We’re committed to improving our ecosystems, quality of life, and communities for the better.
Our passion and commitment to the integration of innovative science and engineering drive us to exceed on behalf of every client.
The Spring Creek (North) Ecosystem Restoration Project is located in the boroughs of Brooklyn and Queens, New York. In the early 1900’s, the salt marsh community of Spring Creek was part of the extensive coastal wetland community of Jamaica Bay, known for the abundance and diversity of its shellfish as well as its ecological importance as a nursery and feeding ground for countless species of birds and fish. The intertidal salt marsh and uplands have since been degraded by historic placement of dredged spoils and municipal waste, the construction of a sanitary sewer trunk line, ditching of the marsh, and urbanization of the watershed.
When completed, the project will restore approximately 43.2 acres of degraded habitat to 0.7 acres of low marsh, 12.9 acres of transitional and high marsh, 5.2 acres of scrub shrub wetland and 24.4 acres of maritime upland in an overall project footprint of 67 acres. Primary construction activities will include excavating and re-contouring uplands to intertidal elevations, thin layer placement of sand on the marsh platform to restore areas of degraded tidal wetland, removing invasive plant species, and replanting with native plant species. The overall project purpose is to improve the environmental quality (water, diversity, and wildlife habitat) of Spring Creek and its associated salt marshes as part of the overall Jamaica Bay Ecosystem.
Princeton Hydro was contracted by the US Army Corps of Engineers, New York District to lead the design and engineering. To inform the design development, a variety of site-specific data was collected including topographic, bathymetric, utility and tree surveys. Wetland delineation and vegetation characterization were performed, along with a bio-benchmark survey to establish marsh habitat boundaries; hydrodynamic data; and geotechnical borings. The data collected was analyzed and incorporated into the design, including a sea level change analysis; slope stability analysis; development of a hydrologic model and an unsteady 1-D hydraulic model; stormwater design; and wetland restoration design.
A concept design was developed in coordination with the US Army Corps of Engineers and New York City Parks, and the design was advanced via the preparation of 30%, 60%, 90%, and 100% design plans and technical specifications. Additionally, the required local, state, and federal permits were obtained, and a detailed construction cost estimate was developed.
Your Full Name * Phone Number * Your Email * Organization Address Message *
By EmailBy Phone
Submit
Δ
Couldn’t find a match? Check back often as we post new positions throughout the year.