communities continues to provide high quality habitat for a wide variety of wildlife species including the state-threatened Black-crowned Night heron and Red-headed Woodpecker. The work done at the site significantly enhanced ecological function, providing high-quality habitat on indefinitely-preserved public lands that offer countless benefits to both wildlife and the community.

Post-restoration in 2018, looking Northeast. View of wetland enhancement approximately 2 months after completion of seeding and planting activities.
 

Public and private partnerships were and continue to be critical to the success of this project. The diverse partnership includes Middlesex County Office of Parks and Recreation, Woodbridge Township, Woodbridge River Watch, New Jersey Freshwater Wetlands Mitigation Council, GreenTrust Alliance, GreenVest, and Princeton Hydro. The partners joined together as stakeholders to identify long term restoration and stewardship goals for Pin Oak Forest Preserve, and nearly four years later, the partners all remain involved in various aspects of managing the property and this project itself, ranging from fiscal oversight by New Jersey Freshwater Wetland Mitigation Council and GreenTrust Alliance, to permit and landowner access coordination performed by Woodbridge Township and Middlesex County, or the ongoing stewardship, maintenance, and monitoring of the project and the larger park, being conducted by being conducted by GreenTrust Alliance, GreenVest, and NJ Department of Environmental Protection.

This project was funded through the New Jersey Freshwater Wetland In-Lieu Fee program. In 2014, GreenTrust Alliance, GreenVest, and Princeton Hydro secured $3.8 million dollars of funding on behalf of the Middlesex County Parks Department to restore three wetland sites, which included Pin Oak Forest.

The Pin Oak Forest project is a great model for showcasing a successful approach to the enhancement of public lands through a dynamic multidisciplinary, multi-stakeholder partnership. And, because of proper planning and design, it has become a thriving wildlife oasis tucked in the middle of a densely-populated suburban landscape.

[gallery link="file" ids="2693,2696,2694"]

Princeton Hydro specializes in the planning, design, permitting, implementing, and maintenance of wetland rehabilitation projects. To learn more about our wetland restoration, creation, and enhancement services, visit: bit.ly/PHwetland

[post_title] => Innovative and Effective Approach to Wetland Restoration [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => pin-oak-wetland-restoration [to_ping] => [pinged] => [post_modified] => 2021-05-11 13:44:35 [post_modified_gmt] => 2021-05-11 13:44:35 [post_content_filtered] => [post_parent] => 0 [guid] => https://www.princetonhydro.com/blog/?p=2624 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [10] => WP_Post Object ( [ID] => 2525 [post_author] => 3 [post_date] => 2018-08-30 14:15:58 [post_date_gmt] => 2018-08-30 14:15:58 [post_content] =>

To celebrate the 50th Anniversary of the Wild and Scenic Rivers Act, the Musconetcong Watershed Association (MWA) is hosting the “Wild & Scenic Film Festival On Tour”. The festival is free and open to the public, but seating is limited so, registration is required. The festival will be held on Sunday, September 9th from 10 am to 2 pm at Centenary University in Hackettstown, NJ.

To bring communities together around local and global environmental issues, The "Wild & Scenic Film Festival" goes "on-tour" partnering with nonprofit organizations and local groups to screen films year-round with hopes of inspiring individuals to take environmental action. The tour stops in 170 communities around the globe, features over 150 award-winning films, and welcomes over 100 guest speakers, celebrities, and activists who bring a human face to the environmental movement.

Credit: NPS.gov

The Hackettstown, NJ tour event will feature 11 short films including River Connections, which celebrates the 50th anniversary of the Federal Wild and Scenic Rivers Act, under which the Musconetcong River is protected. The film explores the importance of free-flowing rivers and highlights the recent Hughesville Dam removal project. An interactive panel event will follow the film screening and feature experts including MWA Executive Director Alan Hunt, Ph.D. and Princeton Hydro President Geoffrey Goll, P.E., who were both interviewed in the film.

"Our multidisciplinary approach to dam removal using ecology and engineering, paired with a dynamic stakeholder partnership, led to a successful river restoration, where native fish populations returned within a year," said Princeton Hydro's President Geoffrey Goll, P.E. "We are grateful for MWA's hard work in organizing this film festival so we can continue to share our dam removal success stories and the importance of the Wild and Scenic Rivers Act."

Princeton Hydro, a proud sponsor of the "Wild & Scenic Film Festival On Tour," has worked with MWA to design five dam removals on the Musconetcong River, including the Hughesville Dam. As noted in the River Connections film, the Hughesville Dam was a major milestone in restoring migratory fish passage along the Musconetcong. Only a year after the completion of the dam removal, American shad were documented as having returned to the "Musky" for the first time in 250 years.

The tour leads up to the annual 5-day film festival, which will be held January 17-21, 2019 in Nevada City and Grass Valley, California. Sponsored by National Park Service, the Wild & Scenic Film Festival honors the Wild and Scenic Rivers Act, landmark legislation passed by Congress in October 1968 that safeguards the free-flowing character of rivers by precluding them from being dammed, while allowing the public to enjoy them. It encourages river management and promotes public participation in protecting streams.

EVENT DETAILS:

Date:         Sunday, September 9th Time:         Doors open at 10 am and shows start at 11 am Location:  Centenary University, Sitnik Theatre,                   400 Jefferson St, Hackettstown, NJ 07840 Tickets:     FREE! Please register in advance:                    https://goo.gl/NrwcgE  

Interested to learn more about River Connections? Check out our blog celebrating the release of the film: 

[embed]https://www.princetonhydro.com/blog/wild-and-scenic-rivers/[/embed]
[post_title] => Wild & Scenic Film Festival is Coming to Hackettstown [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => wild-scenic-film-festival [to_ping] => [pinged] => [post_modified] => 2021-05-17 18:01:19 [post_modified_gmt] => 2021-05-17 18:01:19 [post_content_filtered] => [post_parent] => 0 [guid] => https://www.princetonhydro.com/blog/?p=2525 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) ) [post_count] => 11 [current_post] => -1 [in_the_loop] => [post] => WP_Post Object ( [ID] => 7716 [post_author] => 3 [post_date] => 2021-06-04 16:18:30 [post_date_gmt] => 2021-06-04 16:18:30 [post_content] =>

UPDATE: THIS PROJECT WAS SUCCESSFULLY COMPLETED IN OCTOBER 2021.

Just east of Washington D.C. in Prince George’s County, what will soon be the largest stream restoration in Maryland, is well underway. In this highly urbanized watershed, over 7 miles (41,000 linear feet) of Tinkers Creek and its tributaries, Meetinghouse Branch and Paynes Branch, will be stabilized and restored using nature-based design techniques.

The project was designed by Princeton Hydro for GV-Petro, a partnership between GreenVest and Petro Design Build Group. The project aims to prevent erosion and restore wildlife habitat using bioengineering techniques like riparian zone planting and live staking. 10,985 native trees and shrubs will be planted in the riparian area, and 10,910 trees will be planted as live stakes along the streambank. Recently, this project was expanded to include the stabilization and restoration of stormwater outfalls and headwater tributaries.

Working with Prince George’s County Department of the Environment and coordinating with the Maryland-National Capital Parks and Planning Commission, this full-delivery project is designed to meet the County’s Watershed Implementation Plan (WIP) total maximum daily load (TMDL) requirements and its National Pollutant Discharge Elimination System (NPDES) Municipal Separate Storm Sewer System (MS4) Discharge Permit conditions.

[caption id="attachment_7741" align="aligncenter" width="936"] This photo, taken during a site visit in January 2021, documents the Tinkers Creek Stream Restoration progress[/caption]

Prince George’s County borders the eastern portion of Washington, D.C and is the second-most populous county in Maryland. Tinkers Creek is located on a five-mile stretch of stream valley, from Old Branch Avenue to Temple Hills Road, in Clinton and Temple Hills, Maryland. The tributary system of Tinkers Creek is described as "flashy," meaning there is a quick rise in stream level due to rainfall as a result of its high proportion of directly connected urbanized impervious areas. Its streams have storm flow rates many times higher than that from the rural and forested sub-watersheds in the southeast.

[caption id="attachment_7890" align="aligncenter" width="360"] Unstable stormwater outlet in the Tinkers Creek Restoration area (before).[/caption]

This stream restoration project was identified as a priority due to the significant levels of channel incision and the severity of erosion and its impacts on surrounding neighborhoods. Additionally, the project’s proximity to the headwater reaches located on Joint Base Andrews (JBA), so the ability to improve water quality and wildlife habitat made this project a high priority. It provides an important opportunity to create a safe, sustainable, and resilient stream valley in the community.

The design for the stream, and all of the tributaries within the restoration area, will restore these channels to their naturally-stable form. During the preliminary assessment of onsite conditions, the stream and tributaries within the restoration area were classified using geomorphic assessments and hydrologic and hydraulic analysis.

Once the stream types and conditions were identified, a series of restoration approaches were designed, including floodplain creation, bank stabilization using natural materials and plantings, re-aligning straightened stream channels to have a more natural sinuosity, stormwater conveyance, and natural material grade control structures. These changes will help to reduce channel flow velocities and shear stress for flows greater than bankfull; reduce bank erosion and maintain bank stability; treat and attenuate stormwater flows; stabilize outfalls and the receiving stream channels; and stabilize vertically unstable channels.

[caption id="attachment_7742" align="alignnone" width="1024"] Streambank stabilization measures in place, post construction (2019).[/caption]

The project area contained various subsurface utilities like sanitary sewer along the entire reach and fiber-optics and natural gas lines crossing the corridor. Once constructed, the project will improve hydraulic, geomorphic, physicochemical, and biological stream functions. It will also increase floodplain connectivity, improve bedform diversity, restore riparian buffers, and protect public subsurface utilities. In addition to water quality benefits, this project will preserve and enhance the forested floodplain and provide ecological uplift throughout the entire stream corridor.

Planning and design for Tinkers Creek Stream Restoration began in early 2018 and construction is expected to finish ahead of schedule in Spring of 2022. Princeton Hydro is providing construction oversight of all critical structures, such as grade controls, headwater step-pool grade controls, bank stabilization structures, and stormwater outfalls.

The below photos, taken during a site visit in January, showcase some of the exciting progress made by the project team thus far.

[gallery link="none" columns="2" size="medium" ids="7744,7746"]

Stay tuned for more project updates!

Princeton Hydro specializes in the planning, design, permitting, implementing, and maintenance of ecological rehabilitation projects. To learn more about our watershed restoration services, click here. We have partnered with GreenVest on a number of projects, including the award-winning Pin Oak Forest Conservation Area freshwater wetland restoration project and the Mattawoman Creek Mitigation Site wetland enhancement and restoration initiative. To learn more about GreenVest, click here.

[post_title] => Tinkers Creek: Largest Stream Restoration in Maryland is Underway [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => tinkers-creek-stream-restoration [to_ping] => [pinged] => [post_modified] => 2021-11-30 13:41:38 [post_modified_gmt] => 2021-11-30 13:41:38 [post_content_filtered] => [post_parent] => 0 [guid] => https://www.princetonhydro.com/blog/?p=6028 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [comment_count] => 0 [current_comment] => -1 [found_posts] => 32 [max_num_pages] => 3 [max_num_comment_pages] => 0 [is_single] => [is_preview] => [is_page] => [is_archive] => [is_date] => [is_year] => [is_month] => [is_day] => [is_time] => [is_author] => [is_category] => [is_tag] => [is_tax] => [is_search] => [is_feed] => [is_comment_feed] => [is_trackback] => [is_home] => 1 [is_privacy_policy] => [is_404] => [is_embed] => [is_paged] => [is_admin] => [is_attachment] => [is_singular] => [is_robots] => [is_favicon] => [is_posts_page] => 1 [is_post_type_archive] => [query_vars_hash:WP_Query:private] => 00149f1834b312c16de84c6bfe08f251 [query_vars_changed:WP_Query:private] => 1 [thumbnails_cached] => [stopwords:WP_Query:private] => [compat_fields:WP_Query:private] => Array ( [0] => query_vars_hash [1] => query_vars_changed ) [compat_methods:WP_Query:private] => Array ( [0] => init_query_flags [1] => parse_tax_query ) )

Blog

archive
 
Topics
Select Topics