search
WP_Query Object
(
    [query] => Array
        (
            [tag] => habitat-restoration
        )

    [query_vars] => Array
        (
            [tag] => habitat-restoration
            [error] => 
            [m] => 
            [p] => 0
            [post_parent] => 
            [subpost] => 
            [subpost_id] => 
            [attachment] => 
            [attachment_id] => 0
            [name] => 
            [pagename] => 
            [page_id] => 0
            [second] => 
            [minute] => 
            [hour] => 
            [day] => 0
            [monthnum] => 0
            [year] => 0
            [w] => 0
            [category_name] => stream_restoration
            [cat] => 41
            [tag_id] => 509
            [author] => 
            [author_name] => 
            [feed] => 
            [tb] => 
            [paged] => 1
            [meta_key] => 
            [meta_value] => 
            [preview] => 
            [s] => 
            [sentence] => 
            [title] => 
            [fields] => all
            [menu_order] => 
            [embed] => 
            [category__in] => Array
                (
                    [0] => 41
                )

            [category__not_in] => Array
                (
                )

            [category__and] => Array
                (
                )

            [post__in] => Array
                (
                )

            [post__not_in] => Array
                (
                )

            [post_name__in] => Array
                (
                )

            [tag__in] => Array
                (
                )

            [tag__not_in] => Array
                (
                )

            [tag__and] => Array
                (
                )

            [tag_slug__in] => Array
                (
                    [0] => habitat-restoration
                )

            [tag_slug__and] => Array
                (
                )

            [post_parent__in] => Array
                (
                )

            [post_parent__not_in] => Array
                (
                )

            [author__in] => Array
                (
                )

            [author__not_in] => Array
                (
                )

            [search_columns] => Array
                (
                )

            [ignore_sticky_posts] => 
            [suppress_filters] => 
            [cache_results] => 1
            [update_post_term_cache] => 1
            [update_menu_item_cache] => 
            [lazy_load_term_meta] => 1
            [update_post_meta_cache] => 1
            [post_type] => 
            [posts_per_page] => 10
            [nopaging] => 
            [comments_per_page] => 5
            [no_found_rows] => 
            [order] => DESC
        )

    [tax_query] => WP_Tax_Query Object
        (
            [queries] => Array
                (
                    [0] => Array
                        (
                            [taxonomy] => category
                            [terms] => Array
                                (
                                    [0] => 41
                                )

                            [field] => term_id
                            [operator] => IN
                            [include_children] => 
                        )

                    [1] => Array
                        (
                            [taxonomy] => post_tag
                            [terms] => Array
                                (
                                    [0] => habitat-restoration
                                )

                            [field] => slug
                            [operator] => IN
                            [include_children] => 1
                        )

                )

            [relation] => AND
            [table_aliases:protected] => Array
                (
                    [0] => ph_term_relationships
                    [1] => tt1
                )

            [queried_terms] => Array
                (
                    [category] => Array
                        (
                            [terms] => Array
                                (
                                    [0] => 41
                                )

                            [field] => term_id
                        )

                    [post_tag] => Array
                        (
                            [terms] => Array
                                (
                                    [0] => habitat-restoration
                                )

                            [field] => slug
                        )

                )

            [primary_table] => ph_posts
            [primary_id_column] => ID
        )

    [meta_query] => WP_Meta_Query Object
        (
            [queries] => Array
                (
                )

            [relation] => 
            [meta_table] => 
            [meta_id_column] => 
            [primary_table] => 
            [primary_id_column] => 
            [table_aliases:protected] => Array
                (
                )

            [clauses:protected] => Array
                (
                )

            [has_or_relation:protected] => 
        )

    [date_query] => 
    [queried_object] => WP_Term Object
        (
            [term_id] => 509
            [name] => habitat restoration
            [slug] => habitat-restoration
            [term_group] => 0
            [term_taxonomy_id] => 509
            [taxonomy] => post_tag
            [description] => 
            [parent] => 0
            [count] => 10
            [filter] => raw
            [term_order] => 0
        )

    [queried_object_id] => 509
    [request] => SELECT SQL_CALC_FOUND_ROWS  ph_posts.ID
					 FROM ph_posts  LEFT JOIN ph_term_relationships ON (ph_posts.ID = ph_term_relationships.object_id)  LEFT JOIN ph_term_relationships AS tt1 ON (ph_posts.ID = tt1.object_id)
					 WHERE 1=1  AND ( 
  ph_term_relationships.term_taxonomy_id IN (41) 
  AND 
  tt1.term_taxonomy_id IN (509)
) AND ((ph_posts.post_type = 'post' AND (ph_posts.post_status = 'publish' OR ph_posts.post_status = 'acf-disabled')))
					 GROUP BY ph_posts.ID
					 ORDER BY ph_posts.menu_order, ph_posts.post_date DESC
					 LIMIT 0, 10
    [posts] => Array
        (
            [0] => WP_Post Object
                (
                    [ID] => 10290
                    [post_author] => 1
                    [post_date] => 2022-02-17 19:39:19
                    [post_date_gmt] => 2022-02-17 19:39:19
                    [post_content] => 

The Aquetong Creek Restoration Project is situated within the former basin of Aquetong Lake, which was a 15- acre impoundment formed in 1870 by the construction of an earthen dam on Aquetong Creek. The cold-water limestone spring, which flows at a rate of about 2,000 gallons per minute at approximately 53ºf, is known to be the largest of its kind in the 5-county Philadelphia region, and one of the largest in the state of Pennsylvania.

In 2015, the Township of Solebury commenced the restoration of Aquetong Spring Park, first with a dam breach followed by a large stream restoration, reforestation, and invasive species removal. In September, the park was officially reopened to the public following a ribbon cutting ceremony. The event featured a blessing from the Lenni-Lenape Turtle Clan, the original inhabitants of the land.

 

SITE HISTORY

Prior to European settlement, the Lenni-Lenape Tribe inhabited a village close to the spring and designated the spring “Aquetong”, meaning “at the spring among the bushes." After an outbreak of smallpox, however, the tribe abandoned the village. William Penn acquired Aquetong Spring in the early 1680’s as part of his peaceful treaty with Lenni-Lenape. The park land transferred hands many times before it was owned by Aquetong Township.

The dependability of the water flow made the Aquetong Creek an ideal location for mills. As of the early 1800’s, Aquetong Spring is known to have supplied enough water to turn two grist mills regularly throughout the year, and to have concurrently powered numerous mills including a paper mill, a fulling mill, two merchant mills, four sawmills, and an oil mill.

Around 1870, the 15-acre Aquetong Lake was created by constructing a dam at the east end of the property. This provided additional power for the local mills and a recreation area for the public. A fish hatchery was constructed at the base of the spring outfall, portions of which can still be viewed today. Shad, brook trout, and terrapin turtles were raised in the hatchery, which was available for public viewing at a cost of 25 cents per person.

Then, in 1993, the Pennsylvania Fish and Boat Commission acquired the property. A few years later, with the support of Bucks County Trout Unlimited, Solebury Township began negotiating to obtain ownership of the site. Around 1996, the State performed emergency repairs on the dam; a six-foot section of the outlet structure was removed in order to take pressure off the aging barrier. This lowered the level of the lake and added about 80 feet of wetlands to the western shoreline. However, it was recognized that a complete repair of the dam could cost over $1 million and might not be the best choice for the environment.

In 2009, after almost 15 years of negotiations, Solebury Township gained control of the property, with the goal of preserving this important natural resource. It purchased the lake and surrounding properties from the state and obtained a 25-year lease. The Township’s total costs were substantially reduced because it received a large credit in exchange for its commitment to repair the dam in the future, as well as funding from the Bucks County Natural Areas Program toward the purchase.

Following the purchase, the Township engaged in a five-year process of community outreach and consultation with environmental experts in which it considered alternatives for the Aquetong Lake dam. Choices included rebuilding the dam in its then-current form, creating a smaller lake with a cold-water bypass into Aquetong Creek, or breaching the dam and restoring a free-flowing stream. Ultimately, recognizing that the lake was a thermal reservoir which introduced warm water into Aquetong Creek and eventually into the streams and river, the Township decided to breach rather than restore the dam, and return the site to its natural state.

[caption id="attachment_10303" align="aligncenter" width="832"] The Aquetong Creek restoration site is located in Solebury Township, Bucks County, PA, and encompasses the boundaries of the former Aquetong Lake. The Lake was a 15-acre impoundment formed in 1870 by the construction of an earthen dam on Aquetong Creek. The Creek flows approximately 2.5 miles from Ingham Spring to join with the Delaware River in New Hope, PA.[/caption]  

RESTORATION WORK

The Aquetong Restoration Project got underway in 2015, and Solebury Township breached the historic mill dam in Aquetong Spring Park to convert the former lake into a natural area with a free-flowing, cold water stream capable of supporting native brook trout.

After the dam breach, areas of active erosion were observed along the mainstem and a major tributary of Aquetong Creek. The steep, eroding banks, increased the sediment load to the Creek's sensitive aquatic habitat.

As with most dam removal projects, a degree of stewardship is necessary to enhance the establishment of desirable, beneficial vegetation. Additionally, Solebury Township wanted to control invasive species in Aquetong Spring Park and replant the project area with native species.

The Township secured funding to construct riparian buffers, implement streambank stabilization measures, establish trout habitat structures within the mainstem and its tributary, control invasive species, and implement a woodland restoration plan. The project was funded by a $250,000 grant from the PA Department of Conservation and Natural Resources, with an equal match from the Township. Additional grants for the project were provided by the PA Department of Community and Economic Development and the National Fish and Wildlife Foundation.

Solebury Township contracted Princeton Hydro to design the stabilization of the stream channel and floodplains within the former impoundment, monitor the stream and wetlands before and after implementation, and obtain the permits for the restoration of the former impoundment. Princeton Hydro team members designed the restoration of the main channel and tributary to reduce channel and bank erosion while supporting the brook trout habitat.

After gathering and reviewing the existing data for the site, Princeton Hydro conducted field investigations to inform and guide the final design including surveying cross sections and performing fluvial geomorphological assessments of the existing channel. Pebble counts were performed, cross sections were analyzed, and existing hydrological data was reviewed to inform the design. Simultaneously, an invasive species control and woodland restoration plan was developed for the park.

Data collected from the site was used to develop a geomorphically-appropriate, dynamically-stable design. The proposed channel design included excavation of impounded sediment to create stable channel dimensions, the addition of gravel, cobble, and boulder substrate where original/existing channel substrates were absent or insufficient, and the installation of large wood features to create aquatic habitat and enhance stability of channel bed and banks.

The banks and riparian corridor were vegetated with native seed, shrubs and trees to ultimately create a wooded, shaded riparian buffer. The design ultimately stabilized the streambanks with features that double as trout habitat and replanted the surrounding park with native vegetation.

The project was replanted with an incredibly diverse set of native species that included:

  • herbaceous species: swamp milkweed, blue mistflower, and butterfly weed;
  • shrub species: silky dogwood, winterberry holly, and buttonbush; and
  • tree species: red maple, american hornbeam, and pin oak.
[caption id="attachment_10301" align="aligncenter" width="763"] The forested restoration area was planted with a wide variety of native tree, herbaceous and shrub species. Shown here from top left: Canada Goldenrod, New England Aster and River Birch[/caption]  

EXPANDING THE PROJECT SCOPE

In addition to restoring the stream in the former impoundment, as a part of its Strategic Master Plan for Aquetong Spring Park, Solebury Township expanded its focus of the restoration project to include another 20 acres of forested land.

For this, Solebury developed a Woodland Restoration Plan which identified over 1,000 diseased forest trees, composed mostly of ash (Fraxinus sp.) and black walnut (Juglans nigra). It was the Township’s objective to remove the hazardous trees, re-establish a native woodland community, and establish an invasive species management program.

The trees removed as a part of this effort were repurposed for the stream restoration project and used for habitat features, stream stabilization measures, and park features (i.e. benches).

[caption id="attachment_10295" align="aligncenter" width="749"] Hazardous trees were removed and repurposed in the stream restoration construction, including the log grade control structures pictured here.[/caption]  

Princeton Hydro also provided stormwater design support for adjacent areas in Aquetong Spring Park, including multiple stormwater connections to the main tributary. After completion, Princeton Hydro provided bid assistance, developed a probable cost, drafted technical specifications, and produced a bid package to assist Aquetong Township in bringing the project to construction.

This restoration success could not have been possible without the hard work of so many dedicated project partners: Aquetong Spring Advisory Council, Bucks County Trout Unlimited, Solebury Township, Aquetong Township, Simone Collins Landscape Architects, PA Department of Conservation and Natural Resources, PA Department of Community and Economic Development, the National Fish and Wildlife Foundation, Lenni-Lenape Turtle Clan, and Princeton Hydro.

Princeton Hydro specializes in the planning, design, permitting, implementing, and maintenance of ecological rehabilitation projects. To learn more about our watershed restoration services, click here.  To learn about some of our award-winning restoration projects check out our blogs about the Pin Oak Forest Conservation Area freshwater wetland restoration project:

[visual-link-preview encoded="eyJ0eXBlIjoiaW50ZXJuYWwiLCJwb3N0IjoyNzA5LCJwb3N0X2xhYmVsIjoiQXJ0aWNsZSAyNzA5IC0gUGluIE9hayBGb3Jlc3QgUmVzdG9yYXRpb24gUHJvamVjdCBXaW5zIEF3YXJkIGZvciBcIkV4Y2VsbGVuY2UgaW4gV2F0ZXIgUmVzb3VyY2VzIE1hbmFnZW1lbnRcIiIsInVybCI6IiIsImltYWdlX2lkIjo3MjU4LCJpbWFnZV91cmwiOiJodHRwczovL3ByaW5jZXRvbmh5ZHJvLmNvbS93cC1jb250ZW50L3VwbG9hZHMvMjAyMS8wMy9JTUdfMDg2OC1zY2FsZWQuanBnIiwidGl0bGUiOiJQaW4gT2FrIEZvcmVzdCBSZXN0b3JhdGlvbiBQcm9qZWN0IFdpbnMgQXdhcmQgZm9yIFwiRXhjZWxsZW5jZSBpbiBXYXRlciBSZXNvdXJjZXMgTWFuYWdlbWVudFwiIiwic3VtbWFyeSI6IkRlZ3JhZGVkIGZyZXNod2F0ZXIgd2V0bGFuZHMsIHVwbGFuZHMsIGFuZCBjaGFubmVsaXplZCBzdHJlYW1zIGhhdmUgYmVlbiB0cmFuc2Zvcm1lZCBpbnRvIHRocml2aW5nIGhhYml0YXQgdGVlbWluZyB3aXRoIHdpbGRsaWZlIGF0IHRoZSBQaW4gT2FrIEZvcmVzdCBDb25zZXJ2YXRpb24gQXJlYSBpbiBXb29kYnJpZGdlLCBOZXcgSmVyc2V5LiBBIGR5bmFtaWMgcGFydG5lcnNoaXAgYmV0d2VlbiBnb3Zlcm5tZW50IGFnZW5jaWVzLCBOR09zLCBhbmQgcHJpdmF0ZSBpbmR1c3RyeSwgd2FzIGZvcm1lZCB0byByZXN0b3JlIHRoZSBuYXR1cmFsIGZ1bmN0aW9uIGFuZCBzdGV3YXJkIHRoZSBwcm9wZXJ0eSBiYWNrIHRvIGxpZmUuIE9uIFNlcHRlbWJlciAyOCwgdGhlLi4uIiwidGVtcGxhdGUiOiJzaW1wbGUifQ=="] [post_title] => Restoring Aquetong Creek: Stream Rehabilitation, Reforestation, and Invasive Species Control [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => aquetong-creek-restoration-project [to_ping] => [pinged] => [post_modified] => 2025-10-13 15:59:18 [post_modified_gmt] => 2025-10-13 15:59:18 [post_content_filtered] => [post_parent] => 0 [guid] => https://princetonhydro.com/?p=10290 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [1] => WP_Post Object ( [ID] => 2334 [post_author] => 3 [post_date] => 2018-08-15 12:07:45 [post_date_gmt] => 2018-08-15 12:07:45 [post_content] =>

Freshwater mussels are among the oldest living and second most diverse organisms on Earth with over 1,000 recognized species. Here in the eastern part of the U.S., we have more species of freshwater mussels than anywhere in the world. Unfortunately, freshwater mussels are one of the most rapidly declining animal groups in North America. Out of the 300 species and subspecies found on the continent, 70 (23%) have been federally listed as "Threatened" or "Endangered" under the Endangered Species Act. And, in the last century, over 30 species have become permanently extinct. So, why are populations declining so fast?

Freshwater mussels are filter feeders and process large volumes of the water they live in to obtain food. This means of survival also makes them highly susceptible to industrial and agricultural water pollution.  Because they are constantly filtering water, the contaminants and pathogens that are present are absorbed into the mussel’s tissues. As such, mussels are good indicators of water quality and can greatly contribute to improving water quality by filtering algae, bacteria and organic matter from the water column.

Not only do freshwater mussels rely on water quality, they are dependent on fish and other aquatic organisms for reproductive success. In order for a freshwater mussel to complete the reproduction process, it must “infect” a host fish with its larvae. The method depends on the specie of mussel. Some species lure fish using highly modified and evolved appendages that mimic prey. When a fish goes into investigate the lures, the female mussel releases fertilized eggs that attach to the fish, becoming temporarily parasitic. Once the host fish is infected, it can transfer the mussel larvae upstream and into new areas of the river.

Both habitat loss from dam construction and the introduction of pesticides into the water supply has contributed to the decline of freshwater mussels. With approximately 300 mussel species in the U.S. alone, a critical component of restoring and revitalizing mussel populations is truly understanding their biology, which begins with the ability to properly differentiate each species and properly identify and catalog them. Princeton Hydro’s Senior Scientist Evan Kwityn, CLP and Aquatic Ecologist Jesse Smith recently completed the U.S. Fish and Wildlife Service's Fresh Water Mussel Identification Training at the National Conservation Training Center in West Virginia.

Through hands-on laboratory training, Evan and Jesse developed their freshwater mussel identification skills and their knowledge of freshwater mussel species biology. Course participants were tasked with mastering approximately 100 of the most common freshwater mussel species in the United States. They also learned about proper freshwater mussel collection labeling, the internal and external anatomy and meristics of a freshwater mussel, and distributional maps as an aid to freshwater mussel identification.

   

In a recently published press release, Tierra Curry, a senior scientist with the Center for Biological Diversity was quoted as saying, “The health of freshwater mussels directly reflects river health, so protecting the places where these mussels live will help all of us who rely on clean water. This is especially important now, when we see growing threats to clean water from climate change, agriculture and other sources.”

Princeton Hydro is committed to protecting water quality, restoring habitats, and managing natural resources. Read about some of our recent projects and contact us to discuss how we can help you.

To learn more about freshwater mussels, check out this video from U.S. Fish and Wildlife Service.

[visual-link-preview encoded="eyJ0eXBlIjoiZXh0ZXJuYWwiLCJwb3N0IjowLCJwb3N0X2xhYmVsIjoiIiwidXJsIjoiaHR0cHM6Ly95b3V0dS5iZS9PV2psd2Z4NjdlWSIsImltYWdlX2lkIjo0ODc1LCJpbWFnZV91cmwiOiJodHRwczovL3ByaW5jZXRvbmh5ZHJvLmNvbS93cC1jb250ZW50L3VwbG9hZHMvMjAyMC8wNS82Li1IaWdoLXNjaG9vbC1zdHVkZW50cy1pbnN0YWxsaW5nLXNjYWxlZC5qcGciLCJ0aXRsZSI6IkFsbCBBYm91dCBGcmVzaHdhdGVyIE11c3NlbHMgLSBVLlMuIEZpc2ggJiBXaWxkbGlmZSBTZXJ2aWNlIiwic3VtbWFyeSI6IldlIGxvdmUgb3VyIGZyaWVuZHMgYXQgVS5TLiBGaXNoIGFuZCBXaWxkbGlmZSBTZXJ2aWNlLCB3aG8gaXMgdGhlIG9sZGVzdCBmZWRlcmFsIGNvbnNlcnZhdGlvbiBhZ2VuY3ksIHRyYWNpbmcgaXRzIGxpbmVhZ2UgYmFjayB0byAxODcxLCBhbmQgdGhlIG9ubHkgYWdlbmN5IGkuLi4iLCJ0ZW1wbGF0ZSI6InVzZV9kZWZhdWx0X2Zyb21fc2V0dGluZ3MifQ=="]  

[post_title] => Restoring and Revitalizing Freshwater Mussels [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => freshwater-mussels [to_ping] => [pinged] => [post_modified] => 2025-01-02 14:02:37 [post_modified_gmt] => 2025-01-02 14:02:37 [post_content_filtered] => [post_parent] => 0 [guid] => http://www.princetonhydro.com/blog/?p=2334 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [2] => WP_Post Object ( [ID] => 1391 [post_author] => 3 [post_date] => 2018-01-24 18:33:32 [post_date_gmt] => 2018-01-24 18:33:32 [post_content] =>

Welcome to the second installment of Princeton Hydro’s multi-part blog series about aquatic organism passage.

What you'll learn:

  • How does promoting aquatic organism passage benefit ecosystems as a whole?
  • How can others, including people, benefit from aquatic organism passage?
  • How has Princeton Hydro supported it?

Fostering Ecological Balance in Food Webs

A major consequence of poorly designed culverts is the destabilization of food webs. Sufficient predators and prey must exist to maintain a balanced food web. For example, freshwater mussels (Unionidae) are a common snack among fish. A mussel’s life cycle involves using certain fish as a host for their larvae until these microscopic juveniles mature into their adult forms and drop off. During this period, the host fish will travel, effectively transporting a future food source with it. In the presence of habitat fragmentation, the isolation of these symbiotic relationships can be devastating. Some mussel species rely on a small circle of fish species as their hosts, and conversely, some fish species rely on specific mussel species as their food. If a fish species is separated from its mussel partner, food shortages owing to a declining adult mussel population can occur.

Widespread Benefits to Flora, Fauna, and People

[caption id="attachment_1394" align="alignright" width="310"] A man fly fishes as his dog sits by his side at Ken Lockwood Gorge, Hunterdon County. Photo from State of New Jersey website.[/caption] A shift in the 1980s recognized the importance of redesigning road-stream crossings for several reasons, including restoring aquatic organism passage and maintaining flood resiliency. Replacing culverts with larger structures that better facilitate the movement of both water and aquatic organisms benefit all species. Roads constructed over streams allow people to travel across natural landscapes while culverts that are fish-friendly convey water at a rate similar to the surrounding landscape, reducing scour in stream beds. Fish, as well as semi-terrestrial organisms like crabs and salamanders, can take advantage of more natural stream environments and complete their migrations. Anglers appreciate healthy, plentiful fish populations nearly as much as the fish themselves. Recreation and economic growth also improve when streams regain the aquatic biological communities once lost through habitat fragmentation. According to USFWS, for every dollar spent on restoration through the Partners for Fish and Wildlife Program and Coastal Program Restoration Project, states gain $1.90 of economic activity. Stream restoration improves fish and wildlife habitat, which directly supports and enhances recreation opportunities for outdoor enthusiasts thus resulting in increased tourism-related spending and job growth.

Aquatic Organism Passage in Action at Princeton Hydro

Princeton Hydro recently completed a project to facilitate aquatic organism passage for river herring in Red Brook in Plymouth, Massachusetts. Read all about it here! Princeton Hydro was hired by Save the Sound (formerly Connecticut Fund for the Environment) to design a fish passage project along the Noroton River through a long, perched three-barrel concrete culvert under Interstate-95. Click here to read more. For an introduction to aquatic organism passage, be sure to check out the first post in this multipart-series.

Sources: "Aquatic Organism Passage through Bridges and Culverts." Flow. Vermont Department of Environmental Conservation's Watershed Management Division, 31 Jan. 2014. Web. 14 Mar. 2017. Hoffman, R.L., Dunham, J.B., and Hansen, B.P., eds., 2012, Aquatic organism passage at road-stream crossings— Synthesis and guidelines for effectiveness monitoring: U.S. Geological Survey Open-File Report 2012-1090, 64 p. Jackson, S., 2003. "Design and Construction of Aquatic Organism Passage at Road-Stream Crossings: Ecological Considerations in the Design of River and Stream Crossings." 20-29 International Conference of Ecology and Transportation, Lake Placid, New York. Kilgore, Roger T., Bergendahl, Bart S., and Hotchkiss, Rollin H. Publication No. FHWAHIF-11-008 HEC-26. Culvert Design for Aquatic Organism Passage Hydraulic Engineering Circular Number 26. October 2010. Michigan Natural Features Inventory. Freshwater Mussels of Michigan. Michigan State University, 2005.   [post_title] => Aquatic Organism Passage: A Princeton Hydro Blog Series (Part 2) [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => aquatic-organism-passage-a-princeton-hydro-blog-series [to_ping] => [pinged] => [post_modified] => 2025-10-16 20:08:18 [post_modified_gmt] => 2025-10-16 20:08:18 [post_content_filtered] => [post_parent] => 0 [guid] => http://www.princetonhydro.com/blog/?p=1391 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [3] => WP_Post Object ( [ID] => 1246 [post_author] => 3 [post_date] => 2017-11-22 11:16:30 [post_date_gmt] => 2017-11-22 11:16:30 [post_content] =>

Introducing part one of a multi-part blog series about aquatic organism passage

What you'll learn:

  • What is aquatic organism passage?
  • Why is it important?
  • How does Princeton Hydro support it?
[caption id="attachment_1254" align="alignright" width="268"] This photo from NYS DEC demonstrates a well-designed stream crossing.[/caption] Since the US government began allotting funds for building roads in U.S. national forests in the late 1920s, hundreds of thousands of culverts were built across the country. Culverts, or drainage structures that convey water underneath a barrier such as a road or railroad, were originally built with the intention of moving water quickly and efficiently. While this goal was met, many migratory fish and other aquatic organisms could not overcome the culverts’ high-velocity flows, sending them away from their migratory destinations. If the culvert was perched, or elevated above the water surface, it would require the migratory aquatic animals to both leap upwards and fight the unnaturally fast stream current to continue their journeys. Additionally, turbulence, low flows, and debris challenged the movement of aquatic organisms. Thus, the goal of aquatic organism passage (AOP) is to maintain connectivity by allowing aquatic organisms to migrate upstream or downstream under roads. AOP “has a profound influence on the movement, distribution and abundance of populations of aquatic species in rivers and streams”. These aforementioned species include “fish, aquatic reptiles and amphibians, and the insects that live in the stream bed and are the food source for fish”.   [caption id="attachment_1255" align="alignright" width="300"] This photo from NYS DEC demonstrates a poorly-designed stream crossing.[/caption] A poorly designed culvert can harm fish populations in multiple ways. If sturgeon aren’t able to surpass it, habitat fragmentation prevails. And so, a once-connected habitat for thousands of sturgeon breaks into isolated areas where a few hundred now live. When the population was in the thousands, a disease that wiped out 80% of the population would still leave a viable number of individuals left to survive and mate; a population of a few hundred will be severely hurt by such an event. In sum, habitat fragmentation raises the risk of local extinction (extirpation) as well as extinction in general. The splintering of a large population into several smaller ones can also leave species more vulnerable to invasive species. Generally, the greater the biodiversity harbored in a population, the stronger its response will be against a disturbance. A dwindling community of a few hundred herring will likely succumb to an invasive who preys on it while a larger, more robust community of a few thousand herring has a greater chance of containing some individuals who can outcompete the invasive.

Aquatic Organism Passage in Action at Princeton Hydro

Princeton Hydro recently teamed up with Trout Unlimited to reconnect streams within a prized central-Pennsylvanian trout fishery.  Our team enabled aquatic organism passage by replacing two culverts in Pennsylvania’s Cross Fork Creek. Read about it here!

To read part two of our Aquatic Organism Passage blog series, click here!

Sources: "Aquatic Organism Passage through Bridges and Culverts." Flow. Vermont Department of Environmental Conservation's Watershed Management Division, 31 Jan. 2014. Web. 14 Mar. 2017. Hoffman, R.L., Dunham, J.B., and Hansen, B.P., eds., 2012, Aquatic organism passage at road-stream crossings— Synthesis and guidelines for effectiveness monitoring: US Geological Survey Open-File Report 2012-1090, 64p. Jackson, S., 2003. "Design and Construction of Aquatic Organism Passage at Road-Stream Crossings: Ecological Considerations in the Design of River and Stream Crossings." 20-29 International Conference of Ecology and Transportation, Lake Placid, New York. Kilgore, Roger T., Bergendahl, Bart S., and Hotchkiss, Rollin H. Publication No. FHWAHIF-11-008 HEC-26. Culvert Design for Aquatic Organism Passage Hydraulic Engineering Circular Number 26. October 2010. [post_title] => Aquatic Organism Passage: A Princeton Hydro Blog Series (Part 1) [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => aop-blog-series-1 [to_ping] => [pinged] => [post_modified] => 2025-10-16 20:08:18 [post_modified_gmt] => 2025-10-16 20:08:18 [post_content_filtered] => [post_parent] => 0 [guid] => http://www.princetonhydro.com/blog/?p=1246 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) ) [post_count] => 4 [current_post] => -1 [before_loop] => 1 [in_the_loop] => [post] => WP_Post Object ( [ID] => 10290 [post_author] => 1 [post_date] => 2022-02-17 19:39:19 [post_date_gmt] => 2022-02-17 19:39:19 [post_content] =>

The Aquetong Creek Restoration Project is situated within the former basin of Aquetong Lake, which was a 15- acre impoundment formed in 1870 by the construction of an earthen dam on Aquetong Creek. The cold-water limestone spring, which flows at a rate of about 2,000 gallons per minute at approximately 53ºf, is known to be the largest of its kind in the 5-county Philadelphia region, and one of the largest in the state of Pennsylvania.

In 2015, the Township of Solebury commenced the restoration of Aquetong Spring Park, first with a dam breach followed by a large stream restoration, reforestation, and invasive species removal. In September, the park was officially reopened to the public following a ribbon cutting ceremony. The event featured a blessing from the Lenni-Lenape Turtle Clan, the original inhabitants of the land.

 

SITE HISTORY

Prior to European settlement, the Lenni-Lenape Tribe inhabited a village close to the spring and designated the spring “Aquetong”, meaning “at the spring among the bushes." After an outbreak of smallpox, however, the tribe abandoned the village. William Penn acquired Aquetong Spring in the early 1680’s as part of his peaceful treaty with Lenni-Lenape. The park land transferred hands many times before it was owned by Aquetong Township.

The dependability of the water flow made the Aquetong Creek an ideal location for mills. As of the early 1800’s, Aquetong Spring is known to have supplied enough water to turn two grist mills regularly throughout the year, and to have concurrently powered numerous mills including a paper mill, a fulling mill, two merchant mills, four sawmills, and an oil mill.

Around 1870, the 15-acre Aquetong Lake was created by constructing a dam at the east end of the property. This provided additional power for the local mills and a recreation area for the public. A fish hatchery was constructed at the base of the spring outfall, portions of which can still be viewed today. Shad, brook trout, and terrapin turtles were raised in the hatchery, which was available for public viewing at a cost of 25 cents per person.

Then, in 1993, the Pennsylvania Fish and Boat Commission acquired the property. A few years later, with the support of Bucks County Trout Unlimited, Solebury Township began negotiating to obtain ownership of the site. Around 1996, the State performed emergency repairs on the dam; a six-foot section of the outlet structure was removed in order to take pressure off the aging barrier. This lowered the level of the lake and added about 80 feet of wetlands to the western shoreline. However, it was recognized that a complete repair of the dam could cost over $1 million and might not be the best choice for the environment.

In 2009, after almost 15 years of negotiations, Solebury Township gained control of the property, with the goal of preserving this important natural resource. It purchased the lake and surrounding properties from the state and obtained a 25-year lease. The Township’s total costs were substantially reduced because it received a large credit in exchange for its commitment to repair the dam in the future, as well as funding from the Bucks County Natural Areas Program toward the purchase.

Following the purchase, the Township engaged in a five-year process of community outreach and consultation with environmental experts in which it considered alternatives for the Aquetong Lake dam. Choices included rebuilding the dam in its then-current form, creating a smaller lake with a cold-water bypass into Aquetong Creek, or breaching the dam and restoring a free-flowing stream. Ultimately, recognizing that the lake was a thermal reservoir which introduced warm water into Aquetong Creek and eventually into the streams and river, the Township decided to breach rather than restore the dam, and return the site to its natural state.

[caption id="attachment_10303" align="aligncenter" width="832"] The Aquetong Creek restoration site is located in Solebury Township, Bucks County, PA, and encompasses the boundaries of the former Aquetong Lake. The Lake was a 15-acre impoundment formed in 1870 by the construction of an earthen dam on Aquetong Creek. The Creek flows approximately 2.5 miles from Ingham Spring to join with the Delaware River in New Hope, PA.[/caption]  

RESTORATION WORK

The Aquetong Restoration Project got underway in 2015, and Solebury Township breached the historic mill dam in Aquetong Spring Park to convert the former lake into a natural area with a free-flowing, cold water stream capable of supporting native brook trout.

After the dam breach, areas of active erosion were observed along the mainstem and a major tributary of Aquetong Creek. The steep, eroding banks, increased the sediment load to the Creek's sensitive aquatic habitat.

As with most dam removal projects, a degree of stewardship is necessary to enhance the establishment of desirable, beneficial vegetation. Additionally, Solebury Township wanted to control invasive species in Aquetong Spring Park and replant the project area with native species.

The Township secured funding to construct riparian buffers, implement streambank stabilization measures, establish trout habitat structures within the mainstem and its tributary, control invasive species, and implement a woodland restoration plan. The project was funded by a $250,000 grant from the PA Department of Conservation and Natural Resources, with an equal match from the Township. Additional grants for the project were provided by the PA Department of Community and Economic Development and the National Fish and Wildlife Foundation.

Solebury Township contracted Princeton Hydro to design the stabilization of the stream channel and floodplains within the former impoundment, monitor the stream and wetlands before and after implementation, and obtain the permits for the restoration of the former impoundment. Princeton Hydro team members designed the restoration of the main channel and tributary to reduce channel and bank erosion while supporting the brook trout habitat.

After gathering and reviewing the existing data for the site, Princeton Hydro conducted field investigations to inform and guide the final design including surveying cross sections and performing fluvial geomorphological assessments of the existing channel. Pebble counts were performed, cross sections were analyzed, and existing hydrological data was reviewed to inform the design. Simultaneously, an invasive species control and woodland restoration plan was developed for the park.

Data collected from the site was used to develop a geomorphically-appropriate, dynamically-stable design. The proposed channel design included excavation of impounded sediment to create stable channel dimensions, the addition of gravel, cobble, and boulder substrate where original/existing channel substrates were absent or insufficient, and the installation of large wood features to create aquatic habitat and enhance stability of channel bed and banks.

The banks and riparian corridor were vegetated with native seed, shrubs and trees to ultimately create a wooded, shaded riparian buffer. The design ultimately stabilized the streambanks with features that double as trout habitat and replanted the surrounding park with native vegetation.

The project was replanted with an incredibly diverse set of native species that included:

  • herbaceous species: swamp milkweed, blue mistflower, and butterfly weed;
  • shrub species: silky dogwood, winterberry holly, and buttonbush; and
  • tree species: red maple, american hornbeam, and pin oak.
[caption id="attachment_10301" align="aligncenter" width="763"] The forested restoration area was planted with a wide variety of native tree, herbaceous and shrub species. Shown here from top left: Canada Goldenrod, New England Aster and River Birch[/caption]  

EXPANDING THE PROJECT SCOPE

In addition to restoring the stream in the former impoundment, as a part of its Strategic Master Plan for Aquetong Spring Park, Solebury Township expanded its focus of the restoration project to include another 20 acres of forested land.

For this, Solebury developed a Woodland Restoration Plan which identified over 1,000 diseased forest trees, composed mostly of ash (Fraxinus sp.) and black walnut (Juglans nigra). It was the Township’s objective to remove the hazardous trees, re-establish a native woodland community, and establish an invasive species management program.

The trees removed as a part of this effort were repurposed for the stream restoration project and used for habitat features, stream stabilization measures, and park features (i.e. benches).

[caption id="attachment_10295" align="aligncenter" width="749"] Hazardous trees were removed and repurposed in the stream restoration construction, including the log grade control structures pictured here.[/caption]  

Princeton Hydro also provided stormwater design support for adjacent areas in Aquetong Spring Park, including multiple stormwater connections to the main tributary. After completion, Princeton Hydro provided bid assistance, developed a probable cost, drafted technical specifications, and produced a bid package to assist Aquetong Township in bringing the project to construction.

This restoration success could not have been possible without the hard work of so many dedicated project partners: Aquetong Spring Advisory Council, Bucks County Trout Unlimited, Solebury Township, Aquetong Township, Simone Collins Landscape Architects, PA Department of Conservation and Natural Resources, PA Department of Community and Economic Development, the National Fish and Wildlife Foundation, Lenni-Lenape Turtle Clan, and Princeton Hydro.

Princeton Hydro specializes in the planning, design, permitting, implementing, and maintenance of ecological rehabilitation projects. To learn more about our watershed restoration services, click here.  To learn about some of our award-winning restoration projects check out our blogs about the Pin Oak Forest Conservation Area freshwater wetland restoration project:

[visual-link-preview encoded="eyJ0eXBlIjoiaW50ZXJuYWwiLCJwb3N0IjoyNzA5LCJwb3N0X2xhYmVsIjoiQXJ0aWNsZSAyNzA5IC0gUGluIE9hayBGb3Jlc3QgUmVzdG9yYXRpb24gUHJvamVjdCBXaW5zIEF3YXJkIGZvciBcIkV4Y2VsbGVuY2UgaW4gV2F0ZXIgUmVzb3VyY2VzIE1hbmFnZW1lbnRcIiIsInVybCI6IiIsImltYWdlX2lkIjo3MjU4LCJpbWFnZV91cmwiOiJodHRwczovL3ByaW5jZXRvbmh5ZHJvLmNvbS93cC1jb250ZW50L3VwbG9hZHMvMjAyMS8wMy9JTUdfMDg2OC1zY2FsZWQuanBnIiwidGl0bGUiOiJQaW4gT2FrIEZvcmVzdCBSZXN0b3JhdGlvbiBQcm9qZWN0IFdpbnMgQXdhcmQgZm9yIFwiRXhjZWxsZW5jZSBpbiBXYXRlciBSZXNvdXJjZXMgTWFuYWdlbWVudFwiIiwic3VtbWFyeSI6IkRlZ3JhZGVkIGZyZXNod2F0ZXIgd2V0bGFuZHMsIHVwbGFuZHMsIGFuZCBjaGFubmVsaXplZCBzdHJlYW1zIGhhdmUgYmVlbiB0cmFuc2Zvcm1lZCBpbnRvIHRocml2aW5nIGhhYml0YXQgdGVlbWluZyB3aXRoIHdpbGRsaWZlIGF0IHRoZSBQaW4gT2FrIEZvcmVzdCBDb25zZXJ2YXRpb24gQXJlYSBpbiBXb29kYnJpZGdlLCBOZXcgSmVyc2V5LiBBIGR5bmFtaWMgcGFydG5lcnNoaXAgYmV0d2VlbiBnb3Zlcm5tZW50IGFnZW5jaWVzLCBOR09zLCBhbmQgcHJpdmF0ZSBpbmR1c3RyeSwgd2FzIGZvcm1lZCB0byByZXN0b3JlIHRoZSBuYXR1cmFsIGZ1bmN0aW9uIGFuZCBzdGV3YXJkIHRoZSBwcm9wZXJ0eSBiYWNrIHRvIGxpZmUuIE9uIFNlcHRlbWJlciAyOCwgdGhlLi4uIiwidGVtcGxhdGUiOiJzaW1wbGUifQ=="] [post_title] => Restoring Aquetong Creek: Stream Rehabilitation, Reforestation, and Invasive Species Control [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => aquetong-creek-restoration-project [to_ping] => [pinged] => [post_modified] => 2025-10-13 15:59:18 [post_modified_gmt] => 2025-10-13 15:59:18 [post_content_filtered] => [post_parent] => 0 [guid] => https://princetonhydro.com/?p=10290 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [comment_count] => 0 [current_comment] => -1 [found_posts] => 4 [max_num_pages] => 1 [max_num_comment_pages] => 0 [is_single] => [is_preview] => [is_page] => [is_archive] => 1 [is_date] => [is_year] => [is_month] => [is_day] => [is_time] => [is_author] => [is_category] => [is_tag] => 1 [is_tax] => [is_search] => [is_feed] => [is_comment_feed] => [is_trackback] => [is_home] => [is_privacy_policy] => [is_404] => [is_embed] => [is_paged] => [is_admin] => [is_attachment] => [is_singular] => [is_robots] => [is_favicon] => [is_posts_page] => [is_post_type_archive] => [query_vars_hash:WP_Query:private] => 97f630c077f24f8fa3659311287c564b [query_vars_changed:WP_Query:private] => 1 [thumbnails_cached] => [allow_query_attachment_by_filename:protected] => [stopwords:WP_Query:private] => [compat_fields:WP_Query:private] => Array ( [0] => query_vars_hash [1] => query_vars_changed ) [compat_methods:WP_Query:private] => Array ( [0] => init_query_flags [1] => parse_tax_query ) [query_cache_key:WP_Query:private] => wp_query:797922e3a19a12aa328f8ed6a5d573a8:0.30883500 17611701710.30763700 1761170171 )

Tag: habitat restoration

archive
 
Topics
Select Topics