search
WP_Query Object
(
    [query] => Array
        (
            [category_name] => stream_restoration
        )

    [query_vars] => Array
        (
            [category_name] => stream_restoration
            [error] => 
            [m] => 
            [p] => 0
            [post_parent] => 
            [subpost] => 
            [subpost_id] => 
            [attachment] => 
            [attachment_id] => 0
            [name] => 
            [pagename] => 
            [page_id] => 0
            [second] => 
            [minute] => 
            [hour] => 
            [day] => 0
            [monthnum] => 0
            [year] => 0
            [w] => 0
            [tag] => 
            [cat] => 41
            [tag_id] => 
            [author] => 
            [author_name] => 
            [feed] => 
            [tb] => 
            [paged] => 1
            [meta_key] => 
            [meta_value] => 
            [preview] => 
            [s] => 
            [sentence] => 
            [title] => 
            [fields] => all
            [menu_order] => 
            [embed] => 
            [category__in] => Array
                (
                    [0] => 34
                )

            [category__not_in] => Array
                (
                )

            [category__and] => Array
                (
                )

            [post__in] => Array
                (
                )

            [post__not_in] => Array
                (
                )

            [post_name__in] => Array
                (
                )

            [tag__in] => Array
                (
                )

            [tag__not_in] => Array
                (
                )

            [tag__and] => Array
                (
                )

            [tag_slug__in] => Array
                (
                )

            [tag_slug__and] => Array
                (
                )

            [post_parent__in] => Array
                (
                )

            [post_parent__not_in] => Array
                (
                )

            [author__in] => Array
                (
                )

            [author__not_in] => Array
                (
                )

            [search_columns] => Array
                (
                )

            [ignore_sticky_posts] => 
            [suppress_filters] => 
            [cache_results] => 1
            [update_post_term_cache] => 1
            [update_menu_item_cache] => 
            [lazy_load_term_meta] => 1
            [update_post_meta_cache] => 1
            [post_type] => 
            [posts_per_page] => 10
            [nopaging] => 
            [comments_per_page] => 5
            [no_found_rows] => 
            [order] => DESC
        )

    [tax_query] => WP_Tax_Query Object
        (
            [queries] => Array
                (
                    [0] => Array
                        (
                            [taxonomy] => category
                            [terms] => Array
                                (
                                    [0] => stream_restoration
                                )

                            [field] => slug
                            [operator] => IN
                            [include_children] => 1
                        )

                    [1] => Array
                        (
                            [taxonomy] => category
                            [terms] => Array
                                (
                                    [0] => 34
                                )

                            [field] => term_id
                            [operator] => IN
                            [include_children] => 
                        )

                )

            [relation] => AND
            [table_aliases:protected] => Array
                (
                    [0] => ph_term_relationships
                    [1] => tt1
                )

            [queried_terms] => Array
                (
                    [category] => Array
                        (
                            [terms] => Array
                                (
                                    [0] => stream_restoration
                                )

                            [field] => slug
                        )

                )

            [primary_table] => ph_posts
            [primary_id_column] => ID
        )

    [meta_query] => WP_Meta_Query Object
        (
            [queries] => Array
                (
                )

            [relation] => 
            [meta_table] => 
            [meta_id_column] => 
            [primary_table] => 
            [primary_id_column] => 
            [table_aliases:protected] => Array
                (
                )

            [clauses:protected] => Array
                (
                )

            [has_or_relation:protected] => 
        )

    [date_query] => 
    [queried_object] => WP_Term Object
        (
            [term_id] => 41
            [name] => Stream Restoration
            [slug] => stream_restoration
            [term_group] => 0
            [term_taxonomy_id] => 41
            [taxonomy] => category
            [description] => All things stream restoration, including dam and barrier removals, fish passage and relevant regulations.
            [parent] => 0
            [count] => 59
            [filter] => raw
            [term_order] => 16
            [cat_ID] => 41
            [category_count] => 59
            [category_description] => All things stream restoration, including dam and barrier removals, fish passage and relevant regulations.
            [cat_name] => Stream Restoration
            [category_nicename] => stream_restoration
            [category_parent] => 0
        )

    [queried_object_id] => 41
    [request] => SELECT SQL_CALC_FOUND_ROWS  ph_posts.ID
					 FROM ph_posts  LEFT JOIN ph_term_relationships ON (ph_posts.ID = ph_term_relationships.object_id)  LEFT JOIN ph_term_relationships AS tt1 ON (ph_posts.ID = tt1.object_id)
					 WHERE 1=1  AND ( 
  ph_term_relationships.term_taxonomy_id IN (41) 
  AND 
  tt1.term_taxonomy_id IN (34)
) AND ((ph_posts.post_type = 'post' AND (ph_posts.post_status = 'publish' OR ph_posts.post_status = 'acf-disabled')))
					 GROUP BY ph_posts.ID
					 ORDER BY ph_posts.menu_order, ph_posts.post_date DESC
					 LIMIT 0, 10
    [posts] => Array
        (
            [0] => WP_Post Object
                (
                    [ID] => 18009
                    [post_author] => 1
                    [post_date] => 2025-08-07 19:26:22
                    [post_date_gmt] => 2025-08-07 19:26:22
                    [post_content] => 

We're pleased to announce the release of the "New Jersey Nature-Based Solutions: Planning, Implementation, and Monitoring Reference Guide," a free resource that provides a comprehensive roadmap to incorporating nature-based solutions (NBS) into infrastructure, construction, restoration, and resilience projects across the state.

Created by the Rutgers University New Jersey Climate Change Resource Center with support from The Nature Conservancy in New Jersey, the guide compiles current research, case studies, best practices, practical tools, science-based strategies, and funding resources to "inform and empower readers to implement and seek funding for NBS."

Click here to view and download the guide now.


Inside the Guide

As the guide states, "nature-based solutions (NBS) are defined as actions to protect, sustainably manage, and restore natural and modified ecosystems that address societal challenges effectively and adaptively, simultaneously benefiting people and nature." (IUCN 2024)

Whether you're a municipal planner, community leader, contractor, public- or private-sector professional, or an academic, new to NBS or experienced in large-scale restoration projects, the guide offers value at every level with practical instruction that spans the full project lifecycle, from planning and permitting to funding and long-term monitoring. While the content is tailored to New Jersey's diverse landscapes, the guide's insights and approaches are broadly applicable to regions with similar ecosystems, from Massachusetts to Virginia.

The guide equips readers with:
  • A foundational understanding of how to plan and apply NBS in a variety of settings, from urban spaces to coastal habitats to inland farmland.
  • An introduction to cost-benefit analysis, including the basics of benefit transfer methodology and its role in justifying funding proposals.
  • A comprehensive toolbox, including policy and permitting guidance, project examples, datasets, and funding and monitoring resources.
  • In-depth profiles of five NBS categories: Bioretention Systems, Coastal Habitats, Regenerative Land Management, Stream Restoration, and Urban Forestry. Each category includes specific techniques like dam removal, living shorelines, and rain gardens.
 

The guide also includes insights on how to address equity considerations and foster meaningful community engagement, helping users implement NBS that are both impactful and inclusive.

Princeton Hydro was proud to contribute technical expertise to this important effort. Our Director of Restoration & Resilience, Christiana L. Pollack, CERP, CFM, GISP, participated on the guide's steering committee, and our team provided informational resources, including content and case studies on invasive species management, wetland and floodplain enhancement, and dam and culvert removal to restore rivers and improve fish passage. These contributions along with those from many other participants, reflect the collaborative nature of the guide and the collective commitment to advancing NBS across the state.

[gallery link="none" columns="2" size="large" ids="18015,18014"]

Sections at a Glance

The guide's easy-to-follow format includes four key sections:

  • Section 1: Setting the Stage - Introduces the purpose of the guide, its intended users, and how to easily navigate its contents.
  • Section 2: Planning for Nature-Based Solutions - Covers essential planning considerations, including selecting a planning horizon, aligning with local land use plans, permitting, funding, community engagement, equity, adaptive management, benefit-cost analysis, and climate change resilience.
  • Section 3: Nature-Based Solutions Profiles - Provides a detailed look at NBS strategies, including their intended uses, implementation techniques, primary benefits and co-benefits, and the specific environmental hazards they help address (i.e., sea level rise, wildfire, inland flooding, etc.)
  • Section 4: Appendix - Includes a project planning checklist, case studies, a glossary, references, and links to helpful resources, tools, and data.

Whether you're just beginning to conceptualize a project or deep into project implementation, this guide is an invaluable addition to your toolbox. We encourage you to explore, download, and share it widely! Click here to access the guide now.

Webinars and outreach events are currently being planned as part of a broader effort to build awareness and support the guide's use. Stay tuned for future announcements. To learn more about the Rutgers University New Jersey Climate Change Resource Center, click here. [post_title] => New Resource: A Comprehensive Guide to Nature-Based Solutions in New Jersey [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => guide-to-nature-based-solutions-in-new-jersey [to_ping] => [pinged] => [post_modified] => 2025-08-07 19:28:46 [post_modified_gmt] => 2025-08-07 19:28:46 [post_content_filtered] => [post_parent] => 0 [guid] => https://princetonhydro.com/?p=18009 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [1] => WP_Post Object ( [ID] => 3240 [post_author] => 3 [post_date] => 2019-02-20 22:31:51 [post_date_gmt] => 2019-02-20 22:31:51 [post_content] => [caption id="attachment_2294" align="alignright" width="2560"] A view of the Columbia Dam at the beginning of the removal process.[/caption]

On the Paulins Kill, the 100-year old Columbia Lake Dam has almost been completely removed, and fish passage has been restored!  Since the first cut was executed on the main dam in August, many exciting advances have been made towards restoring the Paulins Kill back to its natural state. Check out the video below, courtesy of the New Jersey Nature Conservancy Volunteer Drone Team. 

[embed]https://youtu.be/-KaBBFy-qBM?si=EmSLlqJKz5T4W2ML[/embed]

Piece by piece, the dam was notched out throughout the fall season and is now completely removed with the exception of the dam apron, the horizontal concrete structure that sits downstream of the dam, and the section of the dam that sits below the riverbed. The part of the dam in the riverbed is now being removed all the way down  to three feet under the ground. The full removal is estimated to be complete by mid-March. In mid-August, the first cut was widened to 80 feet, allowing for better management of high flows during storm events, which had been posing a challenge immediately following the first cut.

In late August, the installation of rock vanes at the Brugler Road Bridge began. Rock vanes are engineered, in-stream structures that help to stabilize a channel while enhancing aquatic habitat and movement.

The rock vanes installed at the Brugler Road Bridge site are cross vanes. Cross vanes consist of a set of boulders angled upstream on a river, with another section of smaller rocks placed upstream. The taller sections of the cross vanes deflect the streamflow away from the banks, decreasing scouring effects. Instead, the flow travels over the rock walls and concentrates down the center of the channel, creating a deep and elongated pool in the middle of the stream.  

Velocities between the notches in the rock vanes were evaluated using a velocity meter in accordance with the design specifications originally proposed. Based on the U.S. Fish and Wildlife Service fish passage design criteria, velocities in the notches could not be greater than 8.25 feet per second. All of the velocity measurements in this rock vane were below the maximum thresholds, ensuring no blockage of fish passage is made through the vanes.

Since the removal of the dam began, vegetative growth from the natural seedbed of the upper impoundment has been observed (see photo below).

In October, scour protection installation commenced at the Warrington Road Bridge site. After the team conducted geotechnical test pits, they discovered that a concrete scour wall that slopes out to the Paulins Kill was present and deep enough to be able to install rock at the necessary depth. They also found that the existing gabions, caged baskets filled with rock or concrete often used to protect against erosion, were intact and could be left in place. The team installed four (4) feet of riprap under and around the bridge in the riverbed and tied it into the existing grade of the banks.

The original notch in the dam was lowered one foot per day starting in mid-December, reducing water surface elevations down to the apron elevation during the month of January.

To accommodate NJ Fish and Wildlife’s request for animal passage under the I-80 bridges, an area of the previously installed riprap on the northwest abutment wall was flattened out and filled in with river cobble. This path will promote wildlife movement under the bridge as opposed to through the existing tunnel.

Currently, rock vanes are being installed under the I-80 bridges specifically to enhance fish passage. These structures vary slightly from the rock vanes at the Brugler Road Bridge site, as they are designed to slow river flow, helping migrating fish travel upstream and traverse a 5-foot elevation difference in the streambed, much like a fish ladder

These rock vanes are more than halfway completed and are on track to be finished in time for fish populations to make full use of them.  The next steps are to finish the demolition of the dam and the construction of the fish passage rock vanes under the I-80 bridges, plant vegetation throughout the upper impoundment, create a recreational trail through the upper impoundment, and plan for fishing and boating access! Stay tuned for more exciting developments on this incredible project.

Thank you to our project partners: The Nature Conservancy, American Rivers, U.S. Fish and Wildlife Service, and NJDEP Division of Fish and Wildlife Service.

...

Princeton Hydro has designed, permitted, and overseen the reconstruction, repair, and removal of a dozens of small and large dams in the Northeast. To learn more about our fish passage and dam removal engineering services, visitbit.ly/DamBarrier.

[post_title] => Fish Passage Restored on the Paulins Kill [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => fish-passage-restored-on-the-paulins-kill [to_ping] => [pinged] => [post_modified] => 2025-11-04 02:27:07 [post_modified_gmt] => 2025-11-04 02:27:07 [post_content_filtered] => [post_parent] => 0 [guid] => http://www.princetonhydro.com/blog/?p=3240 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [2] => WP_Post Object ( [ID] => 2650 [post_author] => 3 [post_date] => 2018-10-12 09:02:20 [post_date_gmt] => 2018-10-12 09:02:20 [post_content] => [caption id="attachment_2732" align="aligncenter" width="1243"]Photo courtesy of GreenVest  [/caption]

As one of the Chesapeake Bay’s most productive tributaries and a vital part of Maryland's natural resources, Mattawoman Creek supports some of the largest populations of finfish, amphibians, and birds in the state. A collaborative team of private and public sector entities have designed the "Mattawoman Creek Mitigation Site" in Pomfret, Charles County, Maryland, an effort that will enhance or create 64+ acres of wetlands and restore nearly 3,800 linear feet of this perennial stream.  With over 28,500 native trees and shrubs to be planted, this mitigation project will result in 80+ acres of continuous, forested wetland with complex and diverse vegetative communities. It is expected to provide a wide array of habitat to resident and transient wildlife, including birds, reptiles, invertebrates, amphibians and rare, threatened and endangered species.

Unique to this project, Mattawoman Creek Mitigation Site is Maryland’s first-ever Umbrella Mitigation Banking Instrument (UMBI) for federal and other government agency use.   A UMBI is the bundling of multiple mitigation banks into one agreement in order to streamline the regulatory approval process, thereby eliminating steps and involving fewer resources. The Maryland UMBI document helps the USAF and other public agencies secure certainty of cost and schedule, facilitate timely permit issuance, and expedite the satisfaction of their permitted requirements for planned capital improvement projects. This approach also maximizes the scale of restoration and resulting land protection and efforts, creating contiguous blocks of habitat with greatly enhanced benefits compared to single, permittee-responsible projects. This precedent was a result of a partnership between United States Air Force (USAF) and Joint Base Andrews (JBA), U.S. Army Corps of Engineers (USACE), Maryland Department of the Environment (MDE), GreenTrust Alliance, GreenVest, and Princeton Hydro.

Projects completed under the UMBI will reduce federal and state workload expediting the regulatory review and issuance of permits by the MDE and USACE. Additionally, projects completed under this UMBI will aid in compliance with the Federal Paperwork Reduction Act where federal regulatory staff can evaluate success and performance issues for multiple permittees at one single habitat restoration or mitigation site. In addition, federal costs are capped, and liabilities  are transferred through to GreenVest, the private sector operator, and GreenTrust Alliance, the nonprofit bank sponsor, who will also serve as the long-term steward of sites restored under this program.

Pictured is the southern restoration area after sorghum germination, prior to wetland creation and reestablishment.
 

Design, engineering/modeling, and permitting of the site was completed by  Princeton Hydro and GreenVest under our currently Ecosystem Restoration contract with the USACE. Princeton Hydro also provided an Environmental Assessment and Environmental Baseline Survey, and conducted a geotechnical investigation, which included the advancement of test pits, visual and manual investigation techniques and logging, infiltration testing, laboratory soils testing, and seasonal high-water table estimations.

A wetland water budget was also developed for the proposed wetland creation and restoration to determine if sufficient water is available to establish or reestablish wetlands on the site. It was also used to inform design development including proposed grading and plant community composition. The establishment and re-establishment of wetlands on the site will be accomplished through directed grading, ditch plugging and stream restoration designed to maximize the retention of surface water, floodplain re-connection, and groundwater inputs.

Highlights from the Mattawoman Creek Wetland and Stream Mitigation project:
  • 80 acres of land were placed into conservation easement and removed from active row crop production and cattle pasture. The easement, which is held by GreenTrust Alliance, provides permanent protection for all 80 acres.
  • Over 64 acres of wetlands will be restored, created, enhanced or preserved, which will sequester approximately 75 tons of carbon per year.
  • 3,798 linear feet of perennial stream will be restored by re-establishing, historic floodplain access during more frequent storm events, stabilizing hydraulics and geomorphology, and adding aquatic habitat value.
  • Full integration of the wetland and stream restoration elements will occur exponentially, increasing anticipated functions and values in the post construction condition. Functions include: storm damage and flood attenuation, groundwater recharge and discharge, nutrient cycling and sequestration, local water quality improvement, and wildlife habitat enhancements.
  • This project will also create and enhance the forested wetland and stream habitat for the State-listed Threatened Selys’ Sundragon (Helocordulia selysii).
  • As part of the site design, over 28,500 native trees and shrubs will be planted.
  • The Mattawoman Creek Mitigation Site is located within a Tier 3 Biodiversity Conservation Network area. These areas are classified by the Department of Natural Resources as “highly significant for biodiversity conservation” and are priority conservation areas that support critical species and habitats.
  • The project will yield advanced mitigation values: 7.913 in wetland credits and 1,595 in stream credits. These credits are durable and will be available for JBA’s use in order to satisfy permitted impacts associated with planned capital improvement projects.

Over 6,000 acres (25%) of the Mattawoman Creek watershed has been protected by public ownership and various conservation and agricultural easements, which, in addition to the Mattawoman Creek Mitigation Site, help ensure that Mattawoman Creek forever remains a high-quality destination for outdoor recreation.

Princeton Hydro specializes in the planning, design, permitting, implementing, and maintenance of tidal and freshwater wetland rehabilitation projects. To learn more about our wetland restoration, creation, and enhancement services, visit: http://bit.ly/PHwetland

[post_title] => Mitigation Milestone Reached at Mattawoman Creek Mitigation Site [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => mattawoman-creek-mitigation-site [to_ping] => [pinged] => [post_modified] => 2025-10-13 15:59:24 [post_modified_gmt] => 2025-10-13 15:59:24 [post_content_filtered] => [post_parent] => 0 [guid] => http://www.princetonhydro.com/blog/?p=2650 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 4 [filter] => raw ) [3] => WP_Post Object ( [ID] => 2624 [post_author] => 3 [post_date] => 2018-10-01 16:15:57 [post_date_gmt] => 2018-10-01 16:15:57 [post_content] =>

The Pin Oak Forest Conservation Area is a 97-acre tract of open space that contains an extremely valuable wetland complex at the headwaters of Woodbridge Creek. The site is located in a heavily developed landscape of northern Middlesex County and is surrounded by industrial, commercial, and residential development. As such, the area suffered from wetland and stream channel degradation, habitat fragmentation, decreased biodiversity due to invasive species, and ecological impairment. The site was viewed as one of only a few large-scale freshwater wetland restoration opportunities remaining in this highly developed region of New Jersey.

[gallery link="none" ids="7262,7269,7257"]

Recognizing the unique qualities and great potential for rehabilitating and enhancing ecological function on this county-owned parkland, a dynamic partnership between government agencies, NGOs, and private industry, was formed to restore the natural function of the wetlands complex, transform the Pin Oak Forest site into thriving habitat teeming with wildlife, and steward this property back to life. The team designed a restoration plan that converted 28.94 acres of degraded freshwater wetlands, 0.33 acres of disturbed uplands dominated by invasive species, and 1,018 linear feet of degraded or channelized streams into a species-rich and highly functional headwater wetland complex.

We used an innovative approach to restore the hydraulic connection of the stream channel with its floodplain in order to support wetland enhancement. Additionally, to further enhance wetlands with hydrologic uplift, the team incorporated microtopography techniques, which creates a variable surface that increases groundwater infiltration and niches that support multiple habitat communities. This resulted in a spectrum of wetland and stream habitats, including the establishment of a functional system of floodplain forest, scrub shrub, emergent wetlands and open water. Biodiversity was also increased through invasive species management, which opened the door for establishing key native flora such as red maple, pin oak, swamp white oak, and swamp rose. The restored headwater wetland system also provides stormwater quality management, floodplain storage, enhanced groundwater recharge onsite, and surface water flows to Woodbridge Creek.

Completed in 2017, the integrated complex of various wetland and upland communities continues to provide high quality habitat for a wide variety of wildlife species including the state-threatened Black-crowned Night heron and Red-headed Woodpecker. The work done at the site significantly enhanced ecological function, providing high-quality habitat on indefinitely-preserved public lands that offer countless benefits to both wildlife and the community.

[gallery link="none" size="medium" ids="17108,17107,17106"]

Public and private partnerships were and continue to be critical to the success of this project. The diverse partnership includes Middlesex County Office of Parks and Recreation, Woodbridge Township, Woodbridge River Watch, New Jersey Freshwater Wetlands Mitigation Council, GreenTrust Alliance, GreenVest, and Princeton Hydro. The partners joined together as stakeholders to identify long term restoration and stewardship goals for Pin Oak Forest Preserve, and nearly four years later, the partners all remain involved in various aspects of managing the property and this project itself, ranging from fiscal oversight by New Jersey Freshwater Wetland Mitigation Council and GreenTrust Alliance, to permit and landowner access coordination performed by Woodbridge Township and Middlesex County, or the ongoing stewardship, maintenance, and monitoring of the project and the larger park, being conducted by being conducted by GreenTrust Alliance, GreenVest, and NJ Department of Environmental Protection.

This project was funded through the New Jersey Freshwater Wetland In-Lieu Fee program. In 2014, GreenTrust Alliance, GreenVest, and Princeton Hydro secured $3.8 million dollars of funding on behalf of the Middlesex County Parks Department to restore three wetland sites, which included Pin Oak Forest.

The Pin Oak Forest project is a great model for showcasing a successful approach to the enhancement of public lands through a dynamic multidisciplinary, multi-stakeholder partnership. And, because of proper planning and design, it has become a thriving wildlife oasis tucked in the middle of a densely-populated suburban landscape.

[gallery link="file" ids="2693,2696,2694"]

Princeton Hydro specializes in the planning, design, permitting, implementing, and maintenance of wetland rehabilitation projects. To learn  about another wetland restoration, creation, and enhancement project, click here.

[post_title] => Innovative and Effective Approach to Wetland Restoration [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => pin-oak-wetland-restoration [to_ping] => [pinged] => [post_modified] => 2025-07-29 00:23:31 [post_modified_gmt] => 2025-07-29 00:23:31 [post_content_filtered] => [post_parent] => 0 [guid] => http://www.princetonhydro.com/blog/?p=2624 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [4] => WP_Post Object ( [ID] => 2525 [post_author] => 3 [post_date] => 2018-08-30 14:15:58 [post_date_gmt] => 2018-08-30 14:15:58 [post_content] =>

To celebrate the 50th Anniversary of the Wild and Scenic Rivers Act, the Musconetcong Watershed Association (MWA) is hosting the “Wild & Scenic Film Festival On Tour”. The festival is free and open to the public, but seating is limited so, registration is required. The festival will be held on Sunday, September 9th from 10 am to 2 pm at Centenary University in Hackettstown, NJ.

To bring communities together around local and global environmental issues, The "Wild & Scenic Film Festival" goes "on-tour" partnering with nonprofit organizations and local groups to screen films year-round with hopes of inspiring individuals to take environmental action. The tour stops in 170 communities around the globe, features over 150 award-winning films, and welcomes over 100 guest speakers, celebrities, and activists who bring a human face to the environmental movement.

Credit: NPS.gov

The Hackettstown, NJ tour event will feature 11 short films including River Connections, which celebrates the 50th anniversary of the Federal Wild and Scenic Rivers Act, under which the Musconetcong River is protected. The film explores the importance of free-flowing rivers and highlights the recent Hughesville Dam removal project. An interactive panel event will follow the film screening and feature experts including MWA Executive Director Alan Hunt, Ph.D. and Princeton Hydro President Geoffrey Goll, P.E., who were both interviewed in the film.

"Our multidisciplinary approach to dam removal using ecology and engineering, paired with a dynamic stakeholder partnership, led to a successful river restoration, where native fish populations returned within a year," said Princeton Hydro's President Geoffrey Goll, P.E. "We are grateful for MWA's hard work in organizing this film festival so we can continue to share our dam removal success stories and the importance of the Wild and Scenic Rivers Act."

Princeton Hydro, a proud sponsor of the "Wild & Scenic Film Festival On Tour," has worked with MWA to design five dam removals on the Musconetcong River, including the Hughesville Dam. As noted in the River Connections film, the Hughesville Dam was a major milestone in restoring migratory fish passage along the Musconetcong. Only a year after the completion of the dam removal, American shad were documented as having returned to the "Musky" for the first time in 250 years.

The tour leads up to the annual 5-day film festival, which will be held January 17-21, 2019 in Nevada City and Grass Valley, California. Sponsored by National Park Service, the Wild & Scenic Film Festival honors the Wild and Scenic Rivers Act, landmark legislation passed by Congress in October 1968 that safeguards the free-flowing character of rivers by precluding them from being dammed, while allowing the public to enjoy them. It encourages river management and promotes public participation in protecting streams.

EVENT DETAILS:

Date:         Sunday, September 9th Time:         Doors open at 10 am and shows start at 11 am Location:  Centenary University, Sitnik Theatre,                   400 Jefferson St, Hackettstown, NJ 07840 Tickets:     FREE! Please register in advance:                    https://goo.gl/NrwcgE  

Interested to learn more about River Connections? Check out our blog celebrating the release of the film: 

[embed]http://www.princetonhydro.com/blog/wild-and-scenic-rivers/[/embed]
[post_title] => Wild & Scenic Film Festival is Coming to Hackettstown [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => wild-scenic-film-festival [to_ping] => [pinged] => [post_modified] => 2025-11-04 02:15:54 [post_modified_gmt] => 2025-11-04 02:15:54 [post_content_filtered] => [post_parent] => 0 [guid] => http://www.princetonhydro.com/blog/?p=2525 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [5] => WP_Post Object ( [ID] => 2334 [post_author] => 3 [post_date] => 2018-08-15 12:07:45 [post_date_gmt] => 2018-08-15 12:07:45 [post_content] =>

Freshwater mussels are among the oldest living and second most diverse organisms on Earth with over 1,000 recognized species. Here in the eastern part of the U.S., we have more species of freshwater mussels than anywhere in the world. Unfortunately, freshwater mussels are one of the most rapidly declining animal groups in North America. Out of the 300 species and subspecies found on the continent, 70 (23%) have been federally listed as "Threatened" or "Endangered" under the Endangered Species Act. And, in the last century, over 30 species have become permanently extinct. So, why are populations declining so fast?

Freshwater mussels are filter feeders and process large volumes of the water they live in to obtain food. This means of survival also makes them highly susceptible to industrial and agricultural water pollution.  Because they are constantly filtering water, the contaminants and pathogens that are present are absorbed into the mussel’s tissues. As such, mussels are good indicators of water quality and can greatly contribute to improving water quality by filtering algae, bacteria and organic matter from the water column.

Not only do freshwater mussels rely on water quality, they are dependent on fish and other aquatic organisms for reproductive success. In order for a freshwater mussel to complete the reproduction process, it must “infect” a host fish with its larvae. The method depends on the specie of mussel. Some species lure fish using highly modified and evolved appendages that mimic prey. When a fish goes into investigate the lures, the female mussel releases fertilized eggs that attach to the fish, becoming temporarily parasitic. Once the host fish is infected, it can transfer the mussel larvae upstream and into new areas of the river.

Both habitat loss from dam construction and the introduction of pesticides into the water supply has contributed to the decline of freshwater mussels. With approximately 300 mussel species in the U.S. alone, a critical component of restoring and revitalizing mussel populations is truly understanding their biology, which begins with the ability to properly differentiate each species and properly identify and catalog them. Princeton Hydro’s Senior Scientist Evan Kwityn, CLP and Aquatic Ecologist Jesse Smith recently completed the U.S. Fish and Wildlife Service's Fresh Water Mussel Identification Training at the National Conservation Training Center in West Virginia.

Through hands-on laboratory training, Evan and Jesse developed their freshwater mussel identification skills and their knowledge of freshwater mussel species biology. Course participants were tasked with mastering approximately 100 of the most common freshwater mussel species in the United States. They also learned about proper freshwater mussel collection labeling, the internal and external anatomy and meristics of a freshwater mussel, and distributional maps as an aid to freshwater mussel identification.

   

In a recently published press release, Tierra Curry, a senior scientist with the Center for Biological Diversity was quoted as saying, “The health of freshwater mussels directly reflects river health, so protecting the places where these mussels live will help all of us who rely on clean water. This is especially important now, when we see growing threats to clean water from climate change, agriculture and other sources.”

Princeton Hydro is committed to protecting water quality, restoring habitats, and managing natural resources. Read about some of our recent projects and contact us to discuss how we can help you.

To learn more about freshwater mussels, check out this video from U.S. Fish and Wildlife Service:

[embed]https://youtu.be/OWjlwfx67eY?si=YLCmgt2Ry0GiQ6BQ[/embed] [visual-link-preview encoded="eyJ0eXBlIjoiZXh0ZXJuYWwiLCJwb3N0IjowLCJwb3N0X2xhYmVsIjoiIiwidXJsIjoiaHR0cHM6Ly95b3V0dS5iZS9PV2psd2Z4NjdlWSIsImltYWdlX2lkIjo0ODc1LCJpbWFnZV91cmwiOiJodHRwczovL3ByaW5jZXRvbmh5ZHJvLmNvbS93cC1jb250ZW50L3VwbG9hZHMvMjAyMC8wNS82Li1IaWdoLXNjaG9vbC1zdHVkZW50cy1pbnN0YWxsaW5nLXNjYWxlZC5qcGciLCJ0aXRsZSI6IkFsbCBBYm91dCBGcmVzaHdhdGVyIE11c3NlbHMgLSBVLlMuIEZpc2ggJiBXaWxkbGlmZSBTZXJ2aWNlIiwic3VtbWFyeSI6IldlIGxvdmUgb3VyIGZyaWVuZHMgYXQgVS5TLiBGaXNoIGFuZCBXaWxkbGlmZSBTZXJ2aWNlLCB3aG8gaXMgdGhlIG9sZGVzdCBmZWRlcmFsIGNvbnNlcnZhdGlvbiBhZ2VuY3ksIHRyYWNpbmcgaXRzIGxpbmVhZ2UgYmFjayB0byAxODcxLCBhbmQgdGhlIG9ubHkgYWdlbmN5IGkuLi4iLCJ0ZW1wbGF0ZSI6InVzZV9kZWZhdWx0X2Zyb21fc2V0dGluZ3MifQ=="]  

[post_title] => Restoring and Revitalizing Freshwater Mussels [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => freshwater-mussels [to_ping] => [pinged] => [post_modified] => 2025-11-04 02:21:08 [post_modified_gmt] => 2025-11-04 02:21:08 [post_content_filtered] => [post_parent] => 0 [guid] => http://www.princetonhydro.com/blog/?p=2334 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [6] => WP_Post Object ( [ID] => 5808 [post_author] => 3 [post_date] => 2018-06-27 17:54:33 [post_date_gmt] => 2018-06-27 17:54:33 [post_content] => [video width="1920" height="1080" poster="http://princetonhydro.com/wp-content/uploads/2018/06/iron_on_the_concrete.jpg" autoplay="true"][/video]

VIDEO: "Columbia Lake Dam when the water level was 18 inches to 2 feet lower" Video courtesy of Matt Hencheck


In Northwest New Jersey on the Paulins Kill, an important tributary to the Delaware River, the century-old hydroelectric Columbia Dam is actively being removed. Princeton Hydro was contracted by American Rivers to investigate, design, and apply for permits for the removal of this dam for the New Jersey chapter of The Nature Conservancy. Our team of engineers and ecologists studied the feasibility of removal by collecting sediment samples, performing bioassay tests, and conducting a hydraulic analysis of upstream and downstream conditions. We’re excited to report that the Columbia Dam removal has officially commenced! The New Jersey Department of Environmental Protection started draining water from Columbia Lake a few weeks ago, which was the first step in removing the dam. Princeton Hydro has subsequently been contracted by The Nature Conservancy to provide construction administration services.  Photos below show the water at lowered levels at the impoundments. Last week, the first hammer hit the wall of a downstream dam remnant, officially starting the removal process. The dam removal process will last a few weeks, as the contractor actively knocks down the thick concrete wall. Once the dam is removed, there is a high probability that populations of American Shad and River Herring will be restored. It may also enhance American Eel migration. As a coldwater fishery, this reach also has significant potential for trout species, as well as Smallmouth Bass. "It is very exciting to be a part of such a monumental effort for the restoration of the Paulins Kill. This river, once a major migration route for diadromous fish like American Shad, will once again be a nursery for this Delaware River icon," said Geoffrey Goll, PE, President and co-founder of Princeton Hydro. "The removal of these dams will also restore the functions and values of a riparian corridor and floodplain, eliminate costs to the taxpayer for the maintenance of a dam and lake, and provide additional riverine recreational opportunities. I expect to see the same resilience and positive impact to the Delaware River as the recent barrier removals on another major NJ tributary, the Musconetcong River. It is a win-win for NJ, and with The Nature Conservancy at the helm and expert guidance from American Rivers, it has been an experience of a career." This project could not have been possible without the hard work and dedication of the following partner organizations: The Nature Conservancy of New Jersey, American Rivers, U.S. Fish and Wildlife Service, RiverLogic Solutions, NJDEP Division of Fish and Wildlife Service, and SumCo EcoContracting. Princeton Hydro has designed, permitted, and overseen the reconstruction, repair, and removal of a dozens of small and large dams in the Northeast. Click here to learn more about our fish passage and dam removal engineering projects. [post_title] => PHOTOS: Columbia Dam Removal [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => photos-columbia-dam-removal [to_ping] => [pinged] => [post_modified] => 2025-03-07 13:20:23 [post_modified_gmt] => 2025-03-07 13:20:23 [post_content_filtered] => [post_parent] => 0 [guid] => http://www.princetonhydro.com/blog/?p=2127 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [7] => WP_Post Object ( [ID] => 2093 [post_author] => 3 [post_date] => 2018-06-26 18:00:32 [post_date_gmt] => 2018-06-26 18:00:32 [post_content] => Moosup River

The Moosup River is a beautiful 30-mile-long, trout river flowing through Connecticut and Rhode Island, eventually emptying into the Quinebaug River.

Several dams, most originally built in the 1800s or early 1900s, impeded the river’s natural flow, impaired habitat, fragmented the river system, and prevented fish from swimming upstream to their native spawning grounds.

In 2013, American Rivers, CTDEEP Fisheries, and Natural Resources Conservation Service began collaborating on the removal of multiple dams and remnant dams as part of a larger project to restore connectivity to the Moosup River in the Town of Plainfield. Princeton Hydro and RiverLogic Solutions were contracted to provide design-build and permitting services.

As part of this larger multi-year effort, five dams are planned for removal from the Moosup River. The most downstream barrier, the Hale Factory Dam was removed in 2014. The remnants of the toppled Griswold Rubber Dam were removed in 2015. In 2017, the removal of Brunswick Mill Dam #1 was completed. And, two more dams, downstream of New Brunswick Mill Dam #1, are currently under consideration for removal. When fully completed, the Moosup River Dam Removal Project will reconnect fish habitats along 6.9 miles of the Moosup River.

 
Hale Factory Dam

The Hale Factory Dam was constructed of a boulder core capped in a one-foot-thick concrete layer. The dam was partially breached as the concrete cap had deteriorated severely over the years, allowing flow to pass between boulders and allowing the normal pool elevation to drop substantially from its former design height.

The resource delineation conducted on site identified a vernal pool with an 18 inch culvert outlet that discharged 90 feet upstream of the dam. To preserve this ecological resource on the site, the vernal pool was not disturbed during the dam removal.

Princeton Hydro provided a field assessment, sediment characterization and analysis, final design and permit application package for the full removal of the Hale Factory Dam. Full removal of the dam entailed demolition and removal of the concrete, and re-use of the natural cobbles and boulders from the dam to create in-stream habitat features. Once completed, the river and its boulders appeared as if placed by nature itself, with the former dam’s presence indicated only by the age-old lichen covered field stone walls leading up to the banks.

 
Griswold Rubber Dam

The Griswold Rubber Dam was in a gravel-cobble reach of the river approximately 80 feet wide in the Village of Moosup and was adjacent to the 1992 expansion of the Griswold Rubber factory.  At one time, the dam stood approximately 10 feet high and 150 feet long. The dam was constructed of a large segmented concrete slab that had since toppled over and was lying nearly flat on the river bed in multiple sections. The dam structure, having failed, served no useful purpose. Despite being toppled, the dam still presented a deterrent to the effective movement of aquatic organisms at normal to low flows and was therefore worthy of complete removal to restore river connectivity.

Princeton Hydro conducted an initial field investigation with RiverLogic Solutions to gain insights regarding the construction approach. Princeton Hydro then followed-up with a more detailed assessment of river bed sediment, geomorphic conditions, the likely riverine response, construction access, and other design related issues that were incorporated into design plans and permit applications. The restoration design Princeton Hydro developed aimed to remove the partial barrier to fish passage with as little disturbance to surrounding infrastructure and resources as possible.

 
Brunswick Mill Dam #1

This dilapidated timber crib dam stood approximately 4-feet high and spanned the channel at approximately 130 feet. The timbers ranged from 1.5 to 2.5 feet in diameter and over 20 feet in length; 50 were integrated into the dam. The timber crib was filled with gravel and other debris, and the gravel substrate extended 50 feet upstream. The original dam was significantly higher, but the timber crib spillway deteriorated and gradually collapsed over time and only a portion of the structure remained.

For this project, Princeton Hydro completed sediment investigation, sampling and analysis; hydrologic and hydraulic analysis; and provided design and engineering for full removal of the dam. Princeton Hydro contracted with an archeologist / industrial historian, and together closely observed the dam deconstruction to observe and record how the timber crib had been assembled. Multiple types of iron pins and wooden pegs revealed how the dam had been repaired over the years – findings, old maps, and photos were incorporated into a historical report filed with the state historic preservation office. Princeton Hydro coordinated to have the old timbers salvaged for eventual re-use. Removing the Brunswick Mill Dam #1 was a continuation of the large scale Moosup River restoration effort and paved the way for the potential removal of two more dams downstream in the coming years.

"When a dam is breached and taken out, the tangible results are very quickly noticeable," said Paul Woodworth, Princeton Hydro Fluvial Geomorphologist. “The return of migratory fish is a very strong indicator of the ecological benefits of dam removal - sometimes after a removal you can see fish immediately swimming upstream. Removing dams also improves safety in nearby communities, reestablishes the natural flow of sediment, improves water quality, provides new recreation opportunities, and restores habitats for fish and wildlife.”

Click here to read more about Princeton Hydro’s engineering services for the restoration and removal of dams.

[gallery link="file" ids="2104,2107,2102,2109,2116,2118,2117,2115,2120,2122,2121,2149"]

[post_title] => Dam Removal on the Moosup River [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => moosup-river-dam-removal [to_ping] => [pinged] => [post_modified] => 2025-11-04 02:15:52 [post_modified_gmt] => 2025-11-04 02:15:52 [post_content_filtered] => [post_parent] => 0 [guid] => http://www.princetonhydro.com/blog/?p=2093 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 1 [filter] => raw ) [8] => WP_Post Object ( [ID] => 1872 [post_author] => 3 [post_date] => 2018-05-10 14:15:00 [post_date_gmt] => 2018-05-10 14:15:00 [post_content] =>

For thousands of years, river herring swam from the Atlantic Ocean through the Long Island Sound and up the Noroton River to spawn each spring. Then, they returned to the ocean until the next spawning season.

Back in the 1920s, President Dwight D. Eisenhower’s administration began connecting the country through a massive interstate highway system. As part of the infrastructure plan, hundreds of thousands of culverts were built across the U.S. with the intention of moving water quickly and efficiently. While that goal was met, many migratory fish and other aquatic organisms could not overcome the culverts’ high-velocity flows, shallow water depths, and perched outlets. This infrastructure prevented them from reaching their native migratory destinations.

By the late 1950s, Interstate 95 cut through Connecticut’s coastal rivers, and culverts were installed to convey river flows. Alewives, American Shad, Blueback Herring, and other native fish species were unable to navigate the culverts. Their populations dwindled to the point where Connecticut, along with Rhode Island, Massachusetts, and North Carolina, instituted moratoriums on catching and keeping the valued forage fish.

Along the Noroton River, three parallel concrete culverts, each 300-feet long, 13-feet wide and 7-feet in height were installed, completely blocking upstream fish passage.  In order to restore important fish populations and revitalize the Noroton River, Save the Sound launched a project that reopened approximately seven miles of the river, allowing migratory fish populations to safely and easily travel through the culverts to reach their original spawning habitat upstream.

The project is a collaboration among Save the Sound, Darien Land Trust, Connecticut Department of Energy and Environmental Protection (CTDEEP), Connecticut Department of Transportation, Princeton Hydro, and other partners. For the project, Princeton Hydro lead design engineering and guided the construction of the following elements to restore upstream fish passage:

  • The installation of a concrete weir at the upstream end of the culvert to increase water depths in one culvert during low-flow periods;
  • The installation of concrete baffles to reduce flow velocities and create resting places for fish, and;
  • The installation of a naturalized, step-pool, rock ramp at the downstream end of the project to allow fish to ascend into the culvert gradually, overcoming the two-foot vertical drop present under existing conditions. The rock ramp consists of a grouted riverstone base with large grouted boulders arranged to make steps, with low-flow passage channels, between a series of pools approximately 1-foot deep that create resting places for upstream migrating fish.
[gallery columns="2" size="medium" ids="1886,1888"]

Reopening river passage for migratory species will improve not only the health of the Noroton River itself, but will also benefit the overall ecosystem of Long Island Sound. Over the last decade, fish passage projects around the sound’s Connecticut and New York shores have dramatically increased freshwater spawning habitat for the foundational species whose return is restoring a more vibrant food web to the Long Island Sound.

Construction of the baffles and rock ramp were completed in time for the 2018 migratory season. Construction of the concrete weir is on temporary hold for low-flow conditions. On April 26, 2018, project partners gathered for a project celebration and the release of migratory fish by CTDEEP at an upstream location.

"It's fascinating to feel the change in the flow patterns against your legs as you walk through the baffled culvert knowing that it will now facilitate fish passage through this restored reach," said Princeton Hydro's Paul Woodworth, Certified Ecological Restoration Practitioner and Fluvial Geomorphologist.  "It is a very attractive and natural-looking fishway, and we’re proud to have created a design that fits so well into the surrounding landscape.” Princeton Hydro has designed, permitted, and overseen the reconstruction, repair, and removal of a dozens of small and large dams in the Northeast.  To learn more about our fish passage and dam removal engineering services, visit: bit.ly/DamBarrier.

[post_title] => Conservation Spotlight: Restoring Fish Passage on the Noroton River [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => conservation-spotlight-noroton-river [to_ping] => [pinged] => [post_modified] => 2024-12-10 13:26:41 [post_modified_gmt] => 2024-12-10 13:26:41 [post_content_filtered] => [post_parent] => 0 [guid] => http://www.princetonhydro.com/blog/?p=1872 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 1 [filter] => raw ) [9] => WP_Post Object ( [ID] => 1511 [post_author] => 3 [post_date] => 2018-02-23 16:53:28 [post_date_gmt] => 2018-02-23 16:53:28 [post_content] => Credit: NPS.gov Communities across the nation are preparing to celebrate the 50th anniversary of the Wild and Scenic Rivers Act. This landmark legislation passed by Congress in October 1968 safeguards the free-flowing character of rivers by precluding them from being dammed, while allowing the public to enjoy them. It encourages river management and promotes public participation in protecting streams. As part of the celebration, the National Park Service released a new video highlighting a handful of ‘Wild and Scenic’ designated rivers in the Northeast – the Farmington, Sudbury, Assabet, Concord, and Musconetcong Rivers – along with the organizations and community volunteers who work together to protect and care for these rivers. Princeton Hydro is proud to work with two of the river stewards featured in the video: Musconetcong Watershed Association and Farmington River Watershed Association.

The Musconetcong River:

Designated ‘Wild and Scenic’ in 2006, the Musconetcong River is a 45.7-mile-long tributary of the Delaware River in northwestern New Jersey. Princeton Hydro has been working with MWA in the areas of river restoration, dam removal, and engineering consulting since 2003 when the efforts to remove the Gruendyke Mill Dam in Hackettstown, NJ began. To date, Princeton Hydro has worked with MWA to remove five dams on the Musconetcong River, the most recent being the Hughesville Dam. As noted in the video, the removal of these dams, especially the Hughesville dam, was a major milestone in restoring migratory fish passage along the Musconetcong. Only a year after the completion of the dam removal, American shad returned to the "Musky" for the first time in 250 years. “The direction the river is moving bodes well for its recovery,” said Princeton Hydro President Geoff Goll, P.E., who was interviewed in the 50th anniversary video. “This multidisciplinary approach using ecology and engineering, paired with a dynamic stakeholder partnership, lead to a successful river restoration, where native fish populations returned within a year. ”

The Farmington River:

The Upper Farmington River, designated as ‘Wild and Scenic' in 1994, stretches 14-miles through Connecticut starting above Riverton through the New Hardford/Canton town line. The river is important for outdoor recreation and provides critical habitat for countless wildlife. Credit: FWRA.orgBack in 2012, Princeton Hydro worked with the Farmington River Watershed Association and its project partners to remove the Spoonville Dam. Built in 1899 on the site of a natural 25-foot drop in the riverbed, the dam was originally a hydropower facility. The hurricanes and flood of 1955 breached the dam, opening a 45-foot gap and scattering massive dam fragments in the riverbed downstream. The remnant of the main dam persisted for decades as a 128-foot long, 25-foot high obstacle in the channel. The river poured through the breach in a steep chute that stopped American shad from proceeding further upstream to spawn. The project was completed, from initial site investigation through engineering assessment and final design, in just six months. The dam removal helped to restore historic fish migrations in the Farmington River (including the American shad) and increase recreation opportunities.

Wild & Scenic Rivers Act:

Credit: NPS.govAs of December 2014 (the last designation), the National 'Wild and Scenic' System protects 12,734 miles of 208 rivers in 40 states and the Commonwealth of Puerto Rico; this is a little more than one-quarter of 1% of the nation's rivers. By comparison, more than 75,000 large dams across the country have modified at least 600,000 miles, or about 17%, of American rivers. In honor of the 50th anniversary of the Act and in an effort to designate many more miles of river as ‘Wild and Scenic,’ four federal agencies and four nonprofit groups are coordinating nationwide events and outreach. Managing agencies are the Bureau of Land Management, Fish and Wildlife ServiceForest Service, and National Park Service, along with American RiversAmerican WhitewaterRiver Network and River Management Society. Go here for more info: www.wildandscenicrivers50.us.
To learn more about our work to restore and preserve the Musconetcong River and its watershed, click here. [post_title] => New Video Celebrates 50th Anniversary of Wild & Scenic Rivers Act [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => wild-and-scenic-rivers [to_ping] => [pinged] => [post_modified] => 2025-11-04 02:15:54 [post_modified_gmt] => 2025-11-04 02:15:54 [post_content_filtered] => [post_parent] => 0 [guid] => http://www.princetonhydro.com/blog/?p=1511 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 2 [filter] => raw ) ) [post_count] => 10 [current_post] => -1 [before_loop] => 1 [in_the_loop] => [post] => WP_Post Object ( [ID] => 18009 [post_author] => 1 [post_date] => 2025-08-07 19:26:22 [post_date_gmt] => 2025-08-07 19:26:22 [post_content] =>

We're pleased to announce the release of the "New Jersey Nature-Based Solutions: Planning, Implementation, and Monitoring Reference Guide," a free resource that provides a comprehensive roadmap to incorporating nature-based solutions (NBS) into infrastructure, construction, restoration, and resilience projects across the state.

Created by the Rutgers University New Jersey Climate Change Resource Center with support from The Nature Conservancy in New Jersey, the guide compiles current research, case studies, best practices, practical tools, science-based strategies, and funding resources to "inform and empower readers to implement and seek funding for NBS."

Click here to view and download the guide now.


Inside the Guide

As the guide states, "nature-based solutions (NBS) are defined as actions to protect, sustainably manage, and restore natural and modified ecosystems that address societal challenges effectively and adaptively, simultaneously benefiting people and nature." (IUCN 2024)

Whether you're a municipal planner, community leader, contractor, public- or private-sector professional, or an academic, new to NBS or experienced in large-scale restoration projects, the guide offers value at every level with practical instruction that spans the full project lifecycle, from planning and permitting to funding and long-term monitoring. While the content is tailored to New Jersey's diverse landscapes, the guide's insights and approaches are broadly applicable to regions with similar ecosystems, from Massachusetts to Virginia.

The guide equips readers with:
  • A foundational understanding of how to plan and apply NBS in a variety of settings, from urban spaces to coastal habitats to inland farmland.
  • An introduction to cost-benefit analysis, including the basics of benefit transfer methodology and its role in justifying funding proposals.
  • A comprehensive toolbox, including policy and permitting guidance, project examples, datasets, and funding and monitoring resources.
  • In-depth profiles of five NBS categories: Bioretention Systems, Coastal Habitats, Regenerative Land Management, Stream Restoration, and Urban Forestry. Each category includes specific techniques like dam removal, living shorelines, and rain gardens.
 

The guide also includes insights on how to address equity considerations and foster meaningful community engagement, helping users implement NBS that are both impactful and inclusive.

Princeton Hydro was proud to contribute technical expertise to this important effort. Our Director of Restoration & Resilience, Christiana L. Pollack, CERP, CFM, GISP, participated on the guide's steering committee, and our team provided informational resources, including content and case studies on invasive species management, wetland and floodplain enhancement, and dam and culvert removal to restore rivers and improve fish passage. These contributions along with those from many other participants, reflect the collaborative nature of the guide and the collective commitment to advancing NBS across the state.

[gallery link="none" columns="2" size="large" ids="18015,18014"]

Sections at a Glance

The guide's easy-to-follow format includes four key sections:

  • Section 1: Setting the Stage - Introduces the purpose of the guide, its intended users, and how to easily navigate its contents.
  • Section 2: Planning for Nature-Based Solutions - Covers essential planning considerations, including selecting a planning horizon, aligning with local land use plans, permitting, funding, community engagement, equity, adaptive management, benefit-cost analysis, and climate change resilience.
  • Section 3: Nature-Based Solutions Profiles - Provides a detailed look at NBS strategies, including their intended uses, implementation techniques, primary benefits and co-benefits, and the specific environmental hazards they help address (i.e., sea level rise, wildfire, inland flooding, etc.)
  • Section 4: Appendix - Includes a project planning checklist, case studies, a glossary, references, and links to helpful resources, tools, and data.

Whether you're just beginning to conceptualize a project or deep into project implementation, this guide is an invaluable addition to your toolbox. We encourage you to explore, download, and share it widely! Click here to access the guide now.

Webinars and outreach events are currently being planned as part of a broader effort to build awareness and support the guide's use. Stay tuned for future announcements. To learn more about the Rutgers University New Jersey Climate Change Resource Center, click here. [post_title] => New Resource: A Comprehensive Guide to Nature-Based Solutions in New Jersey [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => guide-to-nature-based-solutions-in-new-jersey [to_ping] => [pinged] => [post_modified] => 2025-08-07 19:28:46 [post_modified_gmt] => 2025-08-07 19:28:46 [post_content_filtered] => [post_parent] => 0 [guid] => https://princetonhydro.com/?p=18009 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [comment_count] => 0 [current_comment] => -1 [found_posts] => 15 [max_num_pages] => 2 [max_num_comment_pages] => 0 [is_single] => [is_preview] => [is_page] => [is_archive] => 1 [is_date] => [is_year] => [is_month] => [is_day] => [is_time] => [is_author] => [is_category] => 1 [is_tag] => [is_tax] => [is_search] => [is_feed] => [is_comment_feed] => [is_trackback] => [is_home] => [is_privacy_policy] => [is_404] => [is_embed] => [is_paged] => [is_admin] => [is_attachment] => [is_singular] => [is_robots] => [is_favicon] => [is_posts_page] => [is_post_type_archive] => [query_vars_hash:WP_Query:private] => 4f4f6f216e88e827c56f540829b4996a [query_vars_changed:WP_Query:private] => 1 [thumbnails_cached] => [allow_query_attachment_by_filename:protected] => [stopwords:WP_Query:private] => [compat_fields:WP_Query:private] => Array ( [0] => query_vars_hash [1] => query_vars_changed ) [compat_methods:WP_Query:private] => Array ( [0] => init_query_flags [1] => parse_tax_query ) [query_cache_key:WP_Query:private] => wp_query:b63ed87cd38e0ea2fb4dfdf50382b16f:0.51641500 17623729990.50734400 1762372999 )

Category: Stream Restoration

archive
 
Topics
Select Topics
Posted on August 07, 2025

New Resource: A Comprehensive Guide to Nature-Based Solutions in New Jersey

Popular Topics

Company News

Engineering

Environmental Action

Environmental Services

Flood Mitigation

Invasive Species Management

Lake and Pond Management

Natural Resource Management

Stormwater Management

Stream Restoration