search
WP_Query Object
(
    [query] => Array
        (
            [category_name] => lake-restoration
        )

    [query_vars] => Array
        (
            [category_name] => lake-restoration
            [error] => 
            [m] => 
            [p] => 0
            [post_parent] => 
            [subpost] => 
            [subpost_id] => 
            [attachment] => 
            [attachment_id] => 0
            [name] => 
            [pagename] => 
            [page_id] => 0
            [second] => 
            [minute] => 
            [hour] => 
            [day] => 0
            [monthnum] => 0
            [year] => 0
            [w] => 0
            [tag] => 
            [cat] => 38
            [tag_id] => 
            [author] => 
            [author_name] => 
            [feed] => 
            [tb] => 
            [paged] => 1
            [meta_key] => 
            [meta_value] => 
            [preview] => 
            [s] => 
            [sentence] => 
            [title] => 
            [fields] => all
            [menu_order] => 
            [embed] => 
            [category__in] => Array
                (
                    [0] => 34
                )

            [category__not_in] => Array
                (
                )

            [category__and] => Array
                (
                )

            [post__in] => Array
                (
                )

            [post__not_in] => Array
                (
                )

            [post_name__in] => Array
                (
                )

            [tag__in] => Array
                (
                )

            [tag__not_in] => Array
                (
                )

            [tag__and] => Array
                (
                )

            [tag_slug__in] => Array
                (
                )

            [tag_slug__and] => Array
                (
                )

            [post_parent__in] => Array
                (
                )

            [post_parent__not_in] => Array
                (
                )

            [author__in] => Array
                (
                )

            [author__not_in] => Array
                (
                )

            [search_columns] => Array
                (
                )

            [ignore_sticky_posts] => 
            [suppress_filters] => 
            [cache_results] => 1
            [update_post_term_cache] => 1
            [update_menu_item_cache] => 
            [lazy_load_term_meta] => 1
            [update_post_meta_cache] => 1
            [post_type] => 
            [posts_per_page] => 10
            [nopaging] => 
            [comments_per_page] => 5
            [no_found_rows] => 
            [order] => DESC
        )

    [tax_query] => WP_Tax_Query Object
        (
            [queries] => Array
                (
                    [0] => Array
                        (
                            [taxonomy] => category
                            [terms] => Array
                                (
                                    [0] => lake-restoration
                                )

                            [field] => slug
                            [operator] => IN
                            [include_children] => 1
                        )

                    [1] => Array
                        (
                            [taxonomy] => category
                            [terms] => Array
                                (
                                    [0] => 34
                                )

                            [field] => term_id
                            [operator] => IN
                            [include_children] => 
                        )

                )

            [relation] => AND
            [table_aliases:protected] => Array
                (
                    [0] => ph_term_relationships
                    [1] => tt1
                )

            [queried_terms] => Array
                (
                    [category] => Array
                        (
                            [terms] => Array
                                (
                                    [0] => lake-restoration
                                )

                            [field] => slug
                        )

                )

            [primary_table] => ph_posts
            [primary_id_column] => ID
        )

    [meta_query] => WP_Meta_Query Object
        (
            [queries] => Array
                (
                )

            [relation] => 
            [meta_table] => 
            [meta_id_column] => 
            [primary_table] => 
            [primary_id_column] => 
            [table_aliases:protected] => Array
                (
                )

            [clauses:protected] => Array
                (
                )

            [has_or_relation:protected] => 
        )

    [date_query] => 
    [queried_object] => WP_Term Object
        (
            [term_id] => 38
            [name] => Lake Restoration
            [slug] => lake-restoration
            [term_group] => 0
            [term_taxonomy_id] => 38
            [taxonomy] => category
            [description] => 
            [parent] => 0
            [count] => 52
            [filter] => raw
            [term_order] => 12
            [cat_ID] => 38
            [category_count] => 52
            [category_description] => 
            [cat_name] => Lake Restoration
            [category_nicename] => lake-restoration
            [category_parent] => 0
        )

    [queried_object_id] => 38
    [request] => SELECT SQL_CALC_FOUND_ROWS  ph_posts.ID
					 FROM ph_posts  LEFT JOIN ph_term_relationships ON (ph_posts.ID = ph_term_relationships.object_id)  LEFT JOIN ph_term_relationships AS tt1 ON (ph_posts.ID = tt1.object_id)
					 WHERE 1=1  AND ( 
  ph_term_relationships.term_taxonomy_id IN (38) 
  AND 
  tt1.term_taxonomy_id IN (34)
) AND ((ph_posts.post_type = 'post' AND (ph_posts.post_status = 'publish' OR ph_posts.post_status = 'acf-disabled')))
					 GROUP BY ph_posts.ID
					 ORDER BY ph_posts.menu_order, ph_posts.post_date DESC
					 LIMIT 0, 10
    [posts] => Array
        (
            [0] => WP_Post Object
                (
                    [ID] => 17677
                    [post_author] => 1
                    [post_date] => 2025-06-18 12:59:00
                    [post_date_gmt] => 2025-06-18 12:59:00
                    [post_content] => 

The Borough of Harveys Lake, in partnership with Princeton Hydro, launched a new interactive ArcGIS StoryMap that chronicles the community’s long-standing commitment to water quality and showcases a recently completed pilot project aimed at reducing stormwater nutrient pollution.

This engaging digital resource combines maps, multimedia, charts, diagrams, and narrative storytelling to bring the science and history of Harveys Lake’s multi-year environmental restoration efforts to life. It explores both the local impact and the broader significance of these initiatives, drawing connections to similar water quality challenges throughout the Chesapeake Bay Watershed.

Designed with accessibility in mind, the StoryMap invites users to explore project sites, restoration progress, and technical details without the need for specialized GIS training or software. Interactive features, such as zoomable maps, clickable pins, and site-specific details, offer an intuitive, user-friendly experience.

More than just a visualization tool, the StoryMap serves as a community-education and engagement platform. It highlights how local stormwater management strategies, like those implemented at Harveys Lake, can drive positive, region-wide change, underscoring the vital role of place-based solutions in improving watershed health across the Chesapeake Bay region.


 

What You’ll Discover Inside the StoryMap

The StoryMap begins with an exploration of the Chesapeake Bay Watershed—one of the most ecologically and economically significant estuaries in the United States. This region faces complex environmental challenges, including nutrient pollution, habitat loss, and climate change impacts. Over the past several decades, a wide range of stakeholders have engaged in coordinated restoration efforts to protect and improve water quality across the watershed.

Using interactive maps, expandable sections, and rich visuals, this introductory portion of the StoryMap places Harveys Lake in a broader regional context. It sets the stage for understanding how local action, such as nutrient reduction at Harveys Lake, plays a critical role in supporting the health of the entire Chesapeake Bay ecosystem.

The next section, “Harveys Lake: A Case Study,” highlights the Borough's ongoing dedication to protecting the lake and improving water quality through science-based solutions and collaborative efforts. The StoryMap provides:

  • A pictorial, historical timeline of water quality management at Harveys Lake;
  • An interactive Restoration Progress Map with clickable project sites;
  • Notable milestones in reducing nutrient pollution and managing stormwater; and
  • Restoration project highlights, complete with historical maps, illustrations, and photos

The final section of the StoryMap dives into a 2025 pilot initiative that used biochar and EutroSORB® filter media to reduce dissolved phosphorus and total nitrogen from stormwater runoff. Organized into subsections—Project Information, Methodology, Results and Discussion, Pollinator Garden, and Future Implications—the StoryMap offers a detailed look at this innovative nutrient-reduction strategy and its potential for replication across the Chesapeake Bay watershed.

In addition to detailing the pilot project, this section also spotlights the creation of a native pollinator garden, planted using the spent biochar as fertilizer. This closed-loop approach not only reinforces the project’s long-term ecological value but also demonstrates how thoughtful design can deliver multiple environmental benefits while cultivating a vibrant community-oriented space that supports local biodiversity.

To extend the impact of this initiative, the StoryMap was provided to the Harveys Lake Borough Environmental Advisory Council (EAC) and is publicly accessible via the Borough’s website. A QR code linking to the StoryMap is also featured on the new pollinator garden sign at the project site, allowing visitors to engage with the digital experience in real time.

Click here to explore the StoryMap now!

By blending maps, visuals, and interactive storytelling, this StoryMap serves as both an educational tool and a digital archive of the latest Harveys Lake water quality project and its long history of stewardship. We invite you to explore this engaging platform and see firsthand how thoughtful, science-based restoration is shaping a healthier future for Harveys Lake, and the entire Chesapeake Bay watershed.


This material is based on work supported by the U.S. Environmental Protection Agency (Assistance Agreement No. CB96358101) and the National Fish and Wildlife Foundation’s Chesapeake Bay Stewardship Fund, which supports community-based strategies to conserve and restore the Chesapeake Bay’s natural resources. Click here to learn more information about the grant program.

Click here to learn more about Harveys Lake or how to get involved in a Harveys Lake Borough Environmental Advisory Council stewardship program.

[post_title] => NEW Interactive ArcGIS StoryMap Showcases Harveys Lake’s Legacy of Water Quality Leadership [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => new-interactive-arcgis-storymap-showcases-harveys-lakes-legacy-of-water-quality-leadership [to_ping] => [pinged] => [post_modified] => 2025-07-14 15:51:12 [post_modified_gmt] => 2025-07-14 15:51:12 [post_content_filtered] => [post_parent] => 0 [guid] => https://princetonhydro.com/?p=17677 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [1] => WP_Post Object ( [ID] => 5284 [post_author] => 3 [post_date] => 2020-07-28 11:34:38 [post_date_gmt] => 2020-07-28 11:34:38 [post_content] =>

This month we are launching the first blog in our Client Spotlight Blog Series! Each spotlight will feature one of our important client relationships in order to give you an inside look at our collaboration. We pride ourselves on forming strong ties with organizations that share our values of creating a better future for people and our planet. So we are excited to be able to share snippets of the incredible teamwork we've been able to accomplish over the years!

At Princeton Hydro, we value our client relationships, as the collaborative work we are able to complete with organizations like the Lake Hopatcong Foundation (LHF) reaches exponentially further than anything we could complete alone. One of the reasons our organizations have such strong symmetry is that our values align and complement each other.

As their mission states,”Lake Hopatcong Foundation dedicates itself to protecting the lake environment and enhancing the lake experience, bringing together public and private resources to encourage a culture of sustainability and stewardship on and around New Jersey’s largest lake, for this and future generations.” We are so proud to help protect New Jersey’s largest lake with LHF.

We have been working with LHF since its inception in 2012, which is why we are excited to feature them in our first client spotlight blog. We spoke with Jessica Murphy, President/Executive Director of the Foundation, and Donna Macalle-Holly, Grants and Program Director, to give you an insider look at the organization:

Q: What makes the Lake Hopatcong Foundation unique?

A: The Lake Hopatcong Foundation is unique in that our mission spans a wide spectrum of activities. In addition to projects that focus on the lake environment, we also take on initiatives that support education, safety, community-building, recreation, and even arts and culture. The lake is split between two counties and four towns, so bringing the community together for all these things is very important to us, in addition to making sure the lake itself is healthy.

Q: What does the Lake Hopatcong Foundation value?

A: During our strategic planning process, the board and staff developed a list of values that we go back to when operating and making decisions. They are:

  • Collaboration - We operate in a way that brings people together throughout the community.
  • Action - We are committed to our mission, moving quickly to take on projects that have an impact on and around the lake.
  • Sustainability - We are forward-thinking when making decisions, taking future generations into account when considering projects and initiatives.
  • Warmth - We are a friendly face to the community, showing the best of ourselves and bringing out the best in the people of Lake Hopatcong.
Q: How long have you been working with Princeton Hydro?

When we first started the Lake Hopatcong Foundation in 2012, Dr. Fred Lubnow was kind enough to do a water quality presentation as one of our very first events as an organization! In the years since, we’ve worked closely with Princeton Hydro, particularly in a support role as they conduct business with the Lake Hopatcong Commission. The Lake Hopatcong Commission is a state entity created in 2001 through the Lake Hopatcong Protection Act dedicated to protecting the water quality of Lake Hopatcong and to preserve the natural, scenic, historical and recreational resources of the lake. LHF funded Princeton Hydro’s water quality monitoring during the years that the Commission ran out of money

Q: What types of services has Princeton Hydro provided to your organization?

A: In addition to water quality monitoring on the lake, Princeton Hydro has led volunteer training for us in our efforts to prevent the spread of invasive species and to teach local students in our spring field trip program. Dr. Lubnow has also worked alongside us in applying for grants and in providing insight and expertise for other environmental projects at the lake, including helping guide the installation of floating wetland islands, and helping our NJ Lakes Group to work with NJDEP on Harmful Algal Bloom (HAB) policies. He even did a quick fact check on our children’s book, Lake Hopatcong Speaks Out, before we published it!

Q: Do you have a favorite or most memorable project we’ve worked on together?

A: The days that Chris Mikolajczyk spent teaching our volunteers about how to find and remove water chestnuts from the lake were a lot of fun, particularly because we were kayaking on the lake for it! And, also because the kayak we provided Chris was too small for him, and he had to scrunch in to fit, but he was a trouper and paddled on.

Q: What are some exciting things your organization is working on right now?

A: We are working closely with Princeton Hydro and LHC on a series of projects, funded through NJDEP grants, LHC, LHF, and local governments, that we hope will prevent and mitigate HABs on the lake. Those projects include aeration systems, phosphorus-locking technologies, and stormwater infrastructure upgrades. We’re excited to see how effective each can be. Also, on August 7 at 12:30, Dr. Lubnow will be presenting the Lake Hopatcong water quality monitoring project results at LHF’s “Thirst for Knowledge” lunch-and-learn webinar series, which was created to share information and discuss topics of interest to our lake community. To register for the free webinar, visit lakehopatcongfoundation.org.

[caption id="attachment_5249" align="aligncenter" width="584"]Photo by: Colleen Lyons of the Lake Hopatcong Commission  [/caption] Q: What drives you to want to go to work every day?

A: All of us at Lake Hopatcong Foundation have a passion for this lake and want to see it protected; we have a love for the community that surrounds it, too. Jessica Murphy grew up on the lake, met her husband here, and now is raising her four children to love the lake, too. Donna Macalle-Holly also met her husband on Lake Hopatcong, lives on the lake, and has worked professionally to take care of it for nearly two decades. Everyone in our office has made memories on Lake Hopatcong and developed friendships with those who live and work here. Those personal connections fuel our passion for what we do.

Q: How can Princeton Hydro support you/your organization in the future?

A: Continue to be the incredible resource you are! We are so fortunate to have the deep knowledge and expertise that Fred and your entire team provide, and we look forward to continuing to work together in the years ahead.

[caption id="attachment_5286" align="aligncenter" width="576"]  [/caption]

Some recent projects we are/have been working on with LHF include installing biochar bags to help control phosphorus levels and applying Phoslock to help mitigate harmful algal blooms! Because of our history working on Lake Hopatcong, we too have gained a passion for protecting and maintaining this lake. This incredibly important work could not be done without the genuine devotion and dedication from the Lake Hopatcong Foundation. We look forward to continuing great work with this incredible group!

[post_title] => Client Spotlight: Lake Hopatcong Foundation [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => client-spotlight-lake-hopatcong-foundation [to_ping] => [pinged] => [post_modified] => 2025-01-02 13:53:20 [post_modified_gmt] => 2025-01-02 13:53:20 [post_content_filtered] => [post_parent] => 0 [guid] => https://www.princetonhydro.com/blog/?p=5284 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [2] => WP_Post Object ( [ID] => 1615 [post_author] => 3 [post_date] => 2020-03-20 12:14:14 [post_date_gmt] => 2020-03-20 12:14:14 [post_content] => Photo from: New York State Department of Environmental Conservation, water chestnut bed at Beacon Spring is officially here! Tulips will soon be emerging from the ground, buds blossoming on trees and, unfortunately, invasive plant species will begin their annual growing cycle. No type of habitat or region of the globe is immune to the threat of invasive species (“invasives”). Invasives create major impacts on ecosystems throughout the world, and freshwater ecosystems and estuaries are especially vulnerable because the establishment of such species in these habitats is difficult to contain and reverse. This blog provides an introduction to invasive aquatic species, including information that will help you prevent the spread of invasives in the waterways of your community.
Defining Invasive Species
Invasive species can be defined as non-native occurring in an ecosystem that is outside its actual natural or native distributional range. Although the colonization of an ecosystem by non-native species can occur naturally, it is more often a function of human intervention, both deliberate and accidental. For aquatic ecosystems some species have become established as a result of the aquarium trade, fish culture practices and/or transport of plants and animals in the bilge and ballast water of trans-oceanic shipping vessels. One of the primary reasons invasives are able to thrive, spread rapidly, and outcompete native species is that the environmental checks and predators that control these species in their natural settings are lacking in the ecosystems and habitat in which they become introduced. The subsequent damages they cause occur on many ecological levels including competition for food or habitat (feeding, refuge and/or spawning), direct predation and consumption of native species, introduction of disease or parasites, and other forms of disruption that lead to the replacement of the native species with the invasive species. As a result, invasives very often cause serious harm to the environment, the economy, and even human health. A prominent example is the Emerald Ash Borer, a non-native, invasive beetle that is responsible for the widespread death of ash trees. As noted above, there are a large number of aquatic invasive species. Some of the more commonly occurring non-native aquatic plant species that impact East Coast lakes, ponds and reservoirs include:
Understanding How Invasives Spread
Either intentionally or unintentionally, people have helped spread invasives around the globe. This is not a recent phenomenon but rather something that has been occurring for centuries. “Intentional introductions,” the deliberate transfer of nuisance species into a new environment, can involve a person pouring their home aquarium into a lake or deliberate actions intended to improve the conditions for various human activities, for example, in agriculture, or to achieve aesthetics not naturally available. Photo by: Tom Britt/CC Flickr, zebra Mussels adhered to a boat propeller“Unintentional introductions” involve the accidental transfer of invasives, which can happen in many ways, including aquatic species attached to the hull of boats or contained in bilge and ballast water. A high-profile example is the introduction of zebra mussels to North America. Native to Central Asia and parts of Europe, zebra mussels accidentally arrived in the Great Lakes and Hudson River via cargo ships traveling between the regions. The occurrence, density, and distribution of Zebra mussels occurred at an alarming rate, with the species spreading to 20 states in the United States and to Ontario and Quebec in Canada. Due to their reproductive fecundity and filter-feeding ability, they are considered the most devastating aquatic invasive species to invade North American fresh waters. They alter and diminish the plankton communities of the lakes that they colonize leading to a number of cascading trophic impacts that have especially negative consequences on fisheries. Zebra mussel infestations have also been linked to increased cyanobacteria (bluegreen algae) blooms and the occurrence of harmful algae blooms (HABs) that impact drinking water quality, recreational use, and the health of humans, pets, and livestock. Additionally, higher than average temperatures and changes in rain and snow patterns caused by climate change further enable some invasive plant species to move into new areas. This is exemplified by the increased northly spread of hydrilla (Hydrilla verticillate), a tropical invasive plant species that has migrated since its introduction in Florida in the 1950s to lakes, rivers, and reservoirs throughout the U.S. Regardless of how any of these invasive species first became established, the thousands of terrestrial and aquatic invasive species introduced into the U.S. have caused major ecological, recreational and economic impacts.
Measuring the Impacts of Invasives
After habitat loss, invasive, non-native species are the second largest threat to biodiversity. According to The Nature Conservancy, “Invasive species have contributed directly to the decline of 42% of the threatened and endangered species in the United States. The annual cost to the nation’s economy is estimated at $120 billion a year, with over 100 million acres (an area roughly the size of California) suffering from invasive plant infestations. Invasive species are a global problem — with the annual cost of impacts and control efforts equaling 5% of the world’s economy.” Of the $120 billion, about $100 million per year is spent on aquatic invasive plant control to address such deleterious issues as:
  • Human health (West Nile Virus, Zika Virus)
  • Water quality impacts (Canada geese)
  • Potable water supplies (Zebra mussel)
  • Commercial fisheries (Snake head, lamprey, Eurasian ruffe, round goby)
  • Recreational activities (Eurasian watermilfoil, water chestnut, hydrilla)
  • Biodiversity (Purple loosestrife, common reed, Japanese knotweed)
Invasive species can change the food web in an ecosystem by destroying or replacing native food sources. As the National Wildlife Federation explains, “The invasive species may provide little to no food value for native wildlife. Invasive species can also alter the abundance or diversity of species that are important habitat for native wildlife. Additionally, some invasive species are capable of changing the conditions in an ecosystem, such as changing soil chemistry...”
Addressing Invasives
Our native biodiversity is an irreplaceable and valuable treasure. Through a combination of prevention, early detection, eradication, restoration, research and outreach, we can help protect our native heritage from damage by invasive species.
What Can We Do?
  • Reduce the spread
  • Routinely monitor
  • Document and report
  • Spread the word
Reducing the Spread:
The best way to fight invasive species is to prevent them from occurring in the first place. There are a variety of simple things each of us can do to help stop the introduction and spread of invasives.
  • Plant native plants on your property and remove any invasive plants. Before you plant anything, verify with your local nursery and check out this online resource for help in identifying invasive plants.
  • Thoroughly wash your gear and watercraft before and after your trip. Invasives come in many forms – plants, fungi and animals – and even those of microscopic size can cause major damage.
  • Don't release aquarium fish and plants, live bait or other exotic animals into the wild. If you plan to own an exotic pet, do your research to make sure you can commit to looking after it. Look into alternatives to live bait.
Monitoring:
Invasive plant monitoring is one of the most valuable site­-level activities people can support. Contact your local watershed organizations to inquire about watershed monitoring volunteer opportunities. For example, the Lake Hopatcong “Water Scouts” program was established to seek out and remove any instances of the invasive water chestnut species. If you are a lake or watershed manager, the best way to begin an invasive plant monitoring project is with an expert invasive plant survey to determine which invasives are most likely to be problematic in your watershed and identify the watershed’s most vulnerable areas. Contact us to learn more.
Documenting and Reporting:
It’s important to learn to identify invasive species in your area and report any sightings to your county extension agent or local land manager. For example, in New Jersey there is the Invasive Species Strike Team that tracks the spread of terrestrial and aquatic invasives and works with local communities in the management of these species. Additionally, consider developing a stewardship plan for your community to help preserve its natural resources. Princeton Hydro’s team of natural resource scientists can help you get the ball rolling by preparing stewardship plans focused on controlling invasive species and protecting the long-term health of open spaces, forests habitats, wetlands, and water-quality in your community.
Spreading the word:
Many people still don’t understand the serious implications of invasive species. Education is a crucial step in stopping the spread of invasives, which is why it’s so important to talk with your neighbors, friends and family about the hazards and ecological/economic impacts of invasive species. Also consider talking with your community lake or watershed manager about hosting an educational workshop where experts can share their knowledge about invasives specific to your area and how best to address them.   We encourage you to share this article and spread your invasive species knowledge so that together we can help stop the introduction and spread of invasive species.

[post_title] => Understanding and Addressing Invasive Species [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => invasive-species [to_ping] => [pinged] => [post_modified] => 2025-06-25 16:14:40 [post_modified_gmt] => 2025-06-25 16:14:40 [post_content_filtered] => [post_parent] => 0 [guid] => https://www.princetonhydro.com/blog/?p=1615 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 1 [filter] => raw ) [3] => WP_Post Object ( [ID] => 5843 [post_author] => 3 [post_date] => 2019-09-10 23:44:50 [post_date_gmt] => 2019-09-10 23:44:50 [post_content] =>
NorthJersey.com File Photo
The Borough of Ringwood initiates a unique public-private partnership with four community lake associations to holistically manage watershed health related to private lakes

Providing drinking water to millions of New Jersey residents, the Borough of Ringwood is situated in the heart of the New Jersey Highlands and is home to several public and private lakes that sit within the Ramapo Mountains. In order to take an active role in the management of these natural resources within multiple watersheds, the Borough of Ringwood will be the first municipality in the state of New Jersey to take a regional approach to private lake management through a public-private partnership (PPP) with four lake associations.

The four private sets of lakes targeted in the plan— Cupsaw, Erskine, Skyline, and Riconda —were created by the Ringwood Company in the 1920s and 30s to promote the municipality as a hunting and fishing retreat and a summer resort. They currently provide private beach clubs and recreational opportunities for surrounding homeowners who can opt to join as members.

Map Showing the Four Private Lakes in the PPP holistic watershed management plan Generally, the health of a private lake is funded and managed in isolation by the governing private lake association group. Ringwood Borough Manager Scott Heck’s concept was to design and implement a municipal-wide holistic watershed management plan to use as a tool to identify capital priorities to enhance water quality throughout the community. Mr. Heck hired Princeton Hydro, a leader in ecological and engineering consulting to design this innovative project.

Cupsaw Lake “This regional approach to lake and watershed management is a no-brainer from a scientific, technical, and community point of view. Historically, however, municipal governments and private lake associations have rarely partnered to take such an approach,” said Princeton Hydro’s Senior Project Manager, Christopher Mikolajczyk, who is a Certified Lake Manager and lead designer for this initiative. “We’re thrilled to work with the Borough of Ringwood and the New Jersey Highlands Council to set a precedent for this logical watershed management strategy, which opens the door for future public-private partnerships.”

As part of this project, a Watershed-based Assessment will be completed. The following objectives will be met:

  1. Identification, quantification, and prioritization of watershed-based factors which may cause eutrophication;
  2. Identification of watershed management measures needed to address general causes of water quality impairments;
  3. Identification of the relative cost of the recommended general watershed management measures;
  4. The generation of a schedule, based on priority, for the implementation of the recommended watershed management measures; and
  5. A general assessment report will be authored at the conclusion of the study.

Skyline Lake in the FallFunding for the Watershed-based Assessment for the Lakes of the Borough of Ringwood is being provided by the New Jersey Highlands Council through a grant reimbursement to the Borough of Ringwood. As part of the PPP , the Borough of Ringwood will review and where feasible implement any suggested actions surrounding the lakes. The final report, provided to the Borough by Princeton Hydro, will identify and prioritize watershed management techniques and measures that are best suited for immediate and long-term implementation, as well as provide cost projections for implementation in both the short-term and long-term.

This integrated approach to watershed and lake management is an important preventative measure to improve water quality for millions of people and reduce potential future incidents of aquatic invasive species and harmful algal blooms throughout the region.

For more information about the PPP, check out today's NorthJersey.com news story. To learn more about Princeton Hydro's lake and pond management services, go here: http://bit.ly/pondlake.

[post_title] => BOROUGH OF RINGWOOD INITIATES FIRST-IN-STATE REGIONAL APPROACH TO LAKE MANAGEMENT THROUGH PUBLIC-PRIVATE PARTNERSHIP [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => borough-of-ringwood [to_ping] => [pinged] => [post_modified] => 2025-05-14 21:37:02 [post_modified_gmt] => 2025-05-14 21:37:02 [post_content_filtered] => [post_parent] => 0 [guid] => https://www.princetonhydro.com/blog/?p=4148 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [4] => WP_Post Object ( [ID] => 5838 [post_author] => 3 [post_date] => 2019-08-08 16:13:09 [post_date_gmt] => 2019-08-08 16:13:09 [post_content] =>

Measuring 630+ acres, Harveys Lake, located in Luzerne County, Pennsylvania, just northeast of Wilkes-Barre, is the largest natural lake (by volume) within the Commonwealth of Pennsylvania, and is one of the most heavily used lakes in the area. It is classified as a high quality - cold water fishery habitat (HQ-CWF) and is designated for protection under the classification.

Since 2002, The Borough of Harveys Lake and the Harveys Lake Environmental Advisory Council  has worked with Princeton Hydro on a variety of lake management efforts focused around maintaining high water quality conditions, strengthening stream banks and shorelines, and managing stormwater runoff.

Successful, sustainable lake management requires identifying and correcting the cause of eutrophication as opposed to simply reacting to the symptoms of eutrophication (algae and weed growth). As such, we collect and analyze data to identify the problem sources and use these scientific findings to develop a customized management plan that includes a combination of biological, mechanical, and source control solutions. Here are some examples of the lake management strategies we've utilized for Harveys Lake:

 
Floating Wetland Islands

Floating Wetland Islands (FWIs) are an effective alternative to large, watershed-based natural wetlands. Often described as self-sustaining, FWIs provide numerous ecological benefits. They assimilate and remove excess nutrients, like nitrate and phosphorous, that could fuel algae growth; provide habitat for fish and other aquatic organisms; help mitigate wave and wind erosion impacts; and provide an aesthetic element. FWIs are also highly adaptable and can be sized, configured, and planted to fit the needs of nearly any lake, pond, or reservoir.

Five floating wetland islands were installed in Harveys Lake to assimilate and reduce nutrients already in the lake. The islands were placed in areas with high concentrations of nutrients, placed 50 feet from the shoreline and tethered in place with steel cables and anchored. A 250-square-foot FWI is estimated to remove up to 10 pounds of nutrients per year, which is significant when it comes to algae.

Princeton Hydro worked with the Harveys Lake Environmental Advisory Council and the Borough of Harveys Lake to obtain funding for the FWIs through the Pennsylvania Department of Environmental Protection (PADEP).

 
Streambank & Shoreline Stabilization

The shoreline habitat of Harveys Lake is minimal and unusual in that a paved road encompasses the lake along the shore with most of the homes and cottages located across the roadway, opposite the lake. In addition to the lake being located in a highly populated area, the limited shoreline area adds to the challenges created by urban stormwater runoff.

Runoff from urban lands and erosion of streambanks and shorelines delivers nutrients and sediment to Harveys Lake. High nutrient levels in the lake contribute to algal blooms and other water quality issues. In order to address these challenges, the project team implemented a number of small-scale streambank and inlet stabilization projects with big impacts.

The work included the stabilization of the streambank downstream for Harveys Lake dam and along Harveys Creek, the design and installation of a riparian buffer immediately along the lake’s shoreline, and selective dredging to remove sediment build up in critical areas throughout the watershed.

 
Invasive Species Management

Hydrilla (Hydrilla verticillata), an aggressively growing aquatic plant, took root in the lake in 2014 and quickly infected 250 acres of the lake in a matter of three years. If left untreated, hydrilla will grow to the water’s surface and create a thick green mat, which prevents sunlight from reaching native plants, fish and other organisms below. The lack of sunlight chokes out all aquatic life.

In order to prevent hydrilla from spreading any further, Princeton Hydro and SePRO conducted an emergency treatment of the impacted area utilizing the systemic herbicide Sonar® (Fluridone), a clay-based herbicide. SonarOne, manufactured by SePRO, blocks hydrilla’s ability to produce chloroplasts, which in turn halts the photosynthetic process. The low-concentration herbicide does not harm fish, wildlife or people using the lake. Surveys conducted after the treatment showed it was working – the hydrilla had turned white and was dying off. Additional Sonar treatments followed and efforts to eradicate hydrilla in the lake continue.

Dr. Fred Lubnow, our Director of Aquatic Programs, estimates complete eradication of the aquatic plant could take around five years. Everyone can do their part in preventing the spread of this and other invasive species. Boaters and lake users must be vigilant and remove all vegetation from the bottom of watercrafts and trailers.

 
Stormwater Best Management Practices (BMPs)

In 2009, Princeton Hydro developed a stormwater implementation plan (SIP) for Harveys Lake. The goal of the stormwater/watershed-based efforts was to reduce the lake’s existing annual total phosphorus load to be in full compliance with the established Total Maximum Daily Load (TMDL). This TMDL is related to watershed-based pollutant loads from total phosphorus (TP) and total suspended solids (TSS), which can contribute to algal blooms.

A number of structural urban runoff projects were implemented throughout the watershed. This includes the design and construction of two natural stream channel projects restoring 500 linear feet of tributaries and reducing the sediment and nutrient loads entering the lake. A series of 38 urban runoff BMPs, including nutrient separating devices and roadside infiltration, were installed in areas immediately adjacent to the lake to further reduce the loads of nutrients and other pollutants reaching the lake.

The photos below show a stormwater project that was completed in the Hemlock Gardens Section of the Watershed. Hemlock Gardens is a 28-acre section of land located in the southeastern portion of the watershed. It contains approximately 26 homes, has very steep slopes, unpaved dirt roads, and previously had no stormwater infrastructure in place.

Two structural stormwater BMPs were installed:

  • A nutrient separating baffle box, which utilizes a three-chamber basin with screens to collect leaf litter, grass clippings and trash
  • A water polishing unit that provides a platform for secondary runoff treatment

In 1994, Harveys Lake was identified as “impaired” by PADEP due to large algal blooms. In 2014, Harveys Lake was removed from the list of impaired waters. Project partners attribute the recovery of this lake to the stream restoration, urban runoff BMP implementation, and the use of in-lake nutrient reduction strategies.

The Harveys Lake Watershed Protection Plan Implementation Project proved that despite the lake being located in an urbanized watershed, it is possible to implement cost-effective green infrastructure and stormwater retrofit solutions capable of significantly decreasing pollutant loading to the lake.

To learn more about our lake and pond management services or schedule a consultation, visit: http://bit.ly/pondlake.

[post_title] => Managing Urban Stormwater Runoff and Revitalizing Natural Habitat at Harveys Lake [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => urban-stormwater-runoff-harveys-lake [to_ping] => [pinged] => [post_modified] => 2024-12-10 23:04:21 [post_modified_gmt] => 2024-12-10 23:04:21 [post_content_filtered] => [post_parent] => 0 [guid] => https://www.princetonhydro.com/blog/?p=4037 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [5] => WP_Post Object ( [ID] => 3856 [post_author] => 3 [post_date] => 2019-06-21 08:00:54 [post_date_gmt] => 2019-06-21 08:00:54 [post_content] =>

Did you know that lakes contain about 90% of all surface water on Earth, not counting the oceans? That’s a whole lot to appreciate! And, luckily Lakes Appreciation Month is right around the corner!

July 1 marks the beginning of Lakes Appreciation Month. To encourage active participation in this month-long celebration, we’re holding a #LakesAppreciation Instagram photo contest where you can show us how you appreciate lakes! The winner will receive a $100 Amazon gift card.

CONTEST DETAILS & GUIDELINES: 

We want to see how YOU appreciate lakes! Send us photos of yourself actively participating in lake appreciation. ?Make sure to read the contest guidelines and conditions listed below. Need some inspiration? Scroll down for a list of suggestions to get your creativity flowing.

HOW TO ENTER THE CONTEST:
  • During the month of July, get out on your local lakes and participate in an appreciation activity.
  • Snap a photo of yourself doing a lake appreciation activity and post it to Instagram. You must use this hashtag #LakesAppreciation in your caption and tag Princeton Hydro (@princeton_hydro) in the photo.
    • In order for us to view your entry and your photo to be eligible for the contest, your account or post must be public.
    • Entries must be submitted as regular posts on your profile in order to qualify, but we also encourage you to add the picture to your story!
PHOTO GUIDELINES:
Each Post Must Include the Following:
  • A lake photo
  • You actively participating in an appreciation activity
  • A caption explaining what you did and why you appreciate your lakes!
  • #LakesAppreciation
  • @princeton_hydro tagged

One lucky winner will be randomly selected on August 1, 2019. The selected winner will receive a $100 gift card to Amazon. We’ll reach out to you via social media to collect your email and address for prize distribution. If the winner does not respond within five working days with the appropriate information, we will select another winner at random. Good luck, everyone!

GETTING STARTED:

Not sure how to get started? We’ve got you covered with a few ideas! Here are 10 ways you can show your lake appreciation:

  1. Relax on the lake: Whether you enjoy swimming, relaxing on the shoreline, sailing, canoeing, or kayaking, there are countless ways you can get outside and enjoy your community lakes.
  2. Go fishing: There’s nothing quite like relaxing on the shoreline with a fishing pole in your hand. Whether you’re there to catch and release or want to take your catches home, fishing is a great way to unwind. Go get your license (if you’re above the age of 16), check your local fishing rules and regulations, and cast a line in your local lake!
  3. Break out the binoculars:  Lakes are great spots to go birding! Download the eBird app to track your bird sightings and see what fellow birders have reported in the area. Also, keep your eyes peeled for ospreys; New Jersey has an osprey conservation project with a map to track all the recent sighting reports.
  4. #TrashTag - Clean it up: One super quick and easy thing to do is clean up your local lake. You can get a small group of friends together or just go out on your own - no effort is too small! You’ll be able to immediately see the benefits of your actions when the trash-lined shore is clear. In addition to the Lakes Appreciation Photo contest tags, make sure you use #trashtag, a global viral cleanup challenge that shows people’s before and after pictures of their cleaning efforts so that you can be a part of that growing trend!
  5. Get involved with your local lake: You can help support your favorite lake by joining a lake or watershed association. As an organized, collective group, lake associations work toward identifying and implementing strategies to protect water quality and ecological integrity. Lake associations monitor the condition of the lake, develop lake management plans, provide education about how to protect the lake, work with the government entities to improve fish habitat, and much more.
  6. Remove invasive species: One of the most harmful elements of lake ecosystems are invasive species. So, by properly removing and discarding them, you can really help a lake to achieve its most desired state. A list of possible invasive species can be found here. For inspiration, check out this blog, written by our Senior Limnologist, Mike Hartshorne.
  7. Call on your inner-artist and draw a lake scene: All you need is a notepad, a pencil, and some spare time to let your imagination and creative skills take over. Does your lake have ducks? Are there people swimming? Is the sun rising or setting? Snap a picture of you with your art!
  8. Monitor and report algae blooms: With the BloomWatch App, you can help the U.S. Environmental Protection Agency understand where and
  9.  when potential harmful algae blooms (HABs) occur. HABs have the potential to produce toxins that can have serious negative impacts on the health of humans, pets, and our ecosystems. Learn more and download the app.
  10. Join the “Secchi Dip-In” contest: The “Secchi Dip-In” is an annual citizen science  event created by NALMS during which lake-goers and associations across North America use a simple Secchi disk to monitor the transparency or turbidity of their local waterway. Visit their website to find out how to join their contest!
  11. Create your own experience: Write a sonnet about one of your lake experiences. Snap a picture of you sitting out by the water’s edge. Share your favorite lake memory on social media. Collect shells. Play a round of SpikeBall or CanJam in the surrounding area. With permission from the lake owner, plant some native species around the water. The possibilities are endless for lake appreciation!

Still having trouble thinking of an activity to do? Visit the NALMS's website!

ADDITIONAL CONTEST CONDITIONS:

By submitting an entry (Photograph) via Instagram to Princeton Hydro’s 2019 #LakesAppreciation Month Contest, you agree to the following: You represent and warrant that:

  • You are the sole and exclusive author and owner of the Photograph submitted and all rights therein; and
  • You have the full and exclusive right, power, and authority to submit the Photograph; and
  • You irrevocably grant Princeton Hydro a non-exclusive, worldwide, royalty-free, perpetual license to use the Photograph in any manner related to the Contest, including all associated use, reproduction, distribution, sublicense, derivative works, and commercial and non-commercial exploitation rights in any and all media now known or hereafter invented, including, but not limited to public relations purposes, posting on social media accounts, and/or for company marketing materials; and
  • No rights in the Photograph have been previously granted to any person, firm, corporation or other entity, or otherwise encumbered such that the prior grant would limit or interfere with the rights granted to Princeton Hydro herein; and
  • No part of your Photograph defames or invades the privacy or publicity rights of any person, living or decreased, or otherwise infringes upon any third party’s copyright, trademark or other personal or property rights.

Check out the details and winner of last year's Lakes Appreciation Month contest:

[embed]https://www.princetonhydro.com/blog/lakes-appreciation-contest-winner/[/embed] :  

  [post_title] => Photo Contest! Show Your #LakesAppreciation on Instagram to Win $100 [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => lakes-appreciation-2019-contest [to_ping] => [pinged] => [post_modified] => 2025-03-07 12:54:03 [post_modified_gmt] => 2025-03-07 12:54:03 [post_content_filtered] => [post_parent] => 0 [guid] => https://www.princetonhydro.com/blog/?p=3856 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [6] => WP_Post Object ( [ID] => 3823 [post_author] => 3 [post_date] => 2019-06-20 14:47:40 [post_date_gmt] => 2019-06-20 14:47:40 [post_content] =>

The summer is upon us and Lakes Appreciation Month is right around the corner, what better time to pay a visit to and learn more about the lakes in your area.

Princeton Hydro conducts work on lakes throughout the Northeast to preserve, protect and improve water quality and ecological health, ensuring that your community lakes can be enjoyed now and into the future. Today, we’re putting the spotlight on Greenwood Lake:

Greenwood Lake, a 7-mile-long interstate lake that straddles the border of New York and New Jersey, is a popular recreation spot for residents and tourists of both states. Considered to be one of the top bass fishing lakes in New Jersey, Greenwood Lake is abundant with largemouth and smallmouth bass, yellow perch, chain pickerel and catfish. The lake is also extensively used by residents for swimming and boating.

For over 35 years, Princeton Hydro’s scientists have worked with New Jersey, local governing municipalities, and the various environmental organizations involved with the protection of Greenwood Lake and its watershed. In the early 2000s, we developed a comprehensive Restoration Plan and a proactive monitoring program that we have used over the years to properly manage the lake and its watershed. The plan was developed for the Greenwood Lake Commission and the Township of West Milford with funding provided through the New Jersey Department of Environmental Protection’s Nonpoint Source 319(h) Program. The Restoration Plan focuses heavily on the implementation of various types of stormwater best management practices (BMPs) to help reduce the influx of sediment and nutrients into the lake. We track the positive effects and benefits achieved through these stormwater projects by conducting both storm-event based and in-lake water quality monitoring.

The goal of the stormwater-based efforts is to ensure the lake’s total phosphorus (TP) load is systematically reduced in accordance with the lake’s established Total Maximum Daily Load (TMDL). The TMDL is a regulatory term in the U.S. Clean Water Act, that identifies the maximum amount of a pollutant (in this case phosphorus) that a waterbody can receive while still meeting water quality standards. Princeton Hydro was instrumental in developing the TMDL for Greenwood Lake. Phosphorus entering the lake from runoff is the primary driver of the lake’s eutrophication. The direct results of eutrophication are increases in the density of aquatic plants and nuisance algae. All this added productivity leads to reduced clarity, reductions in dissolved oxygen concentrations, and a number of other ecological impacts that compromise the quality, aesthetics, and use of the lake.

Last year, Princeton Hydro and the Greenwood Lake Commission, with input from the West Milford Environmental Commission, proposed an updated Watershed Implementation Plan (WIP) for the lake. Approved and funded by the NJ Highlands Council, the updated WIP includes a variety of components that build upon the original Restoration Plan and incorporate newly advanced stormwater management and Nonpoint Source Pollution (NPS) reduction technologies.

 

The WIP includes in?lake and stream monitoring; the assessment of the existing stormwater structures installed through grant?based, watershed activities; and the identification of watershed-based projects that can be completed to support the Lake’s compliance with TMDL TP levels with a specific focus on the stormwater runoff produced by Belcher's Creek, a major tributary to Greenwood Lake.

The WIP also includes the following nine minimum elements considered necessary by both NJDEP and USEPA for funding eligibility:

  1. Identify causes and sources of pollution
  2. Estimate pollutant loading into the watershed and the expected load reductions
  3. Describe management measures that will achieve load reductions and targeted critical areas
  4. Estimate amounts of technical and financial assistance and the relevant authoritiesBelcher's Creek at Edgecumb and Glencross needed to implement the plan
  5. Develop an information/education component
  6. Develop a project schedule
  7. Describe the interim, measurable milestones
  8. Identify indicators to measure progress
  9. Develop a monitoring component

While many of these elements have been indirectly addressed to varying degrees in the original Restoration Plan, in order to maximize Greenwood Lake’s opportunities to obtain State and Federal funding for the design and implementation of watershed control measures, the WIP now explicitly correlates the nine elements to eight specific deliverables, which are as follows:

  1. Conduct a detailed in?lake and watershed?based water quality monitoring program and compare the data to that collected in 2004 and 2005 to document changes or shifts in water quality.
  2. Meet with the Township of West Milford, Passaic County and other stakeholders to inventory recently completed BMPs and other watershed management measures.
  3. Conduct a field?based evaluation of the stormwater project completed since the original 319?grant funded Restoration Plan.
  4. Conduct site assessments to identify other potential stormwater/watershed BMP projects.
  5. Conduct a field assessment of the Belchers Creek Corridor to identify potential Nonpoint Source Pollution Reduction Projects.
  6. Assemble the WIP with all the 9 elements fully satisfied.
  7. Schedule and implement stakeholder and public meetings to evaluate project status.
  8. Submit of final version of WIP to the NJDEP and present the findings and recommendations to the public.

This project was initiated in September 2018 and is projected for completion by September 2019. The Greenwood Lake Commission, serves as the inter?State steward of the Greenwood Lake watershed, and is working closely with Princeton Hydro and the watershed stakeholders (Township of West Milford, Passaic County and others), to ensure the WIP is a holistic document.

Stay tuned for more Greenwood Lake updates as the WIP progresses. For more information about Princeton Hydro’s lake management projects and capabilities, or to discuss your project needs and goals, please contact us.

Some of the photos utilized in this blog are from The Village of Greenwood Lake.

[post_title] => Protecting Greenwood Lake's Water Quality Through Stormwater Management [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => greenwood-lake [to_ping] => [pinged] => [post_modified] => 2025-02-10 19:12:38 [post_modified_gmt] => 2025-02-10 19:12:38 [post_content_filtered] => [post_parent] => 0 [guid] => https://www.princetonhydro.com/blog/?p=3823 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [7] => WP_Post Object ( [ID] => 2811 [post_author] => 3 [post_date] => 2018-10-23 16:29:23 [post_date_gmt] => 2018-10-23 16:29:23 [post_content] =>

Collaboration between state agencies and local organizations in Luzerne County bring in grant money to determine Hydrilla infestation levels in Harveys Lake. Treatment efforts are scheduled for 2019.

Story provided by Princeton Hydro Senior Limnologist Michael Hartshorne, and originally published in the Pennsylvania iMapInvasives Fall 2018 Newsletter

[caption id="attachment_2830" align="alignleft" width="280"] Hydrilla (Hydrilla verticillata)[/caption] Hydrilla (Hydrilla verticillata) is a relatively new invasive plant in Pennsylvania with the first documented occurrence in 1989 in Adams County. Still, it was not until recently that lake managers, park rangers, and others in the natural resource field have turned their attention to this aggressive invader. Looking incredibly similar to our native waterweed (Elodea canadensis), hydrilla differs in that it is comprised of 4-8 whorled, toothed leaves in contrast to the smooth edged, 3-leaved whorl of E. canadensis.

Harveys Lake, located in the Borough of Harveys Lake (Luzerne County) is a large, deep glacial lake with limited littoral (i.e., shoreline) habitat. A significant body of work has been conducted at the lake with the original Phase I: Diagnostic-Feasibility Lake study conducted in 1992 and a Total Maximum Daily Load (TMDL) issued for phosphorus in 2002.

From 2002 to present, Princeton Hydro has assisted the Borough in the restoration of the lake with a heavy focus on stormwater best management practices (BMPs) supplemented by routine, in-lake water quality monitoring. The goal of the storm water/watershed-based efforts was to reduce the lake’s existing, annual total Hydrilla (Hydrilla verticillata) phosphorus load so it’s in full compliance with the established TMDL.

Over the last 15 years, the installation of these watershed-based projects has led to improved water quality conditions; specifically, phosphorus and algae concentrations have been reduced. While water quality conditions improved Harveys Lake, it was during one of the routine, summer water quality monitoring events conducted in July 2014 that a dense stand of hydrilla was noted at the Pennsylvania Fish and Boat Commission’s public boat launch. More than likely, the plant entered the lake as a “hitchhiker” on the boat or trailer being launched from this public boat launch by someone visiting the lake.

[caption id="attachment_2812" align="alignleft" width="242"]  [/caption]

Since the initial identification and confirmation of the hydrilla, the Borough of Harveys Lake has worked in conjunction with the Harveys Lake Environmental Advisory Council, the Luzerne County Conservation District, the Pennsylvania Department of Environmental Protection, and Princeton Hydro to secure funding for additional surveys to determine the spatial extent and density of growth followed by an aggressive eradication plan.

Grant funds already allocated to Harveys Lake under the state’s Non-Point Source Pollution Program were used to conduct a detailed boat-based and diving aquatic plant survey of Harveys Lake to delineate the distribution and relative abundance of the hydrilla in 2014. During these surveys, the distribution of the hydrilla was found to be limited to the northern portion of the lake with the heaviest densities just off the boat launch with plants observed growing in waters 20-25 feet deep.

A follow-up survey had shown hydrilla coverage to increase from 38% of surveyed sites to 58% of sites in 2016 with hydrilla now present at the lake’s outlet area. Spatial coverage of hydrilla increased from approximately 50 acres in 2014 to 210 acres in 2016, an increase of 160 acres.

In hopes of preventing hydrilla escaping into the lake’s outlet stream, the Borough of Harveys Lake funded an emergency treatment of the two-acre outlet area in 2016 utilizing the systemic herbicide Sonar® (Fluridone). A follow-up treatment of 159 acres was conducted in 2017, again utilizing the Fluridone-based systemic herbicide.

The next treatment, which will attempt to cover the majority of the littoral habitat covered by hydrilla, is scheduled for late spring/early summer of 2019. It should be noted that Sonar® is being applied at a low concentration that is effective at eradicating the hydrilla, but will not negatively impact desirable native plant species.

The treatments conducted to date have documented some reductions in the vegetative coverage of hydrilla as well as tuber production relative to the original plant surveys conducted in 2016. However, it is recognized that it will take multiple years of treatment to eradicate this nuisance plant from the lake, as well as a highly proactive, interactive program to educate residents as well as visitors to the lake in preventing the re-introduction of this or other invasive species to Harveys Lake.

The successful, long-term improvement of a lake or pond requires a proactive management approach that addresses the beyond simply reacting to weed and algae growth and other symptoms of eutrophication. Our staff can design and implement holistic, ecologically-sound solutions for the most difficult weed and algae challenges. Visit our website to learn more about Princeton Hydro's lake management services: http://bit.ly/pondlake

Michael Hartshorne's  primary areas of expertise include lake and stream diagnostic studies, TMDL development, watershed management, and small pond management and lake restoration. He is particularly skilled in all facets of water quality characterization, from field data collection to subsequent statistical analysis, modeling, technical reporting, and the selection and implementation of best management practices. He has extensive experience in utilizing water quality data in concert with statistical and modeling packages to support load reduction allocations for the achievement of water quality standards or tailored thresholds set forth to reduce the rate of cultural eutrophication. He also has significant experience in conducting detailed macrophyte, fishery, and benthic surveys.

[post_title] => Efforts to Manage Hydrilla in Harveys Lake Prove Difficult but Effective [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => managing-hydrilla-in-harveys-lake [to_ping] => [pinged] => [post_modified] => 2024-12-10 23:04:22 [post_modified_gmt] => 2024-12-10 23:04:22 [post_content_filtered] => [post_parent] => 0 [guid] => https://www.princetonhydro.com/blog/?p=2811 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [8] => WP_Post Object ( [ID] => 2334 [post_author] => 3 [post_date] => 2018-08-15 12:07:45 [post_date_gmt] => 2018-08-15 12:07:45 [post_content] =>

Freshwater mussels are among the oldest living and second most diverse organisms on Earth with over 1,000 recognized species. Here in the eastern part of the U.S., we have more species of freshwater mussels than anywhere in the world. Unfortunately, freshwater mussels are one of the most rapidly declining animal groups in North America. Out of the 300 species and subspecies found on the continent, 70 (23%) have been federally listed as "Threatened" or "Endangered" under the Endangered Species Act. And, in the last century, over 30 species have become permanently extinct. So, why are populations declining so fast?

Freshwater mussels are filter feeders and process large volumes of the water they live in to obtain food. This means of survival also makes them highly susceptible to industrial and agricultural water pollution.  Because they are constantly filtering water, the contaminants and pathogens that are present are absorbed into the mussel’s tissues. As such, mussels are good indicators of water quality and can greatly contribute to improving water quality by filtering algae, bacteria and organic matter from the water column.

Not only do freshwater mussels rely on water quality, they are dependent on fish and other aquatic organisms for reproductive success. In order for a freshwater mussel to complete the reproduction process, it must “infect” a host fish with its larvae. The method depends on the specie of mussel. Some species lure fish using highly modified and evolved appendages that mimic prey. When a fish goes into investigate the lures, the female mussel releases fertilized eggs that attach to the fish, becoming temporarily parasitic. Once the host fish is infected, it can transfer the mussel larvae upstream and into new areas of the river.

Both habitat loss from dam construction and the introduction of pesticides into the water supply has contributed to the decline of freshwater mussels. With approximately 300 mussel species in the U.S. alone, a critical component of restoring and revitalizing mussel populations is truly understanding their biology, which begins with the ability to properly differentiate each species and properly identify and catalog them. Princeton Hydro’s Senior Scientist Evan Kwityn, CLP and Aquatic Ecologist Jesse Smith recently completed the U.S. Fish and Wildlife Service's Fresh Water Mussel Identification Training at the National Conservation Training Center in West Virginia.

Through hands-on laboratory training, Evan and Jesse developed their freshwater mussel identification skills and their knowledge of freshwater mussel species biology. Course participants were tasked with mastering approximately 100 of the most common freshwater mussel species in the United States. They also learned about proper freshwater mussel collection labeling, the internal and external anatomy and meristics of a freshwater mussel, and distributional maps as an aid to freshwater mussel identification.

   

In a recently published press release, Tierra Curry, a senior scientist with the Center for Biological Diversity was quoted as saying, “The health of freshwater mussels directly reflects river health, so protecting the places where these mussels live will help all of us who rely on clean water. This is especially important now, when we see growing threats to clean water from climate change, agriculture and other sources.”

Princeton Hydro is committed to protecting water quality, restoring habitats, and managing natural resources. Read about some of our recent projects and contact us to discuss how we can help you.

To learn more about freshwater mussels, check out this video from U.S. Fish and Wildlife Service.

[visual-link-preview encoded="eyJ0eXBlIjoiZXh0ZXJuYWwiLCJwb3N0IjowLCJwb3N0X2xhYmVsIjoiIiwidXJsIjoiaHR0cHM6Ly95b3V0dS5iZS9PV2psd2Z4NjdlWSIsImltYWdlX2lkIjo0ODc1LCJpbWFnZV91cmwiOiJodHRwczovL3ByaW5jZXRvbmh5ZHJvLmNvbS93cC1jb250ZW50L3VwbG9hZHMvMjAyMC8wNS82Li1IaWdoLXNjaG9vbC1zdHVkZW50cy1pbnN0YWxsaW5nLXNjYWxlZC5qcGciLCJ0aXRsZSI6IkFsbCBBYm91dCBGcmVzaHdhdGVyIE11c3NlbHMgLSBVLlMuIEZpc2ggJiBXaWxkbGlmZSBTZXJ2aWNlIiwic3VtbWFyeSI6IldlIGxvdmUgb3VyIGZyaWVuZHMgYXQgVS5TLiBGaXNoIGFuZCBXaWxkbGlmZSBTZXJ2aWNlLCB3aG8gaXMgdGhlIG9sZGVzdCBmZWRlcmFsIGNvbnNlcnZhdGlvbiBhZ2VuY3ksIHRyYWNpbmcgaXRzIGxpbmVhZ2UgYmFjayB0byAxODcxLCBhbmQgdGhlIG9ubHkgYWdlbmN5IGkuLi4iLCJ0ZW1wbGF0ZSI6InVzZV9kZWZhdWx0X2Zyb21fc2V0dGluZ3MifQ=="]  

[post_title] => Restoring and Revitalizing Freshwater Mussels [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => freshwater-mussels [to_ping] => [pinged] => [post_modified] => 2025-01-02 14:02:37 [post_modified_gmt] => 2025-01-02 14:02:37 [post_content_filtered] => [post_parent] => 0 [guid] => https://www.princetonhydro.com/blog/?p=2334 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [9] => WP_Post Object ( [ID] => 1901 [post_author] => 3 [post_date] => 2018-05-13 18:29:05 [post_date_gmt] => 2018-05-13 18:29:05 [post_content] =>
The New York State Federation of Lake Associations (NYSFOLA) Board of Directors awarded Dr. Stephen Souza, Founder, Princeton Hydro with its 'Lake Tear of the Clouds' Award. This award, named after the highest lake in the state, is NYSFOLA’s highest honor. It is only given to a person who has shown the highest dedication to New York’s lakes and watersheds, assisted NYSFOLA in its mission, and produced exceptional performance in his or her field of endeavor.
In bestowing this award to Dr. Souza, NYSFOLA recognizes his accomplishments and efforts in the management and restoration of lakes throughout the State of New York and his support of the initiatives promoted by NYSFOLA. The award was presented at the NYSFOLA’s 35th annual conference, which was held on May 4th and 5th at the Fort William Henry Hotel in Lake George.
During his acceptance speech, Dr. Souza said, “I am truly humbled and appreciative to have even been considered worthy of this award.  In accepting the 'Lake Tear of Clouds' Award, I want to extend my deepest thanks to NYSFOLA, the NYSFOLA Board of Directors, Nancy Mueller (NYSFOLA Manager), and all of you here tonight.  It is people like yourselves, who advocate for clean lakes, that have made my career so rewarding. I would be remiss if I also did not take the time to thank my wife Maria and my family for their support over the years and of course the dedicated lake scientists that I have the pleasure to work with day in and day out at Princeton Hydro. That of course includes Dr. Fred Lubnow, who I have had the pleasure of working side-by-side with since 1992, Chris Mikolajczyk and Mike Hartshorne, both of whom are here tonight, and the rest of my Princeton Hydro colleagues."
Dr. Souza first attended the NYSFOLA conference in 1985, and has been working to assess, restore and protect watersheds throughout the state of New York for over 35 years. Some of the notable projects managed by Dr. Souza over that time include projects conducted at Honeoye Lake, Sodus Bay, Greenwood Lake and Sleepy Hollow Lake. He is currently working with New York State Department of Environmental Conservation on a major statewide harmful algae bloom (HAB) management effort.
“We thank you for your longtime support of NYSFOLA and our member lake association, Steve,” said Nancy J. Mueller, Manager. “And, we congratulate Princeton Hydro on its 20th anniversary.”
ABOUT NYSFOLA
The New York State Federation of Lake Associations, Inc. was founded in 1983 by a coalition of lake associations concerned about water quality, invasive species, and other issues facing New York's lakes. Today, more than 200 lake associations across the state are members of the only statewide voice for lakes and lake associations. NYSFOLA also has corporate members and individual members who support our efforts.

[post_title] => NYSFOLA Awards Dr. Stephen Souza with Highest Honor at 2018 Annual Conference [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => nysfola-awards-stephen-souza [to_ping] => [pinged] => [post_modified] => 2024-12-10 13:27:00 [post_modified_gmt] => 2024-12-10 13:27:00 [post_content_filtered] => [post_parent] => 0 [guid] => https://www.princetonhydro.com/blog/?p=1901 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 9 [filter] => raw ) ) [post_count] => 10 [current_post] => -1 [before_loop] => 1 [in_the_loop] => [post] => WP_Post Object ( [ID] => 17677 [post_author] => 1 [post_date] => 2025-06-18 12:59:00 [post_date_gmt] => 2025-06-18 12:59:00 [post_content] =>

The Borough of Harveys Lake, in partnership with Princeton Hydro, launched a new interactive ArcGIS StoryMap that chronicles the community’s long-standing commitment to water quality and showcases a recently completed pilot project aimed at reducing stormwater nutrient pollution.

This engaging digital resource combines maps, multimedia, charts, diagrams, and narrative storytelling to bring the science and history of Harveys Lake’s multi-year environmental restoration efforts to life. It explores both the local impact and the broader significance of these initiatives, drawing connections to similar water quality challenges throughout the Chesapeake Bay Watershed.

Designed with accessibility in mind, the StoryMap invites users to explore project sites, restoration progress, and technical details without the need for specialized GIS training or software. Interactive features, such as zoomable maps, clickable pins, and site-specific details, offer an intuitive, user-friendly experience.

More than just a visualization tool, the StoryMap serves as a community-education and engagement platform. It highlights how local stormwater management strategies, like those implemented at Harveys Lake, can drive positive, region-wide change, underscoring the vital role of place-based solutions in improving watershed health across the Chesapeake Bay region.


 

What You’ll Discover Inside the StoryMap

The StoryMap begins with an exploration of the Chesapeake Bay Watershed—one of the most ecologically and economically significant estuaries in the United States. This region faces complex environmental challenges, including nutrient pollution, habitat loss, and climate change impacts. Over the past several decades, a wide range of stakeholders have engaged in coordinated restoration efforts to protect and improve water quality across the watershed.

Using interactive maps, expandable sections, and rich visuals, this introductory portion of the StoryMap places Harveys Lake in a broader regional context. It sets the stage for understanding how local action, such as nutrient reduction at Harveys Lake, plays a critical role in supporting the health of the entire Chesapeake Bay ecosystem.

The next section, “Harveys Lake: A Case Study,” highlights the Borough's ongoing dedication to protecting the lake and improving water quality through science-based solutions and collaborative efforts. The StoryMap provides:

  • A pictorial, historical timeline of water quality management at Harveys Lake;
  • An interactive Restoration Progress Map with clickable project sites;
  • Notable milestones in reducing nutrient pollution and managing stormwater; and
  • Restoration project highlights, complete with historical maps, illustrations, and photos

The final section of the StoryMap dives into a 2025 pilot initiative that used biochar and EutroSORB® filter media to reduce dissolved phosphorus and total nitrogen from stormwater runoff. Organized into subsections—Project Information, Methodology, Results and Discussion, Pollinator Garden, and Future Implications—the StoryMap offers a detailed look at this innovative nutrient-reduction strategy and its potential for replication across the Chesapeake Bay watershed.

In addition to detailing the pilot project, this section also spotlights the creation of a native pollinator garden, planted using the spent biochar as fertilizer. This closed-loop approach not only reinforces the project’s long-term ecological value but also demonstrates how thoughtful design can deliver multiple environmental benefits while cultivating a vibrant community-oriented space that supports local biodiversity.

To extend the impact of this initiative, the StoryMap was provided to the Harveys Lake Borough Environmental Advisory Council (EAC) and is publicly accessible via the Borough’s website. A QR code linking to the StoryMap is also featured on the new pollinator garden sign at the project site, allowing visitors to engage with the digital experience in real time.

Click here to explore the StoryMap now!

By blending maps, visuals, and interactive storytelling, this StoryMap serves as both an educational tool and a digital archive of the latest Harveys Lake water quality project and its long history of stewardship. We invite you to explore this engaging platform and see firsthand how thoughtful, science-based restoration is shaping a healthier future for Harveys Lake, and the entire Chesapeake Bay watershed.


This material is based on work supported by the U.S. Environmental Protection Agency (Assistance Agreement No. CB96358101) and the National Fish and Wildlife Foundation’s Chesapeake Bay Stewardship Fund, which supports community-based strategies to conserve and restore the Chesapeake Bay’s natural resources. Click here to learn more information about the grant program.

Click here to learn more about Harveys Lake or how to get involved in a Harveys Lake Borough Environmental Advisory Council stewardship program.

[post_title] => NEW Interactive ArcGIS StoryMap Showcases Harveys Lake’s Legacy of Water Quality Leadership [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => new-interactive-arcgis-storymap-showcases-harveys-lakes-legacy-of-water-quality-leadership [to_ping] => [pinged] => [post_modified] => 2025-07-14 15:51:12 [post_modified_gmt] => 2025-07-14 15:51:12 [post_content_filtered] => [post_parent] => 0 [guid] => https://princetonhydro.com/?p=17677 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [comment_count] => 0 [current_comment] => -1 [found_posts] => 14 [max_num_pages] => 2 [max_num_comment_pages] => 0 [is_single] => [is_preview] => [is_page] => [is_archive] => 1 [is_date] => [is_year] => [is_month] => [is_day] => [is_time] => [is_author] => [is_category] => 1 [is_tag] => [is_tax] => [is_search] => [is_feed] => [is_comment_feed] => [is_trackback] => [is_home] => [is_privacy_policy] => [is_404] => [is_embed] => [is_paged] => [is_admin] => [is_attachment] => [is_singular] => [is_robots] => [is_favicon] => [is_posts_page] => [is_post_type_archive] => [query_vars_hash:WP_Query:private] => 60836de94f4a319613c3f9ee3a0510c8 [query_vars_changed:WP_Query:private] => 1 [thumbnails_cached] => [allow_query_attachment_by_filename:protected] => [stopwords:WP_Query:private] => [compat_fields:WP_Query:private] => Array ( [0] => query_vars_hash [1] => query_vars_changed ) [compat_methods:WP_Query:private] => Array ( [0] => init_query_flags [1] => parse_tax_query ) [query_cache_key:WP_Query:private] => wp_query:100d8befffbf0628c62547229f658af5:0.25317200 17588455850.56406900 1758845585 )

Category: Lake Restoration

archive
 
Topics
Select Topics