We’re committed to improving our ecosystems, quality of life, and communities for the better.
Our passion and commitment to the integration of innovative science and engineering drive us to exceed on behalf of every client.
WP_Query Object ( [query] => Array ( [category_name] => stream_restoration ) [query_vars] => Array ( [category_name] => stream_restoration [error] => [m] => [p] => 0 [post_parent] => [subpost] => [subpost_id] => [attachment] => [attachment_id] => 0 [name] => [pagename] => [page_id] => 0 [second] => [minute] => [hour] => [day] => 0 [monthnum] => 0 [year] => 0 [w] => 0 [tag] => [cat] => 41 [tag_id] => [author] => [author_name] => [feed] => [tb] => [paged] => 1 [meta_key] => [meta_value] => [preview] => [s] => [sentence] => [title] => [fields] => all [menu_order] => [embed] => [category__in] => Array ( [0] => 35 ) [category__not_in] => Array ( ) [category__and] => Array ( ) [post__in] => Array ( ) [post__not_in] => Array ( ) [post_name__in] => Array ( ) [tag__in] => Array ( ) [tag__not_in] => Array ( ) [tag__and] => Array ( ) [tag_slug__in] => Array ( ) [tag_slug__and] => Array ( ) [post_parent__in] => Array ( ) [post_parent__not_in] => Array ( ) [author__in] => Array ( ) [author__not_in] => Array ( ) [search_columns] => Array ( ) [ignore_sticky_posts] => [suppress_filters] => [cache_results] => 1 [update_post_term_cache] => 1 [update_menu_item_cache] => [lazy_load_term_meta] => 1 [update_post_meta_cache] => 1 [post_type] => [posts_per_page] => 10 [nopaging] => [comments_per_page] => 5 [no_found_rows] => [order] => DESC ) [tax_query] => WP_Tax_Query Object ( [queries] => Array ( [0] => Array ( [taxonomy] => category [terms] => Array ( [0] => stream_restoration ) [field] => slug [operator] => IN [include_children] => 1 ) [1] => Array ( [taxonomy] => category [terms] => Array ( [0] => 35 ) [field] => term_id [operator] => IN [include_children] => ) ) [relation] => AND [table_aliases:protected] => Array ( [0] => ph_term_relationships [1] => tt1 ) [queried_terms] => Array ( [category] => Array ( [terms] => Array ( [0] => stream_restoration ) [field] => slug ) ) [primary_table] => ph_posts [primary_id_column] => ID ) [meta_query] => WP_Meta_Query Object ( [queries] => Array ( ) [relation] => [meta_table] => [meta_id_column] => [primary_table] => [primary_id_column] => [table_aliases:protected] => Array ( ) [clauses:protected] => Array ( ) [has_or_relation:protected] => ) [date_query] => [queried_object] => WP_Term Object ( [term_id] => 41 [name] => Stream Restoration [slug] => stream_restoration [term_group] => 0 [term_taxonomy_id] => 41 [taxonomy] => category [description] => All things stream restoration, including dam and barrier removals, fish passage and relevant regulations. [parent] => 0 [count] => 59 [filter] => raw [term_order] => 16 [cat_ID] => 41 [category_count] => 59 [category_description] => All things stream restoration, including dam and barrier removals, fish passage and relevant regulations. [cat_name] => Stream Restoration [category_nicename] => stream_restoration [category_parent] => 0 ) [queried_object_id] => 41 [request] => SELECT SQL_CALC_FOUND_ROWS ph_posts.ID FROM ph_posts LEFT JOIN ph_term_relationships ON (ph_posts.ID = ph_term_relationships.object_id) LEFT JOIN ph_term_relationships AS tt1 ON (ph_posts.ID = tt1.object_id) WHERE 1=1 AND ( ph_term_relationships.term_taxonomy_id IN (41) AND tt1.term_taxonomy_id IN (35) ) AND ((ph_posts.post_type = 'post' AND (ph_posts.post_status = 'publish' OR ph_posts.post_status = 'acf-disabled'))) GROUP BY ph_posts.ID ORDER BY ph_posts.menu_order, ph_posts.post_date DESC LIMIT 0, 10 [posts] => Array ( [0] => WP_Post Object ( [ID] => 14684 [post_author] => 1 [post_date] => 2024-04-10 15:23:17 [post_date_gmt] => 2024-04-10 15:23:17 [post_content] => Nestled within the New Jersey townships of Hamilton, Robbinsville, and West Windsor lies Miry Run Dam Site 21—an expansive 279-acre parcel with a rich history dating back to its acquisition by Mercer County in the late 1970s. Originally earmarked for flood mitigation and recreation, this hidden gem is on the cusp of a remarkable transformation, poised to unveil its true potential as a thriving public park. Central to the revitalization efforts is a comprehensive Master Plan, meticulously crafted by Mercer County Park Commission in partnership with Simone Collins Landscape Architecture and Princeton Hydro. This visionary roadmap encompasses a spectrum of engineering and ecological uplift initiatives, including:
Nestled within the New Jersey townships of Hamilton, Robbinsville, and West Windsor lies Miry Run Dam Site 21—an expansive 279-acre parcel with a rich history dating back to its acquisition by Mercer County in the late 1970s. Originally earmarked for flood mitigation and recreation, this hidden gem is on the cusp of a remarkable transformation, poised to unveil its true potential as a thriving public park.
Central to the revitalization efforts is a comprehensive Master Plan, meticulously crafted by Mercer County Park Commission in partnership with Simone Collins Landscape Architecture and Princeton Hydro. This visionary roadmap encompasses a spectrum of engineering and ecological uplift initiatives, including:
The Master Plan serves as a long-term vision for improvements to the property and will be implemented over multiple phases. In 2021, it was recognized with the Landscape Architectural Chapter Award from the New Jersey Chapter American Society of Landscape Architects, which underscores its innovative and impactful approach to landscape design.
Now, Dam Site 21’s revitalization has begun with a crucial endeavor: the dredging of its 50-acre lake. This process, spearheaded by Mercer County Park Commission in collaboration with Princeton Hydro, aims to rejuvenate the water body by removing accumulated debris, sediment, and invasive vegetation—a vital step towards restoring its ecological balance. Beyond the aesthetic and ecological improvements, dredging enhances accessibility for recreational activities that provide an opportunity to create a deeper connection between the park’s visitors and its beautiful natural landscape.
Based on the bathymetric assessment, which the Princeton Hydro team completed as part of the Master Plan, the dredging efforts are focused on three primary areas: Area 1 is located in the main body of the lake just downstream of Line Road and will generate approximately 34,000 cubic yards of dredged material; Area 2, which has approximately 4,900 cubic yards of accumulated sediment is located in the northeast cove, just north of Area 1; and Area 3, the northwestern cove, entails the removal of approximately 7,300 cubic yards of accumulated sediment.
Before the dredging work could begin, the Princeton Hydro team was responsible for providing a sediment sampling plan, sample collection and laboratory analysis, engineering design plan, preparation and submission of all NJDEP regulatory permitting materials, preparation of the technical specifications, and bid administration. Currently, our team is providing construction administration and oversight for the project.
The journey towards Dam Site 21's revival has been marked by meticulous planning, design, and community engagement spanning several years. With the commencement of dredging operations, the project's vision is gradually materializing—a testament to the dedication of all stakeholders involved. As the first phase unfolds, anticipation mounts for the realization of a vibrant, inclusive public space that honors both nature and community.
As Dam Site 21 undergoes its metamorphosis, it symbolizes not just a physical restoration, but a renewal of collective vision and commitment. Ultimately, Dam Site 21 isn't just a park—it's a testament to the enduring legacy of conservation, community, and the transformative power of restoration.
The significance of Dam Site 21's transformation extends far beyond its recreational appeal. It embodies a commitment to environmental stewardship, with measures aimed at bolstering flood resilience, improving water quality, and nurturing diverse wildlife habitats. By blending conservation with recreation, the project strikes an important balance between creating access for community members to enjoy the space and ecological preservation that puts native plants, critical habitat, and wildlife at the forefront.
To learn more about the restoration initiative and view the Final Master Plan, visit the Mercer County Park Commission’s website. Click here to learn about another one of Princeton Hydro’s recent restoration efforts. And, stay tuned here for more Mercer County Park Commission project updates!
The removal of Beatty's Mill Dam stands as a pivotal moment in the conservation efforts along the Musconetcong River. This critical initiative, spearheaded by the Musconetcong Watershed Association (MWA), Washington Township, and the Town of Hackettstown in collaboration with Princeton Hydro and RiverLogic Solutions, marks a significant stride towards rejuvenating the river's natural ecosystem and addressing long-standing concerns regarding flood mitigation and habitat preservation.
Beatty's Mill Dam straddles the border between Warren and Morris Counties in Hackettstown and Washington Township, New Jersey. It is a 6-foot-high stone masonry, concrete, and earth embankment dam that was built in the 18th century and has been non-functional for decades.
Beatty’s Mill Dam is a low-head dam, which means it was not built to protect communities from flooding and can make flooding worse in some cases. Hackettstown and Washington Township are also more susceptible to flooding and erosion due to the high percentage of impervious surfaces, like roads and parking lots, which cause higher flows of stormwater runoff.
A dam safety report from 1981 shows that the dam had been breached on the eastern end. The breach caused a hairpin turn where the river is diverted sharply to the east then back to the west before flowing under the East Avenue bridge. Over time, this created erosive conditions at the upstream side of the bridge and roadbed, threatening the integrity of the infrastructure. Additionally, extensive alteration of the floodplain occurred upstream of the dam, including an elevated earthen berm along the left bank, and general land disturbance in both upland and wetlands.
The removal of the dam not only addresses the structural concerns but also holds the promise of extensive environmental improvements. By eradicating barriers to the Musconetcong River's natural flow, restoring the floodplain, and implementing strategies to curb stormwater runoff, this initiative aims to mitigate flooding, promote water quality, and foster a thriving habitat for aquatic organisms including indigenous species like the Eastern Brook Trout and American Eel.
With funding from the Highlands Council, Princeton Hydro was contracted in 2019 by Washington Township to complete a water quality assessment, hydrologic and hydraulic analysis, and functional value stream assessment of reaches of the Musconetcong River that encompassed the Beatty’s Mill site (and the downstream Newburgh Dam site). Following the New Jersey Highlands Water Protection and Planning Council guidance, Princeton Hydro assessed and rated the river reaches on five functional values: channel integrity, habitat, water quality, temperature moderation, and public use. The Beatty’s Mill Dam, floodplain encroachment, narrow riparian buffers, and non-native riparian vegetation were the primary sources of impact to the functional values.
Subsequently, Princeton Hydro was contracted by MWA to complete a site investigation, wetland delineation, topographic survey, and preliminary (60%) engineering design for dam removal. Preliminary plans were reviewed by Washington Township and the Town of Hackettstown. In 2023, Princeton Hydro completed the final engineering design, hydrologic and hydraulic modeling, and permitting for the removal of Beatty’s Mill Dam and restoration of the floodplain and provided engineering oversight during construction.
The removal of Beatty’s Mill Dam was officially completed the week of November 13, 2023!
Princeton Hydro assisted in the removal and restoration, providing engineering plans and project management support. With the dam removed, 2.5 acres of flood plain have been restored; 0.15 mile of stream bank have been stabilized; 0.15 mile of stream bed has been rehabilitated; and total suspended solids in the water have been reduced by 20%.
Michael Allers, Princeton Hydro Restoration Ecologist and licensed FAA-Certified Commercial Drone Pilot, captured these aerial images of the completed project site:
It is projected that there will be significant improvement to the five aforementioned functional values, increased fish passage, enhanced hydraulic conditions at the East Avenue bridge as well as improvements to the river’s pH, temperature, and dissolved oxygen levels.
Removing the dam also supports conformance with the Highlands Regional Master Plan, which is intended to protect, preserve, and enhance precious water resources within the Highlands Region. The project work also includes the restoration of the damaged floodplain, stream banks, and stream bed by planting trees, building up the banks with rocks, and allowing the river to return to its natural flowing channel.
This project’s significance extends beyond the immediate environmental impact. Funding from sources like the National Fish and Wildlife Foundation under the Delaware Watershed Conservation Fund and New Jersey’s Highlands Council, along with corporate contributions, underscores its potential to serve as a model for similar restoration projects across the Delaware River Watershed. Such initiatives not only enhance aquatic habitats but also bolster community resilience against flooding and elevate public awareness regarding watershed conservation.
The vision for this restoration effort reflects a collective commitment to revitalize river ecosystems, not just for the immediate region but as part of a broader strategy for conservation. The Beatty's Mill Dam marks the MWA's sixth dam removed on the Musconetcong River since 2008, but it is far from the last. This project aims to set a precedent for sustainable river management and ecosystem preservation.
The removal of Beatty's Mill Dam represents a milestone in the ongoing efforts to restore the Musconetcong River's ecological balance and underscores the collaborative spirit between MWA, local municipalities, various stakeholders, and Princeton Hydro. It serves as a testament to the potential of concerted conservation endeavors to restore the vitality of our waterways and safeguard the natural heritage for generations to come.
The Musconetcong Watershed Association (MWA) is an independent, nonprofit organization dedicated to protecting and improving the quality of the Musconetcong River and its watershed, including its natural and cultural resources. Members of the organization are part of a network of individuals, families, and companies that care about the Musconetcong River and its watershed, and are dedicated to improving the watershed resources through public education and awareness programs, river water quality monitoring, promotion of sustainable land management practices, and community involvement. Click here to learn more.
Princeton Hydro has been working with MWA in the areas of river restoration, dam removal, and engineering consulting since 2003. Click here to read our Client Spotlight blog featuring MWA’s Executive Director Cindy Joerger and Communications Coordinator Karen Doerfer.
In October 2021, the largest stream restoration in Maryland was completed. Over 7 miles (41,000 linear feet) of Tinkers Creek and its tributaries were stabilized and restored.
The project was designed by Princeton Hydro for GV-Petro, a partnership between GreenVest and Petro Design Build Group. Working with Prince George’s County Department of the Environment and coordinating with the Maryland-National Capital Parks and Planning Commission, this full-delivery project was designed to meet the County’s Watershed Implementation Plan total maximum daily load (TMDL) requirements and its National Pollutant Discharge Elimination System Municipal Separate Storm Sewer System (MS4) Discharge Permit conditions.
Today, we are thrilled to report that the once highly urbanized watershed is flourishing and teeming with life:
We used nature-based design and bioengineering techniques like riparian zone planting and live staking to prevent erosion and restore wildlife habitat.
10,985 native trees and shrubs were planted in the riparian area, and 10,910 trees were planted as live stakes along the streambank.
For more information about the project visit GreenVest's website and check out our blog:
Just east of Washington D.C. in Prince George’s County, what will soon be the largest stream restoration in Maryland, is well underway. In this highly urbanized watershed, over 7 miles (41,000 linear feet) of Tinkers Creek and its tributaries, Meetinghouse Branch and Paynes Branch, will be stabilized and restored using nature-based design techniques.
The project was designed by Princeton Hydro for GV-Petro, a partnership between GreenVest and Petro Design Build Group. The project aims to prevent erosion and restore wildlife habitat using bioengineering techniques like riparian zone planting and live staking. 10,985 native trees and shrubs will be planted in the riparian area, and 10,910 trees will be planted as live stakes along the streambank. Recently, this project was expanded to include the stabilization and restoration of stormwater outfalls and headwater tributaries.
Working with Prince George’s County Department of the Environment and coordinating with the Maryland-National Capital Parks and Planning Commission, this full-delivery project is designed to meet the County’s Watershed Implementation Plan (WIP) total maximum daily load (TMDL) requirements and its National Pollutant Discharge Elimination System (NPDES) Municipal Separate Storm Sewer System (MS4) Discharge Permit conditions.
Prince George’s County borders the eastern portion of Washington, D.C and is the second-most populous county in Maryland. Tinkers Creek is located on a five-mile stretch of stream valley, from Old Branch Avenue to Temple Hills Road, in Clinton and Temple Hills, Maryland. The tributary system of Tinkers Creek is described as "flashy," meaning there is a quick rise in stream level due to rainfall as a result of its high proportion of directly connected urbanized impervious areas. Its streams have storm flow rates many times higher than that from the rural and forested sub-watersheds in the southeast.
This stream restoration project was identified as a priority due to the significant levels of channel incision and the severity of erosion and its impacts on surrounding neighborhoods. Additionally, the project’s proximity to the headwater reaches located on Joint Base Andrews (JBA), so the ability to improve water quality and wildlife habitat made this project a high priority. It provides an important opportunity to create a safe, sustainable, and resilient stream valley in the community.
The design for the stream, and all of the tributaries within the restoration area, will restore these channels to their naturally-stable form. During the preliminary assessment of onsite conditions, the stream and tributaries within the restoration area were classified using geomorphic assessments and hydrologic and hydraulic analysis.
Once the stream types and conditions were identified, a series of restoration approaches were designed, including floodplain creation, bank stabilization using natural materials and plantings, re-aligning straightened stream channels to have a more natural sinuosity, stormwater conveyance, and natural material grade control structures. These changes will help to reduce channel flow velocities and shear stress for flows greater than bankfull; reduce bank erosion and maintain bank stability; treat and attenuate stormwater flows; stabilize outfalls and the receiving stream channels; and stabilize vertically unstable channels.
The project area contained various subsurface utilities like sanitary sewer along the entire reach and fiber-optics and natural gas lines crossing the corridor. Once constructed, the project will improve hydraulic, geomorphic, physicochemical, and biological stream functions. It will also increase floodplain connectivity, improve bedform diversity, restore riparian buffers, and protect public subsurface utilities. In addition to water quality benefits, this project will preserve and enhance the forested floodplain and provide ecological uplift throughout the entire stream corridor.
Planning and design for Tinkers Creek Stream Restoration began in early 2018 and construction is expected to finish ahead of schedule in Spring of 2022. Princeton Hydro is providing construction oversight of all critical structures, such as grade controls, headwater step-pool grade controls, bank stabilization structures, and stormwater outfalls.
The below photos, taken during a site visit in January, showcase some of the exciting progress made by the project team thus far.
Stay tuned for more project updates!
Princeton Hydro specializes in the planning, design, permitting, implementing, and maintenance of ecological rehabilitation projects. To learn more about our watershed restoration services, click here. We have partnered with GreenVest on a number of projects, including the award-winning Pin Oak Forest Conservation Area freshwater wetland restoration project and the Mattawoman Creek Mitigation Site wetland enhancement and restoration initiative. To learn more about GreenVest, click here.
…
It's happening! The Columbia Dam on the Paulins Kill in Northern New Jersey is finally coming down thanks to a successful collaboration between The Nature Conservancy, American Rivers, U.S. Fish and Wildlife Service, NJDEP Division of Fish and Wildlife Service, and Princeton Hydro. The first cut on the main dam wall was made just two weeks ago, and the water has started flowing downstream as the concrete is slowly being removed by the contractors RiverLogic Solutions and SumCo Eco-Contracting.
“In New Jersey, successful dam removal projects are often the result of partnerships between nonprofit organizations, federal and state agencies, consultants, and others working together toward the common goal of river restoration," exclaimed Dr. Laura Craig, Director of River Restoration, American Rivers. "The first day of dam demolition is always a joyous occasion for project partners, but I was especially happy to see the river flowing through the breached Columbia Dam for the first time after working so intensely on this project for the last few years.”
Princeton Hydro has been involved with the engineering and restoration design from the beginning, so we're very excited to report on this major update. Our team of engineers and ecologists studied the feasibility of removal as requested by American Rivers in partnership with the New Jersey chapter of The Nature Conservancy. We investigated, designed, and prepared the necessary permits for the removal of this dam. And, now we've been subsequently been hired to provide construction administration services during the removal process, which means we get to see the dam come down firsthand, piece by piece!
"It is truly amazing and exciting to finally see the main and remnant dams come down, as I have been involved in this restoration effort since the feasibility stage," said Kelly Klein, Senior Project Manager, Princeton Hydro. "I am so honored to be part of this dynamic team and to collaborate with our project partners during every stage of this dam removal."
"On Friday, August 3rd 2018, we began demolition of the 300 foot-long, 18 foot-high Columbia Dam. The Paulins Kill will run freely to meet the Delaware River for the first time in 109 years," said New Jersey Nature Conservancy's Beth Styler Barry. "The benefits of reconnecting these two freshwater ecosystems will be immediate and impact creatures that live in and near the stream, as well as people who come out to paddle, fish or enjoy the wildlife. Dam Removal projects are exciting, ecologically important and also a challenge, this project is a good example of partners coming together to get a great restoration project done."
In order to make the first saw cut into the dam, Princeton Hydro and RiverLogic Solutions first identified the locations of the drill holes. These drill holes are used to feed the diamond wire through the dam for saw cutting.
The crew placed the saw cutter machine on the staging area on top of the apron and prepared for the cut.
Since the high water level was now higher than the bottom of the breach, water is able to flow in and over the notched section.
Because of high flows of water from recent storm events, the dam breach is being widened to allow for larger flows of water to move downstream during high flow events.
Additionally, a few weeks ago we reported on the lowering of the water levels and removal of the remnant dam downstream. Click here for more details and photos.
Since then, the remnant dam has been completed removed and the area has been stabilized.
Now, the water can freely flow through this section of the Paulins Kill.
In case you missed it, we celebrated the commencement of the Columbia Dam removal with NJDEP's Commissioner Catherine McCabe and our project partners. Click here to read the full story.
VIDEO: "Columbia Lake Dam when the water level was 18 inches to 2 feet lower" Video courtesy of Matt Hencheck
To the delight of fish and environmentalists alike, an important step has been made in the removal of the aging spillway of Hunters Pond Dam in Scituate and Cohasset, Massachusetts. The spillway was notched to ensure a gradual release of water from the impoundment, letting Bound Brook flow free again after being dammed for centuries.
As the first barrier upstream from the Atlantic Ocean, the dam’s removal restores 5-miles of river spawning ground and habitat for alewife, blueback herring, American eel, rainbow smelt, sea lamprey and other important species. The removal of Hunters Pond Dam also reduces the threat of dam failure.
Princeton Hydro is proud to be working on this project with T Ford Company, U.S. Fish and Wildlife Service, and many other great partners. The project is funded by grants from the Massachusetts Department of Ecological Restoration and the NOAA.
The project also includes rebuilding a culvert, removing a concrete spillway, and replacing a water main. Stay tuned for more!
Many of our nation’s dams, while originally intended to provide benefits for mills, water supply and energy generation, are severely aged and unmaintained. Nearly 20,000 of the dams on the Army Corps of Engineers’ National Inventory of Dams – which doesn’t even include many dams that are not inventoried or known about – were built in the 1960s. With expected lifespans of 50 years, these dams have reached their limit. And by 2020, 70 percent of all dams will be over 50 years old. Like roads and bridges, dams also require upkeep, maintenance and eventually removal or rehabilitation. As dams age, the danger to life and property around them increases. If they were to suddenly fail and flood downstream communities and infrastructure, there would be loss of property and life. The Association of State Dam Safety Officials, the professional organization for dam safety engineering professionals and regulators, estimates there would need to be a $21 billion investment to repair just 2,000 deficient, high-hazard dams. More and more, the removal of dams has become an option for owners who no longer want or no longer can afford the rising cost of maintenance and repair work required to maintain such a complex structure. For dams like this, removal benefits local economies, and eliminates threats to people and property in local communities. There are also many byproduct benefits, including restoring fish migration routes, improving water quality, restoring floodplain functions and values, and increasing biodiversity. On Sept. 8, we had the honor of meeting the Secretary of the Interior Sally Jewell during a visit of our Hughesville Dam removal project on the Musconetcong River, located in northwestern New Jersey. This project exemplifies the successes that can be achieved through public-private partnerships, including local communities, state and federal agencies, nongovernmental organizations, and private commercial entities. This is the fifth dam removed on the Musconetcong River by a coalition of stakeholders, led by the Musconetcong Watershed Association. The Department of the Interior (specifically, the U.S. Fish and Wildlife Service) provided funding to remove this very old, out-of-compliance dam. The success of these partnerships is due to the unique strengths that each organization brings to the table. This project achieved the removal of a flood and safety hazard, and will restore additional river miles for migratory fish, improve water quality by removing the heat sink of the reservoir, and provide additional safe passage for recreation along the river. It is easy to see why Secretary Jewell chose this site to visit, but the old and outdated dam at Hughesville is far from alone. Across the nation, we need to remove dams like this at a much larger scale – aging dams that no longer are of value to us, but increase the danger to those who live downstream. If we can build on this momentum and start to address the issue of dam safety compliance on a national scale, we can address these threats to American’s safety and strengthen local economies.
Your Full Name * Phone Number * Your Email * Organization Address Message *
By EmailBy Phone
Submit
Δ
Couldn’t find a match? Check back often as we post new positions throughout the year.