search
WP_Query Object
(
    [query] => Array
        (
            [tag] => usace
        )

    [query_vars] => Array
        (
            [tag] => usace
            [error] => 
            [m] => 
            [p] => 0
            [post_parent] => 
            [subpost] => 
            [subpost_id] => 
            [attachment] => 
            [attachment_id] => 0
            [name] => 
            [pagename] => 
            [page_id] => 0
            [second] => 
            [minute] => 
            [hour] => 
            [day] => 0
            [monthnum] => 0
            [year] => 0
            [w] => 0
            [category_name] => invasive-species-management
            [cat] => 36
            [tag_id] => 1156
            [author] => 
            [author_name] => 
            [feed] => 
            [tb] => 
            [paged] => 1
            [meta_key] => 
            [meta_value] => 
            [preview] => 
            [s] => 
            [sentence] => 
            [title] => 
            [fields] => all
            [menu_order] => 
            [embed] => 
            [category__in] => Array
                (
                    [0] => 36
                )

            [category__not_in] => Array
                (
                )

            [category__and] => Array
                (
                )

            [post__in] => Array
                (
                )

            [post__not_in] => Array
                (
                )

            [post_name__in] => Array
                (
                )

            [tag__in] => Array
                (
                )

            [tag__not_in] => Array
                (
                )

            [tag__and] => Array
                (
                )

            [tag_slug__in] => Array
                (
                    [0] => usace
                )

            [tag_slug__and] => Array
                (
                )

            [post_parent__in] => Array
                (
                )

            [post_parent__not_in] => Array
                (
                )

            [author__in] => Array
                (
                )

            [author__not_in] => Array
                (
                )

            [search_columns] => Array
                (
                )

            [ignore_sticky_posts] => 
            [suppress_filters] => 
            [cache_results] => 1
            [update_post_term_cache] => 1
            [update_menu_item_cache] => 
            [lazy_load_term_meta] => 1
            [update_post_meta_cache] => 1
            [post_type] => 
            [posts_per_page] => 10
            [nopaging] => 
            [comments_per_page] => 5
            [no_found_rows] => 
            [order] => DESC
        )

    [tax_query] => WP_Tax_Query Object
        (
            [queries] => Array
                (
                    [0] => Array
                        (
                            [taxonomy] => category
                            [terms] => Array
                                (
                                    [0] => 36
                                )

                            [field] => term_id
                            [operator] => IN
                            [include_children] => 
                        )

                    [1] => Array
                        (
                            [taxonomy] => post_tag
                            [terms] => Array
                                (
                                    [0] => usace
                                )

                            [field] => slug
                            [operator] => IN
                            [include_children] => 1
                        )

                )

            [relation] => AND
            [table_aliases:protected] => Array
                (
                    [0] => ph_term_relationships
                    [1] => tt1
                )

            [queried_terms] => Array
                (
                    [category] => Array
                        (
                            [terms] => Array
                                (
                                    [0] => 36
                                )

                            [field] => term_id
                        )

                    [post_tag] => Array
                        (
                            [terms] => Array
                                (
                                    [0] => usace
                                )

                            [field] => slug
                        )

                )

            [primary_table] => ph_posts
            [primary_id_column] => ID
        )

    [meta_query] => WP_Meta_Query Object
        (
            [queries] => Array
                (
                )

            [relation] => 
            [meta_table] => 
            [meta_id_column] => 
            [primary_table] => 
            [primary_id_column] => 
            [table_aliases:protected] => Array
                (
                )

            [clauses:protected] => Array
                (
                )

            [has_or_relation:protected] => 
        )

    [date_query] => 
    [queried_object] => WP_Term Object
        (
            [term_id] => 1156
            [name] => USACE
            [slug] => usace
            [term_group] => 0
            [term_taxonomy_id] => 1156
            [taxonomy] => post_tag
            [description] => 
            [parent] => 0
            [count] => 12
            [filter] => raw
            [term_order] => 0
        )

    [queried_object_id] => 1156
    [request] => SELECT SQL_CALC_FOUND_ROWS  ph_posts.ID
					 FROM ph_posts  LEFT JOIN ph_term_relationships ON (ph_posts.ID = ph_term_relationships.object_id)  LEFT JOIN ph_term_relationships AS tt1 ON (ph_posts.ID = tt1.object_id)
					 WHERE 1=1  AND ( 
  ph_term_relationships.term_taxonomy_id IN (36) 
  AND 
  tt1.term_taxonomy_id IN (1156)
) AND ((ph_posts.post_type = 'post' AND (ph_posts.post_status = 'publish' OR ph_posts.post_status = 'acf-disabled')))
					 GROUP BY ph_posts.ID
					 ORDER BY ph_posts.menu_order, ph_posts.post_date DESC
					 LIMIT 0, 10
    [posts] => Array
        (
            [0] => WP_Post Object
                (
                    [ID] => 15367
                    [post_author] => 1
                    [post_date] => 2024-07-12 16:52:15
                    [post_date_gmt] => 2024-07-12 16:52:15
                    [post_content] => 

Nestled at the foot of the Blue Ridge Mountains, Smith Mountain Lake is the largest lake entirely within the Commonwealth of Virginia. Spanning over 20,000 acres with 500 miles of shoreline, the lake's northern and eastern boundary is marked by Bedford County, while Franklin and Pittsylvania counties define its southern and western edges. Created in 1963 by impounding the Roanoke River with the Smith Mountain Dam, the lake serves multiple purposes, including hydroelectric power, public water supply, and recreation.

Throughout the 1960s and 1970s, the area surrounding Smith Mountain Lake was predominantly rural farmland. In the 1980s, however, the lake's natural beauty, recreational appeal, and proximity to Roanoke and Lynchburg began to draw increased attention. This surge in interest sparked a boom in residential and commercial development, transforming Smith Mountain Lake into a vibrant and bustling community.

Today, Smith Mountain Lake not only provides electricity and drinking water, it is also home to 21,000 residents and stands as a premier recreational resource. Thousands flock to Smith Mountain Lake each year to enjoy boating, swimming, fishing, and other water activities. The lake's shores are now dotted with resorts, condominiums, year-round residences, and outdoor industry businesses. The lake's waters and shoreline also provide vital habitats for aquatic plants, animals, birds, and other terrestrial wildlife.

The rapid growth of this pristine lake community underscores the importance of effective environmental management to preserve water quality, strengthen the shoreline, manage stormwater runoff, and protect the local native biodiversity of the lake and its watershed.


Identifying and Addressing Harmful Algal Blooms

The lake is fed by two main tributaries—the Blackwater River and the Roanoke River. The Roanoke River, the larger of the two, drains a watershed that includes the Roanoke Metropolitan area, while the Blackwater River flows through mostly rural and agricultural land.

In 2023, a significant outbreak of harmful algal blooms (HABs) in the Blackwater River subwatershed raised concerns for the Smith Mountain Lake Association (SMLA). These blooms, primarily driven by agricultural runoff, led to swimming advisories and highlighted the need for a comprehensive approach to managing and mitigating these environmental threats.

Recognizing the urgency of the situation, SMLA sought the expertise of Princeton Hydro. The mission: to investigate conditions that cause HABs, protect the lake from future outbreaks, and ensure the long-term health of this vital freshwater resource.


Laying the Groundwork

The project team’s approach began with a thorough review of historical water quality data. Collaborating with SMLA and regulatory bodies including the Virginia Department of Environmental Quality (VDEQ), U.S. Geological Survey (USGS), and U.S. Army Corps of Engineers (USACE), Princeton Hydro compiled a comprehensive dataset. This historical context was crucial for understanding past trends and informing the 2024 Watershed Assessment. SMLA and Ferrum College contributed over 38 years of data through their Volunteer Water Quality Monitoring Program, documenting crucial indicators such as nutrient levels, bacterial counts, and algal blooms. This extensive dataset has been essential in informing effective lake management practices and shaping strategies to address current environmental challenges.

Employing the MapShed model, the team carried out a comprehensive hydrologic and nutrient loading analysis of the Blackwater River subwatershed. They evaluated critical factors, including phosphorus, nitrogen, and sediment levels, to identify and prioritize areas requiring targeted nutrient and sediment management strategies.

To describe its basic function, the MapShed model applies pollutant loading rates to different land cover types, like low-density development or forested wetlands, based on their area. It then uses weather data, soil characteristics, and slopes to adjust these results. The model simulates daily pollutant loads over 30 years using actual climate records, providing monthly and annual outputs. Users can adjust various inputs, like septic system efficiency and population density, to see how the changes affect pollutant loads and water flow.

This analysis laid the foundation for determining effective, focused interventions to curb nutrient runoff and mitigate future HABs.


Understanding Cyanobacteria Behavior Through Innovative Research

In March 2024, an Overwintering Incubation Study was conducted to understand cyanobacteria behavior. Sediment and water samples were taken from six nearshore locations known for high cyanobacteria counts in Summer 2023. At each site, the team also documented temperature, dissolved oxygen, specific conductivity, pH, chlorophyll-a, phycocyanin (PC), and phycoerythrin (PE).

The map below identifies the locations of each of the six sampling sites:

This map identifies the locations of each of the six sampling sites at Smith Mountain Lake [gallery link="none" columns="2" ids="15361,15363"]

For each sample, the lake water was filtered and then incubated with respective sediments to determine the presence and what types of algae may be overwintering. The water and sediment samples were incubated over a period of 15 days at a temperature of approximately 77 degrees Fahrenheit and a light intensity of 2800 lux.

After eight days, the water and sediment samples were removed from the incubator, slightly stirred and then in-situ measurements for PC and PE were collected. These two supplemental pigments are almost exclusively produced by cyanobacteria. While PC is associated with primarily planktonic genera, PE is more associated with benthic genera. Thus, measuring the concentration of these pigments can be used to estimate cyanobacteria biomass as well as provide guidance on the monitoring and management of HABs (planktonic vs. benthic).

After 15 days, the samples were again removed from the incubator, slightly stirred, and then measured for PC and PE to identify and count any overwintering cyanobacteria and determine all the types of algae present.

This study offered critical insights into the conditions that enable cyanobacteria to endure winter and proliferate during warmer months. By understanding the connection between overwintering cyanobacteria and HABs in the lake, we can enhance predictive capabilities and develop more effective management strategies. Two particularly notable findings from the study include:

1. Sediment Composition and Cyanobacteria Growth: Sandier sediments were not conducive to overwintering cyanobacteria, suggesting blooms in these areas likely originate elsewhere in the lake. Conversely, siltier and organic-rich sediments supported cyanobacteria growth, indicating a need for targeted in-lake management measures. 2. Predictive Tools for HABs: Routine measurement of pigments like PC and PE proved effective in estimating cyanobacteria biomass. This information is crucial for long-term monitoring and management, offering predictive tools for HAB events.

Looking Ahead: Holistic Approaches to Tackling HABs

Beyond the initial assessment on the Blackwater River, ongoing monitoring of Smith Mountain Lake’s water quality is crucial for understanding and managing the conditions that trigger HABs. SMLA’s Water Quality Monitoring Program developed and managed by Ferrum College continues the work of tracking the trophic state of the lake. Algal community composition, tributary sampling, and bacterial monitoring are part of this comprehensive 38-year effort. Consistent sampling and water quality monitoring can help identify cyanobacteria and akinetes, the dormant spores that lead to bloom formation.

Because the VDEQ budget historically contains no funding for inland waterway HAB research and response, SMLA actively lobbied the Virginia General Assembly for the allocation of $150,000 for the creation of a watershed study. This request was included in the State budget signed in March of 2024 and the work to develop the objectives and scope of the study is underway now.

Community involvement is also vital for maintaining Smith Mountain Lake as a cherished resource. To this end, SMLA has launched "Dock Watch," a new community science volunteer program designed to monitor HAB activity. Beginning in May of 2024, volunteers have been collecting water samples at select docks around the lake and are examining them to better understand cyanobacteria activity levels and trends. All of the water quality data collected at the lake is from main channel locations. The primary recreational contact with the lake water by residents is at their docks. This data is uploaded to NOAA's Phytoplankton Monitoring Network, contributing to a national database used for HAB research. This collective effort ensures rapid identification and tracking of HAB activity, benefiting both the local community and environmental research on a national level.

“This project exemplifies a holistic approach to lake management and environmental stewardship, integrating historical data, advanced modeling, and community engagement to prioritize and implement innovative strategies that effectively mitigate HABs and protect water quality,” said Chris L. Mikolajczyk, Princeton Hydro’s Senior Manager of Aquatics and Client Manager for Smith Mountain Lake. “This ongoing work highlights the importance of science-based interventions in preserving our precious natural resources.”

[gallery size="medium" link="none" ids="15377,15374,15373"]

The Smith Mountain Lake Association is a 501(c)3 nonprofit with the mission to keep Smith Mountain Lake clean and safe. Founded in 1969, SMLA is the longest serving advocate for the Smith Mountain Lake community, and its focused efforts help to retain the pristine beauty of the lake and the vibrant local economy. Click here to learn more and get involved.

Over the last two decades, the Princeton Hydro team has improved water quality in hundreds of ponds and lakes, restored many miles of rivers, and enhanced thousands of acres of ecosystems in the Northeast. From species surveys to water quality monitoring, our professionals perform comprehensive assessments in order to understand the landscape. Using tools like ArcGIS, we can map and model the watershed and arrive at holistic solutions for resource management. Our natural resources and lake management experts are complemented by our field team who utilize amphibious vehicles for mechanical invasive species removal, install aeration systems to improve water quality, and conduct natural lake treatments to manage algal blooms. We have secured millions of dollars in grant funding for watershed and ecological restoration projects on behalf of our clients.

Click here to learn about the Watershed Management Program in Somerset County, for which we recently helped secure grant funding from the New Jersey Highlands Water Protection and Planning Council.

[post_title] => Using Innovative & Integrated Strategies to Safeguard Smith Mountain Lake's Water Quality [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => smith-mountain-lake [to_ping] => [pinged] => [post_modified] => 2024-12-09 23:22:46 [post_modified_gmt] => 2024-12-09 23:22:46 [post_content_filtered] => [post_parent] => 0 [guid] => https://princetonhydro.com/?p=15367 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [1] => WP_Post Object ( [ID] => 4592 [post_author] => 3 [post_date] => 2020-02-28 14:20:11 [post_date_gmt] => 2020-02-28 14:20:11 [post_content] =>

Non-native Phragmites australis, also known as Common Reed, is a species of perennial grass found across North America, especially along the Atlantic coast, in wetlands, riparian areas, shorelines, and other wet areas like roadside ditches and drainage basins. This aggressively invasive grass can grow up to 20 feet tall, in dense groupings, and tends to spread rapidly, quickly colonizing disturbed wetlands.

[gallery link="none" ids="17789,7821,7345"]

Once established, the invasive plant forms a monoculture with a dense mat, outcompeting native vegetation, lowering the local plant biodiversity, and displacing native animals. These landscape changes impair the natural function of the marsh ecosystem by altering its elevations and tidal reach. A higher, drier marsh leads to less vigorous growth of native salt marsh vegetation, allowing Phragmites australis to gain a stronger foothold and continue to take over.

USDA NRCS Plants Database phragmites illustrationPhragmites australis can also eliminate small, intertidal channels and obliterate pool habitat that offers natural refuge and feeding grounds for invertebrates, fish, and birds. The spread of invasive Phragmites australis also has negative impacts on land aesthetics and outdoor recreation by obscuring views and restricting access. And, each Fall, when Phragmites australis die off, the large concentrations of dry vegetation increase the risk of fast-spreading fires near highly populated residential and commercial areas.

Over the last century, there has been a dramatic increase in the spread of Phragmites australis, partly due to an increase in residential and commercial development that resulted in disturbances to wetlands. According to the U.S. Fish and Wildlife Service, the rapid spread of Phragmites australis in the 20th century can also be attributed to the construction of railroads and major roadways, habitat disturbance, shoreline development, pollution, and eutrophication.

Princeton Hydro has worked in areas throughout the East Coast to address and properly manage Phragmites australis in order to restore natural habitats and enhance plant diversity, wildlife habitat, and water quality. Two recent projects include the restoration of John A. Roebling Memorial Park in Hamilton and Pin Oak Forest Conservation Area in Woodbridge, New Jersey.


John A. Roebling Memorial Park

Mercer County’s John A. Roebling Memorial Park is home to the northernmost freshwater tidal marsh on the Delaware River, the Abbott Marshlands, an area containing valuable habitat for many rare species. Unfortunately, the area experienced a significant amount of loss and degradation, partially due to the introduction of the invasive Phragmites australis.

For Mercer County Park Commission, Princeton Hydro put together a plan to reduce and control the Phragmites australis, in order to increase biodiversity, improve recreational opportunities, and enhance visitor experience at the park. This stewardship project replaced the Phragmites australis with native species in order to reduce its ability to recolonize the marsh.

By Spring of this year, the team expects to see native species dominating the landscape from the newly exposed native seed bank with minimal Phragmites australis growth.


Pin Oak Forest Conservation Area

The Pin Oak Forest Conservation Area is a 97-acre tract of open space that contains an extremely valuable wetland complex at the headwaters of Woodbridge Creek. The site is located in a heavily developed landscape of northern New Jersey. As such, the area suffered from wetland and stream channel degradation, habitat fragmentation, ecological impairment, and decreased biodiversity due to invasive species, including Phragmites australis.

The site was viewed as one of only a few large-scale freshwater wetland restoration opportunities remaining in this highly developed region of New Jersey. A dynamic partnership between government agencies, NGOs, and private industry, was formed to restore the natural function of the wetlands complex, transform the Pin Oak Forest site into thriving habitat teeming with wildlife, and steward this property back to life.

This award-winning restoration project converted over 30 acres of degraded freshwater wetlands, streams and disturbed uplands dominated by invasive species into a species-rich and highly functional headwater wetland complex. The resulting ecosystem provides valuable habitat for wildlife including the state-threatened Black-crowned Night-heron and Red-headed Woodpecker. Biodiversity was also increased through invasive species management, which allowed establishment of native plants such as pin oak, swamp white oak, marsh hibiscus, and swamp rose. The restored headwater wetland system provides stormwater management, floodplain storage, enhanced groundwater recharge onsite, and surface water flows to Woodbridge Creek, as well as public hiking trails, all benefiting the town of Woodbridge.


Managing and Monitoring Phragmites

Scientific field research continues to be conducted in order to identify the best way(s) to manage and control the spread of Phragmites australis. Depending on the landscape and how established the Phragmites australis population is, there are several different methods that can be effective in reducing Phragmites australis infestations in order to allow for the regeneration of native wetland plant communities and protect fish and wildlife habitat.

Recently, a group of more than 280 scientists, resource managers and policy professionals gathered together at the Hudson River Estuary Program’s (HEP) annual conference to explore how natural and nature-based solutions (i.e. building living shorelines, enhancing tidal wetlands and stream corridors, and conserving vulnerable floodplains) can be used as critical tools for addressing the impacts of climate change while also protecting and enhancing critical habitat.

The conference included six interactive workshops and dynamic panel discussions. Christiana Pollack, CERP, GISP, CFM of Princeton Hydro, Terry Doss of New Jersey Sports and Exposition Authority, Kip Stein from New York City Parks, and Judith Weis of Rutgers lead a panel discussion, moderated by Lisa Baron from U.S. Army Corps Engineers, on "The Yin and Yang of Estuarine Phragmites Management" to share lessons learned over many years of combating invasive species, including how sea level rise is changing minds and techniques.

Together, representing decades of experience in Phragmites australis management and research, these experts presented the evolving nature of restoration for this habitat type, common control/management methodologies, and long-term management and monitoring strategies for this reed and other invasive species. During the panel discussion, Christiana made specific mention of the Roebling Park project as one example of successful strategies in action.

If you’re interested in learning more and seeing photos from a few recent Phragmites australis management projects, click below for a free download of Christiana’s full presentation.


Through a combination of prevention, early detection, eradication, restoration, research and outreach, we can protect our native landscapes and reduce the spread of invasive species. Click here to learn more about how invasive species disrupt our ecosystems, why managing them is so important, and the cutting-edge tools and innovative techniques helping to eradicate invasives and restore balance to delicate ecosystems.

 

[post_title] => Managing Invasive Phragmites and Restoring Natural Wetland Habitat [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => phragmites [to_ping] => [pinged] => [post_modified] => 2025-08-22 17:57:55 [post_modified_gmt] => 2025-08-22 17:57:55 [post_content_filtered] => [post_parent] => 0 [guid] => https://www.princetonhydro.com/blog/?p=4592 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 2 [filter] => raw ) ) [post_count] => 2 [current_post] => -1 [before_loop] => 1 [in_the_loop] => [post] => WP_Post Object ( [ID] => 15367 [post_author] => 1 [post_date] => 2024-07-12 16:52:15 [post_date_gmt] => 2024-07-12 16:52:15 [post_content] =>

Nestled at the foot of the Blue Ridge Mountains, Smith Mountain Lake is the largest lake entirely within the Commonwealth of Virginia. Spanning over 20,000 acres with 500 miles of shoreline, the lake's northern and eastern boundary is marked by Bedford County, while Franklin and Pittsylvania counties define its southern and western edges. Created in 1963 by impounding the Roanoke River with the Smith Mountain Dam, the lake serves multiple purposes, including hydroelectric power, public water supply, and recreation.

Throughout the 1960s and 1970s, the area surrounding Smith Mountain Lake was predominantly rural farmland. In the 1980s, however, the lake's natural beauty, recreational appeal, and proximity to Roanoke and Lynchburg began to draw increased attention. This surge in interest sparked a boom in residential and commercial development, transforming Smith Mountain Lake into a vibrant and bustling community.

Today, Smith Mountain Lake not only provides electricity and drinking water, it is also home to 21,000 residents and stands as a premier recreational resource. Thousands flock to Smith Mountain Lake each year to enjoy boating, swimming, fishing, and other water activities. The lake's shores are now dotted with resorts, condominiums, year-round residences, and outdoor industry businesses. The lake's waters and shoreline also provide vital habitats for aquatic plants, animals, birds, and other terrestrial wildlife.

The rapid growth of this pristine lake community underscores the importance of effective environmental management to preserve water quality, strengthen the shoreline, manage stormwater runoff, and protect the local native biodiversity of the lake and its watershed.


Identifying and Addressing Harmful Algal Blooms

The lake is fed by two main tributaries—the Blackwater River and the Roanoke River. The Roanoke River, the larger of the two, drains a watershed that includes the Roanoke Metropolitan area, while the Blackwater River flows through mostly rural and agricultural land.

In 2023, a significant outbreak of harmful algal blooms (HABs) in the Blackwater River subwatershed raised concerns for the Smith Mountain Lake Association (SMLA). These blooms, primarily driven by agricultural runoff, led to swimming advisories and highlighted the need for a comprehensive approach to managing and mitigating these environmental threats.

Recognizing the urgency of the situation, SMLA sought the expertise of Princeton Hydro. The mission: to investigate conditions that cause HABs, protect the lake from future outbreaks, and ensure the long-term health of this vital freshwater resource.


Laying the Groundwork

The project team’s approach began with a thorough review of historical water quality data. Collaborating with SMLA and regulatory bodies including the Virginia Department of Environmental Quality (VDEQ), U.S. Geological Survey (USGS), and U.S. Army Corps of Engineers (USACE), Princeton Hydro compiled a comprehensive dataset. This historical context was crucial for understanding past trends and informing the 2024 Watershed Assessment. SMLA and Ferrum College contributed over 38 years of data through their Volunteer Water Quality Monitoring Program, documenting crucial indicators such as nutrient levels, bacterial counts, and algal blooms. This extensive dataset has been essential in informing effective lake management practices and shaping strategies to address current environmental challenges.

Employing the MapShed model, the team carried out a comprehensive hydrologic and nutrient loading analysis of the Blackwater River subwatershed. They evaluated critical factors, including phosphorus, nitrogen, and sediment levels, to identify and prioritize areas requiring targeted nutrient and sediment management strategies.

To describe its basic function, the MapShed model applies pollutant loading rates to different land cover types, like low-density development or forested wetlands, based on their area. It then uses weather data, soil characteristics, and slopes to adjust these results. The model simulates daily pollutant loads over 30 years using actual climate records, providing monthly and annual outputs. Users can adjust various inputs, like septic system efficiency and population density, to see how the changes affect pollutant loads and water flow.

This analysis laid the foundation for determining effective, focused interventions to curb nutrient runoff and mitigate future HABs.


Understanding Cyanobacteria Behavior Through Innovative Research

In March 2024, an Overwintering Incubation Study was conducted to understand cyanobacteria behavior. Sediment and water samples were taken from six nearshore locations known for high cyanobacteria counts in Summer 2023. At each site, the team also documented temperature, dissolved oxygen, specific conductivity, pH, chlorophyll-a, phycocyanin (PC), and phycoerythrin (PE).

The map below identifies the locations of each of the six sampling sites:

This map identifies the locations of each of the six sampling sites at Smith Mountain Lake [gallery link="none" columns="2" ids="15361,15363"]

For each sample, the lake water was filtered and then incubated with respective sediments to determine the presence and what types of algae may be overwintering. The water and sediment samples were incubated over a period of 15 days at a temperature of approximately 77 degrees Fahrenheit and a light intensity of 2800 lux.

After eight days, the water and sediment samples were removed from the incubator, slightly stirred and then in-situ measurements for PC and PE were collected. These two supplemental pigments are almost exclusively produced by cyanobacteria. While PC is associated with primarily planktonic genera, PE is more associated with benthic genera. Thus, measuring the concentration of these pigments can be used to estimate cyanobacteria biomass as well as provide guidance on the monitoring and management of HABs (planktonic vs. benthic).

After 15 days, the samples were again removed from the incubator, slightly stirred, and then measured for PC and PE to identify and count any overwintering cyanobacteria and determine all the types of algae present.

This study offered critical insights into the conditions that enable cyanobacteria to endure winter and proliferate during warmer months. By understanding the connection between overwintering cyanobacteria and HABs in the lake, we can enhance predictive capabilities and develop more effective management strategies. Two particularly notable findings from the study include:

1. Sediment Composition and Cyanobacteria Growth: Sandier sediments were not conducive to overwintering cyanobacteria, suggesting blooms in these areas likely originate elsewhere in the lake. Conversely, siltier and organic-rich sediments supported cyanobacteria growth, indicating a need for targeted in-lake management measures. 2. Predictive Tools for HABs: Routine measurement of pigments like PC and PE proved effective in estimating cyanobacteria biomass. This information is crucial for long-term monitoring and management, offering predictive tools for HAB events.

Looking Ahead: Holistic Approaches to Tackling HABs

Beyond the initial assessment on the Blackwater River, ongoing monitoring of Smith Mountain Lake’s water quality is crucial for understanding and managing the conditions that trigger HABs. SMLA’s Water Quality Monitoring Program developed and managed by Ferrum College continues the work of tracking the trophic state of the lake. Algal community composition, tributary sampling, and bacterial monitoring are part of this comprehensive 38-year effort. Consistent sampling and water quality monitoring can help identify cyanobacteria and akinetes, the dormant spores that lead to bloom formation.

Because the VDEQ budget historically contains no funding for inland waterway HAB research and response, SMLA actively lobbied the Virginia General Assembly for the allocation of $150,000 for the creation of a watershed study. This request was included in the State budget signed in March of 2024 and the work to develop the objectives and scope of the study is underway now.

Community involvement is also vital for maintaining Smith Mountain Lake as a cherished resource. To this end, SMLA has launched "Dock Watch," a new community science volunteer program designed to monitor HAB activity. Beginning in May of 2024, volunteers have been collecting water samples at select docks around the lake and are examining them to better understand cyanobacteria activity levels and trends. All of the water quality data collected at the lake is from main channel locations. The primary recreational contact with the lake water by residents is at their docks. This data is uploaded to NOAA's Phytoplankton Monitoring Network, contributing to a national database used for HAB research. This collective effort ensures rapid identification and tracking of HAB activity, benefiting both the local community and environmental research on a national level.

“This project exemplifies a holistic approach to lake management and environmental stewardship, integrating historical data, advanced modeling, and community engagement to prioritize and implement innovative strategies that effectively mitigate HABs and protect water quality,” said Chris L. Mikolajczyk, Princeton Hydro’s Senior Manager of Aquatics and Client Manager for Smith Mountain Lake. “This ongoing work highlights the importance of science-based interventions in preserving our precious natural resources.”

[gallery size="medium" link="none" ids="15377,15374,15373"]

The Smith Mountain Lake Association is a 501(c)3 nonprofit with the mission to keep Smith Mountain Lake clean and safe. Founded in 1969, SMLA is the longest serving advocate for the Smith Mountain Lake community, and its focused efforts help to retain the pristine beauty of the lake and the vibrant local economy. Click here to learn more and get involved.

Over the last two decades, the Princeton Hydro team has improved water quality in hundreds of ponds and lakes, restored many miles of rivers, and enhanced thousands of acres of ecosystems in the Northeast. From species surveys to water quality monitoring, our professionals perform comprehensive assessments in order to understand the landscape. Using tools like ArcGIS, we can map and model the watershed and arrive at holistic solutions for resource management. Our natural resources and lake management experts are complemented by our field team who utilize amphibious vehicles for mechanical invasive species removal, install aeration systems to improve water quality, and conduct natural lake treatments to manage algal blooms. We have secured millions of dollars in grant funding for watershed and ecological restoration projects on behalf of our clients.

Click here to learn about the Watershed Management Program in Somerset County, for which we recently helped secure grant funding from the New Jersey Highlands Water Protection and Planning Council.

[post_title] => Using Innovative & Integrated Strategies to Safeguard Smith Mountain Lake's Water Quality [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => smith-mountain-lake [to_ping] => [pinged] => [post_modified] => 2024-12-09 23:22:46 [post_modified_gmt] => 2024-12-09 23:22:46 [post_content_filtered] => [post_parent] => 0 [guid] => https://princetonhydro.com/?p=15367 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [comment_count] => 0 [current_comment] => -1 [found_posts] => 2 [max_num_pages] => 1 [max_num_comment_pages] => 0 [is_single] => [is_preview] => [is_page] => [is_archive] => 1 [is_date] => [is_year] => [is_month] => [is_day] => [is_time] => [is_author] => [is_category] => [is_tag] => 1 [is_tax] => [is_search] => [is_feed] => [is_comment_feed] => [is_trackback] => [is_home] => [is_privacy_policy] => [is_404] => [is_embed] => [is_paged] => [is_admin] => [is_attachment] => [is_singular] => [is_robots] => [is_favicon] => [is_posts_page] => [is_post_type_archive] => [query_vars_hash:WP_Query:private] => 4e566b76ed6cb1d82196cf22e18942d2 [query_vars_changed:WP_Query:private] => 1 [thumbnails_cached] => [allow_query_attachment_by_filename:protected] => [stopwords:WP_Query:private] => [compat_fields:WP_Query:private] => Array ( [0] => query_vars_hash [1] => query_vars_changed ) [compat_methods:WP_Query:private] => Array ( [0] => init_query_flags [1] => parse_tax_query ) [query_cache_key:WP_Query:private] => wp_query:85687e131d96a0d9505ba5160753cd57:0.83537800 17576287510.21903700 1757628752 )

Tag: USACE

archive
 
Topics
Select Topics