search
WP_Query Object
(
    [query] => Array
        (
            [category_name] => lake-restoration
        )

    [query_vars] => Array
        (
            [category_name] => lake-restoration
            [error] => 
            [m] => 
            [p] => 0
            [post_parent] => 
            [subpost] => 
            [subpost_id] => 
            [attachment] => 
            [attachment_id] => 0
            [name] => 
            [pagename] => 
            [page_id] => 0
            [second] => 
            [minute] => 
            [hour] => 
            [day] => 0
            [monthnum] => 0
            [year] => 0
            [w] => 0
            [tag] => 
            [cat] => 38
            [tag_id] => 
            [author] => 
            [author_name] => 
            [feed] => 
            [tb] => 
            [paged] => 1
            [meta_key] => 
            [meta_value] => 
            [preview] => 
            [s] => 
            [sentence] => 
            [title] => 
            [fields] => all
            [menu_order] => 
            [embed] => 
            [category__in] => Array
                (
                    [0] => 41
                )

            [category__not_in] => Array
                (
                )

            [category__and] => Array
                (
                )

            [post__in] => Array
                (
                )

            [post__not_in] => Array
                (
                )

            [post_name__in] => Array
                (
                )

            [tag__in] => Array
                (
                )

            [tag__not_in] => Array
                (
                )

            [tag__and] => Array
                (
                )

            [tag_slug__in] => Array
                (
                )

            [tag_slug__and] => Array
                (
                )

            [post_parent__in] => Array
                (
                )

            [post_parent__not_in] => Array
                (
                )

            [author__in] => Array
                (
                )

            [author__not_in] => Array
                (
                )

            [search_columns] => Array
                (
                )

            [ignore_sticky_posts] => 
            [suppress_filters] => 
            [cache_results] => 1
            [update_post_term_cache] => 1
            [update_menu_item_cache] => 
            [lazy_load_term_meta] => 1
            [update_post_meta_cache] => 1
            [post_type] => 
            [posts_per_page] => 10
            [nopaging] => 
            [comments_per_page] => 5
            [no_found_rows] => 
            [order] => DESC
        )

    [tax_query] => WP_Tax_Query Object
        (
            [queries] => Array
                (
                    [0] => Array
                        (
                            [taxonomy] => category
                            [terms] => Array
                                (
                                    [0] => lake-restoration
                                )

                            [field] => slug
                            [operator] => IN
                            [include_children] => 1
                        )

                    [1] => Array
                        (
                            [taxonomy] => category
                            [terms] => Array
                                (
                                    [0] => 41
                                )

                            [field] => term_id
                            [operator] => IN
                            [include_children] => 
                        )

                )

            [relation] => AND
            [table_aliases:protected] => Array
                (
                    [0] => ph_term_relationships
                    [1] => tt1
                )

            [queried_terms] => Array
                (
                    [category] => Array
                        (
                            [terms] => Array
                                (
                                    [0] => lake-restoration
                                )

                            [field] => slug
                        )

                )

            [primary_table] => ph_posts
            [primary_id_column] => ID
        )

    [meta_query] => WP_Meta_Query Object
        (
            [queries] => Array
                (
                )

            [relation] => 
            [meta_table] => 
            [meta_id_column] => 
            [primary_table] => 
            [primary_id_column] => 
            [table_aliases:protected] => Array
                (
                )

            [clauses:protected] => Array
                (
                )

            [has_or_relation:protected] => 
        )

    [date_query] => 
    [queried_object] => WP_Term Object
        (
            [term_id] => 38
            [name] => Lake Restoration
            [slug] => lake-restoration
            [term_group] => 0
            [term_taxonomy_id] => 38
            [taxonomy] => category
            [description] => 
            [parent] => 0
            [count] => 52
            [filter] => raw
            [term_order] => 12
            [cat_ID] => 38
            [category_count] => 52
            [category_description] => 
            [cat_name] => Lake Restoration
            [category_nicename] => lake-restoration
            [category_parent] => 0
        )

    [queried_object_id] => 38
    [request] => SELECT SQL_CALC_FOUND_ROWS  ph_posts.ID
					 FROM ph_posts  LEFT JOIN ph_term_relationships ON (ph_posts.ID = ph_term_relationships.object_id)  LEFT JOIN ph_term_relationships AS tt1 ON (ph_posts.ID = tt1.object_id)
					 WHERE 1=1  AND ( 
  ph_term_relationships.term_taxonomy_id IN (38) 
  AND 
  tt1.term_taxonomy_id IN (41)
) AND ((ph_posts.post_type = 'post' AND (ph_posts.post_status = 'publish' OR ph_posts.post_status = 'acf-disabled')))
					 GROUP BY ph_posts.ID
					 ORDER BY ph_posts.menu_order, ph_posts.post_date DESC
					 LIMIT 0, 10
    [posts] => Array
        (
            [0] => WP_Post Object
                (
                    [ID] => 14684
                    [post_author] => 1
                    [post_date] => 2024-04-10 15:23:17
                    [post_date_gmt] => 2024-04-10 15:23:17
                    [post_content] => 

Nestled within the New Jersey townships of Hamilton, Robbinsville, and West Windsor lies Miry Run Dam Site 21—an expansive 279-acre parcel with a rich history dating back to its acquisition by Mercer County in the late 1970s. Originally earmarked for flood mitigation and recreation, this hidden gem is on the cusp of a remarkable transformation, poised to unveil its true potential as a thriving public park.

Central to the revitalization efforts is a comprehensive Master Plan, meticulously crafted by Mercer County Park Commission in partnership with Simone Collins Landscape Architecture and Princeton Hydro. This visionary roadmap encompasses a spectrum of engineering and ecological uplift initiatives, including:

  • Several types of trails and boardwalks that total approximately 7 miles, including a tree canopy walk-through over an area of vernal pools;
  • A nature-based playground and an ADA inclusive playground;
  • Kayak launch and water trail;
  • Protected swimming area for a limited number of swimmers each day;
  • A native plant arboretum and horticultural garden;
  • Fishing access areas;
  • Parking lots, driveways, small restrooms and pavilions; and
  • A group camping area that would accommodate about 30-40 campers.

The Master Plan serves as a long-term vision for improvements to the property and will be implemented over multiple phases. In 2021, it was recognized with the Landscape Architectural Chapter Award from the New Jersey Chapter American Society of Landscape Architects, which underscores its innovative and impactful approach to landscape design.


Phase One is Underway

Now, Dam Site 21’s revitalization has begun with a crucial endeavor: the dredging of its 50-acre lake. This process, spearheaded by Mercer County Park Commission in collaboration with Princeton Hydro, aims to rejuvenate the water body by removing accumulated debris, sediment, and invasive vegetation—a vital step towards restoring its ecological balance. Beyond the aesthetic and ecological improvements, dredging enhances accessibility for recreational activities that provide an opportunity to create a deeper connection between the park’s visitors and its beautiful natural landscape.

Based on the bathymetric assessment, which the Princeton Hydro team completed as part of the Master Plan, the dredging efforts are focused on three primary areas: Area 1 is located in the main body of the lake just downstream of Line Road and will generate approximately 34,000 cubic yards of dredged material; Area 2, which has approximately 4,900 cubic yards of accumulated sediment is located in the northeast cove, just north of Area 1; and Area 3, the northwestern cove, entails the removal of approximately 7,300 cubic yards of accumulated sediment.

This video, taken on February 27, provides an aerial view of the project site and the dredging in progress: [embed]https://youtu.be/F7t39mD1Rq8?si=6pnAarnT2RomS0s6[/embed]

Before the dredging work could begin, the Princeton Hydro team was responsible for providing a sediment sampling plan, sample collection and laboratory analysis, engineering design plan, preparation and submission of all NJDEP regulatory permitting materials, preparation of the technical specifications, and bid administration. Currently, our team is providing construction administration and oversight for the project.

[gallery columns="2" link="none" size="medium" ids="14730,14726"] [caption id="attachment_14729" align="aligncenter" width="1227"] March 19 2024 - The dredging work begins[/caption]

From Planning to Implementation and Beyond

The journey towards Dam Site 21's revival has been marked by meticulous planning, design, and community engagement spanning several years. With the commencement of dredging operations, the project's vision is gradually materializing—a testament to the dedication of all stakeholders involved. As the first phase unfolds, anticipation mounts for the realization of a vibrant, inclusive public space that honors both nature and community.

[caption id="attachment_14713" align="aligncenter" width="1280"] Drone image of the Miry Run Dam Site 21 Project (Feb 27 2024)[/caption] [gallery link="none" size="medium" ids="14735,14734,14736"]

As Dam Site 21 undergoes its metamorphosis, it symbolizes not just a physical restoration, but a renewal of collective vision and commitment. Ultimately, Dam Site 21 isn't just a park—it's a testament to the enduring legacy of conservation, community, and the transformative power of restoration.

The significance of Dam Site 21's transformation extends far beyond its recreational appeal. It embodies a commitment to environmental stewardship, with measures aimed at bolstering flood resilience, improving water quality, and nurturing diverse wildlife habitats. By blending conservation with recreation, the project strikes an important balance between creating access for community members to enjoy the space and ecological preservation that puts native plants,  critical habitat, and wildlife at the forefront.


To learn more about the restoration initiative and view the Final Master Plan, visit the Mercer County Park Commission’s website. Click here to learn about another one of Princeton Hydro’s recent restoration efforts. And, stay tuned here for more Mercer County Park Commission project updates!

[post_title] => Restoration in Motion at Miry Run Dam Site 21 [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => restoration-in-motion-at-miry-runs-dam-site-21 [to_ping] => [pinged] => [post_modified] => 2025-01-02 13:57:09 [post_modified_gmt] => 2025-01-02 13:57:09 [post_content_filtered] => [post_parent] => 0 [guid] => https://princetonhydro.com/?p=14684 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [1] => WP_Post Object ( [ID] => 2334 [post_author] => 3 [post_date] => 2018-08-15 12:07:45 [post_date_gmt] => 2018-08-15 12:07:45 [post_content] =>

Freshwater mussels are among the oldest living and second most diverse organisms on Earth with over 1,000 recognized species. Here in the eastern part of the U.S., we have more species of freshwater mussels than anywhere in the world. Unfortunately, freshwater mussels are one of the most rapidly declining animal groups in North America. Out of the 300 species and subspecies found on the continent, 70 (23%) have been federally listed as "Threatened" or "Endangered" under the Endangered Species Act. And, in the last century, over 30 species have become permanently extinct. So, why are populations declining so fast?

Freshwater mussels are filter feeders and process large volumes of the water they live in to obtain food. This means of survival also makes them highly susceptible to industrial and agricultural water pollution.  Because they are constantly filtering water, the contaminants and pathogens that are present are absorbed into the mussel’s tissues. As such, mussels are good indicators of water quality and can greatly contribute to improving water quality by filtering algae, bacteria and organic matter from the water column.

Not only do freshwater mussels rely on water quality, they are dependent on fish and other aquatic organisms for reproductive success. In order for a freshwater mussel to complete the reproduction process, it must “infect” a host fish with its larvae. The method depends on the specie of mussel. Some species lure fish using highly modified and evolved appendages that mimic prey. When a fish goes into investigate the lures, the female mussel releases fertilized eggs that attach to the fish, becoming temporarily parasitic. Once the host fish is infected, it can transfer the mussel larvae upstream and into new areas of the river.

Both habitat loss from dam construction and the introduction of pesticides into the water supply has contributed to the decline of freshwater mussels. With approximately 300 mussel species in the U.S. alone, a critical component of restoring and revitalizing mussel populations is truly understanding their biology, which begins with the ability to properly differentiate each species and properly identify and catalog them. Princeton Hydro’s Senior Scientist Evan Kwityn, CLP and Aquatic Ecologist Jesse Smith recently completed the U.S. Fish and Wildlife Service's Fresh Water Mussel Identification Training at the National Conservation Training Center in West Virginia.

Through hands-on laboratory training, Evan and Jesse developed their freshwater mussel identification skills and their knowledge of freshwater mussel species biology. Course participants were tasked with mastering approximately 100 of the most common freshwater mussel species in the United States. They also learned about proper freshwater mussel collection labeling, the internal and external anatomy and meristics of a freshwater mussel, and distributional maps as an aid to freshwater mussel identification.

   

In a recently published press release, Tierra Curry, a senior scientist with the Center for Biological Diversity was quoted as saying, “The health of freshwater mussels directly reflects river health, so protecting the places where these mussels live will help all of us who rely on clean water. This is especially important now, when we see growing threats to clean water from climate change, agriculture and other sources.”

Princeton Hydro is committed to protecting water quality, restoring habitats, and managing natural resources. Read about some of our recent projects and contact us to discuss how we can help you.

To learn more about freshwater mussels, check out this video from U.S. Fish and Wildlife Service.

[visual-link-preview encoded="eyJ0eXBlIjoiZXh0ZXJuYWwiLCJwb3N0IjowLCJwb3N0X2xhYmVsIjoiIiwidXJsIjoiaHR0cHM6Ly95b3V0dS5iZS9PV2psd2Z4NjdlWSIsImltYWdlX2lkIjo0ODc1LCJpbWFnZV91cmwiOiJodHRwczovL3ByaW5jZXRvbmh5ZHJvLmNvbS93cC1jb250ZW50L3VwbG9hZHMvMjAyMC8wNS82Li1IaWdoLXNjaG9vbC1zdHVkZW50cy1pbnN0YWxsaW5nLXNjYWxlZC5qcGciLCJ0aXRsZSI6IkFsbCBBYm91dCBGcmVzaHdhdGVyIE11c3NlbHMgLSBVLlMuIEZpc2ggJiBXaWxkbGlmZSBTZXJ2aWNlIiwic3VtbWFyeSI6IldlIGxvdmUgb3VyIGZyaWVuZHMgYXQgVS5TLiBGaXNoIGFuZCBXaWxkbGlmZSBTZXJ2aWNlLCB3aG8gaXMgdGhlIG9sZGVzdCBmZWRlcmFsIGNvbnNlcnZhdGlvbiBhZ2VuY3ksIHRyYWNpbmcgaXRzIGxpbmVhZ2UgYmFjayB0byAxODcxLCBhbmQgdGhlIG9ubHkgYWdlbmN5IGkuLi4iLCJ0ZW1wbGF0ZSI6InVzZV9kZWZhdWx0X2Zyb21fc2V0dGluZ3MifQ=="]  

[post_title] => Restoring and Revitalizing Freshwater Mussels [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => freshwater-mussels [to_ping] => [pinged] => [post_modified] => 2025-01-02 14:02:37 [post_modified_gmt] => 2025-01-02 14:02:37 [post_content_filtered] => [post_parent] => 0 [guid] => https://www.princetonhydro.com/blog/?p=2334 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [2] => WP_Post Object ( [ID] => 1041 [post_author] => 3 [post_date] => 2017-03-29 20:27:35 [post_date_gmt] => 2017-03-29 20:27:35 [post_content] =>
Here's a Recap of Projects Recently Completed by the Princeton Hydro Aquatic & Engineering Departments
Members of our New England Regional Office team conducted a detailed survey at a culvert prioritized for replacement in the Town of Stony Point, New York. This structure was one of several identified as important to both habitat and flood risk during the development of Stony Point's Road-Stream Crossing Management Plan. The Princeton Hydro team will use the collected data to develop a conceptual design and implementation strategy for a replacement structure using the Stream Simulation design method developed by the U.S. Forest Service. Special thanks to Paul Woodworth, Fluvial Geomorphologist, and Sophie Breitbart, Staff Scientist, for their excellent work on this project!

The Truxor was put to work dredging a pond in Union Gap, New Jersey. The Truxor is an extremely versatile amphibious machine that can perform a variety of functions, including weed cutting and harvesting, mat algae and debris removal, silt pumping, channel excavation, oil spill clean-up, and much more!

We recently designed and installed a solar-powered aeration system in Hillsborough, New Jersey. Solar pond and lake aeration systems are cost-effective, eco-friendly, sustainable, and they eliminate the need to run direct-wired electrical lines to remote locations. Princeton Hydro designs, installs and maintains various aeration and sub-surface destratification systems for public drinking water purveyors, municipal and county parks, private and public golf courses, and large lake communities throughout the East Coast.

Here’s a look at a project in Elizabeth, New Jersey to clear the area of phragmites. Phragmites is an invasive weed that forms dense thickets of vegetation unsuitable for native fauna. It also outcompetes native vegetation and lowers local plant diversity. Previously, the entire site was filled with phragmites. Late last year, we utilized the Marsh Master to remove the invasive weed. Now that its almost Spring, we’re back at the site using the Marsh Master to mill and cultivate the ground in preparation for re-planting native plant species. A big shout out to our Aquatic Specialist John Eberly for his great work on this project!

In this photo, Princeton Hydro team member gathers data on the Hughesville Dam removal, using GPS to check the elevation of the constructed riffle on the beautiful Musconetcong River. In this photo, our intern and engineering student currently studying at Stevens Institute of Technology, Veronica Moditz, is gathering data on the Hughesville Dam removal. She’s using GPS to check the elevation of the constructed riffle on the beautiful Musconetcong River.

Members of the Princeton Hydro team worked in South New Jersey doing annual maintenance on nine stormwater infiltration basins that were also designed and constructed by Princeton Hydro. The maintenance work involves clearing vegetation from the basins to ensure the organic matter does not impede infiltration of the water as per the basins’ design. This project also involves the management of invasive plant species within the basins. Stormwater infiltration basins provide numerous benefits including preventing flooding and downstream erosion, improving water quality in adjacent waterbodies, reducing the volume of stormwater runoff, and increasing ground water recharge.

We recently completed a project in New Jersey for which we used our Truxor machine to dredge a stormwater retention basin. The basin had accumulated large amounts of sediment which were impeding the flow of water into the basin. We equipped the Truxor with its standard bucket attachment and a hydraulic dredge pump. The dredging operation was a success and now the basin is clear and functioning properly.

Stay Tuned for More Updates!

[post_title] => Princeton Hydro Projects Recap [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => princeton-hydro-recap [to_ping] => [pinged] => [post_modified] => 2024-12-10 22:45:23 [post_modified_gmt] => 2024-12-10 22:45:23 [post_content_filtered] => [post_parent] => 0 [guid] => https://www.princetonhydro.com/blog/?p=1041 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 5 [filter] => raw ) ) [post_count] => 3 [current_post] => -1 [before_loop] => 1 [in_the_loop] => [post] => WP_Post Object ( [ID] => 14684 [post_author] => 1 [post_date] => 2024-04-10 15:23:17 [post_date_gmt] => 2024-04-10 15:23:17 [post_content] =>

Nestled within the New Jersey townships of Hamilton, Robbinsville, and West Windsor lies Miry Run Dam Site 21—an expansive 279-acre parcel with a rich history dating back to its acquisition by Mercer County in the late 1970s. Originally earmarked for flood mitigation and recreation, this hidden gem is on the cusp of a remarkable transformation, poised to unveil its true potential as a thriving public park.

Central to the revitalization efforts is a comprehensive Master Plan, meticulously crafted by Mercer County Park Commission in partnership with Simone Collins Landscape Architecture and Princeton Hydro. This visionary roadmap encompasses a spectrum of engineering and ecological uplift initiatives, including:

  • Several types of trails and boardwalks that total approximately 7 miles, including a tree canopy walk-through over an area of vernal pools;
  • A nature-based playground and an ADA inclusive playground;
  • Kayak launch and water trail;
  • Protected swimming area for a limited number of swimmers each day;
  • A native plant arboretum and horticultural garden;
  • Fishing access areas;
  • Parking lots, driveways, small restrooms and pavilions; and
  • A group camping area that would accommodate about 30-40 campers.

The Master Plan serves as a long-term vision for improvements to the property and will be implemented over multiple phases. In 2021, it was recognized with the Landscape Architectural Chapter Award from the New Jersey Chapter American Society of Landscape Architects, which underscores its innovative and impactful approach to landscape design.


Phase One is Underway

Now, Dam Site 21’s revitalization has begun with a crucial endeavor: the dredging of its 50-acre lake. This process, spearheaded by Mercer County Park Commission in collaboration with Princeton Hydro, aims to rejuvenate the water body by removing accumulated debris, sediment, and invasive vegetation—a vital step towards restoring its ecological balance. Beyond the aesthetic and ecological improvements, dredging enhances accessibility for recreational activities that provide an opportunity to create a deeper connection between the park’s visitors and its beautiful natural landscape.

Based on the bathymetric assessment, which the Princeton Hydro team completed as part of the Master Plan, the dredging efforts are focused on three primary areas: Area 1 is located in the main body of the lake just downstream of Line Road and will generate approximately 34,000 cubic yards of dredged material; Area 2, which has approximately 4,900 cubic yards of accumulated sediment is located in the northeast cove, just north of Area 1; and Area 3, the northwestern cove, entails the removal of approximately 7,300 cubic yards of accumulated sediment.

This video, taken on February 27, provides an aerial view of the project site and the dredging in progress: [embed]https://youtu.be/F7t39mD1Rq8?si=6pnAarnT2RomS0s6[/embed]

Before the dredging work could begin, the Princeton Hydro team was responsible for providing a sediment sampling plan, sample collection and laboratory analysis, engineering design plan, preparation and submission of all NJDEP regulatory permitting materials, preparation of the technical specifications, and bid administration. Currently, our team is providing construction administration and oversight for the project.

[gallery columns="2" link="none" size="medium" ids="14730,14726"] [caption id="attachment_14729" align="aligncenter" width="1227"] March 19 2024 - The dredging work begins[/caption]

From Planning to Implementation and Beyond

The journey towards Dam Site 21's revival has been marked by meticulous planning, design, and community engagement spanning several years. With the commencement of dredging operations, the project's vision is gradually materializing—a testament to the dedication of all stakeholders involved. As the first phase unfolds, anticipation mounts for the realization of a vibrant, inclusive public space that honors both nature and community.

[caption id="attachment_14713" align="aligncenter" width="1280"] Drone image of the Miry Run Dam Site 21 Project (Feb 27 2024)[/caption] [gallery link="none" size="medium" ids="14735,14734,14736"]

As Dam Site 21 undergoes its metamorphosis, it symbolizes not just a physical restoration, but a renewal of collective vision and commitment. Ultimately, Dam Site 21 isn't just a park—it's a testament to the enduring legacy of conservation, community, and the transformative power of restoration.

The significance of Dam Site 21's transformation extends far beyond its recreational appeal. It embodies a commitment to environmental stewardship, with measures aimed at bolstering flood resilience, improving water quality, and nurturing diverse wildlife habitats. By blending conservation with recreation, the project strikes an important balance between creating access for community members to enjoy the space and ecological preservation that puts native plants,  critical habitat, and wildlife at the forefront.


To learn more about the restoration initiative and view the Final Master Plan, visit the Mercer County Park Commission’s website. Click here to learn about another one of Princeton Hydro’s recent restoration efforts. And, stay tuned here for more Mercer County Park Commission project updates!

[post_title] => Restoration in Motion at Miry Run Dam Site 21 [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => restoration-in-motion-at-miry-runs-dam-site-21 [to_ping] => [pinged] => [post_modified] => 2025-01-02 13:57:09 [post_modified_gmt] => 2025-01-02 13:57:09 [post_content_filtered] => [post_parent] => 0 [guid] => https://princetonhydro.com/?p=14684 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [comment_count] => 0 [current_comment] => -1 [found_posts] => 3 [max_num_pages] => 1 [max_num_comment_pages] => 0 [is_single] => [is_preview] => [is_page] => [is_archive] => 1 [is_date] => [is_year] => [is_month] => [is_day] => [is_time] => [is_author] => [is_category] => 1 [is_tag] => [is_tax] => [is_search] => [is_feed] => [is_comment_feed] => [is_trackback] => [is_home] => [is_privacy_policy] => [is_404] => [is_embed] => [is_paged] => [is_admin] => [is_attachment] => [is_singular] => [is_robots] => [is_favicon] => [is_posts_page] => [is_post_type_archive] => [query_vars_hash:WP_Query:private] => 59e7e2c60bebc060745bdac13d5d8b5b [query_vars_changed:WP_Query:private] => 1 [thumbnails_cached] => [allow_query_attachment_by_filename:protected] => [stopwords:WP_Query:private] => [compat_fields:WP_Query:private] => Array ( [0] => query_vars_hash [1] => query_vars_changed ) [compat_methods:WP_Query:private] => Array ( [0] => init_query_flags [1] => parse_tax_query ) [query_cache_key:WP_Query:private] => wp_query:0e684a8b5cd8d9aa11c8f8204ec01ba6:0.27278200 17588455750.57951500 1758845575 )

Category: Lake Restoration

archive
 
Topics
Select Topics