We’re committed to improving our ecosystems, quality of life, and communities for the better.
Our passion and commitment to the integration of innovative science and engineering drive us to exceed on behalf of every client.
Welcome to our “A Day in the Life” blog series, where we explore the diverse expertise and everyday experiences of the professionals who power Princeton Hydro’s mission. In this edition, we follow Casey Pantaleo, PE, a licensed Professional Engineer and Senior Project Manager on the Engineering Services team as he performs one of his highly specialized roles: dam inspection.
Casey meets the New Jersey Department of Environmental Protection (NJDEP)’s criteria for a “qualified engineer,” meaning he is licensed in New Jersey, has more than a decade of relevant experience in dam design, construction, operation, and evaluation, and possesses a deep understanding of the potential causes and consequences of dam failures. He routinely conducts detailed inspections to help ensure the safety and stability of dams across New Jersey and throughout the Northeast.
These structures, which play crucial roles in flood control, water supply, and recreation, require routine maintenance and monitoring to protect downstream communities and preserve infrastructure integrity.
Spend a day with Casey and you’ll quickly realize that dam safety inspection is anything but routine—it’s equal parts technical expertise, historical context, and regulatory navigation, along with a good pair of waterproof boots.
Before heading into the field, the inspection process begins with reviewing the dam’s existing documentation; the scope of that review depends on the type of inspection being conducted.
For a Formal Inspection, the process requires an in-depth review of all available records on the dam. This typically takes place in person at the NJDEP Bureau of Dam Safety office and should be completed prior to the field visit.
For a Regular Inspection, the inspector reviews the most recent inspection report, the dam’s Emergency Action Plan (EAP), and the Operation and Maintenance (O&M) Manual. This step is essential for understanding the dam’s history, known concerns, and any previous recommendations or repairs.
Both inspection types involve a detailed on-site visual examination of the dam. The Bureau of Dam Safety provides a standardized inspection checklist that guides this process. The checklist includes specific criteria for earthen embankments, concrete/masonry dams, and their spillway structures.
“For earthen embankment dams, we assess the overall alignment, crest, upstream and downstream slopes, and dam abutments,” explains Casey. “We’re looking for signs of settlement, depressions, slope instability, seepage, and other indicators of distress.”
For concrete dams, inspectors evaluate the upstream and downstream faces, crest, foundation, abutments, and any interior galleries. The key concerns here are material condition, cracking, seepage, and structural movement.
The spillway, which is often inspected last, requires identification of all structures associated with overflow and release. Depending on the dam’s configuration, this may include primary, secondary, or emergency spillways.
Components typically observed include:
“Every dam is different,” Casey adds. “Not all structures have every component listed on the checklist, so part of our job is tailoring the inspection to the specific site configuration.”
The Formal Inspections checklist also includes a review and description of previous engineering studies and analyses, which ensures the dam continues to meet regulatory requirements. These formal evaluations are required every six years for Class I (high hazard) dams, and every ten years for Class II (significant hazard) dams.
All findings from both the field inspection and records review are compiled into a detailed inspection report, which includes photographic documentation and a formal condition rating:
The report also outlines a compliance schedule, proposing timelines for maintenance work, additional studies, or other corrective actions. Once complete, the report is signed and sealed by a licensed Professional Engineer (PE) and submitted to both the client and the Bureau of Dam Safety.
With the planning and records review process complete, Casey prepares for the physical site visit. Dam inspections often require a full day in the field, so preparation is key.
The first step before heading to the site is preparing an Activity Hazards Analysis (AHA). This document outlines the specific activities planned during the inspection, identifies potential hazards associated with each task, and defines the control measures used to eliminate or reduce risk. The AHA also includes the location of the nearest hospital or urgent care facility in case of injury.
Common hazards associated with dam inspections include slips, trips, and falls, insect nests, poison ivy, working near water, and occasionally, working on or near active roadways. Seasonal risks are also considered, such as the potential for heat illnesses during the summer months or cold-related injuries in the winter.
With safety protocols in place, Casey reviews the inspection schedule, checks the weather forecast, prints site maps, and gathers all the necessary personal protective equipment—waders, hard hat, and high-visibility vest—along with essential tools like a tape measure, measuring wheel, tile probe, field notebook, and camera.
Each tool plays a specific role. The tape measure is used for small-scale assessments, such as measuring cracks or depressions. The measuring wheel helps determine distances between notable features onsite. The tile probe allows Casey to gauge the density and consistency of embankment soils and to investigate for voids in concrete structures. It also comes in handy for checking the depth of animal burrows or the extent of subsurface voids within the dam.
“Having the right measuring tools is absolutely essential,” Casey explains. “We aim to collect the most detailed measurements possible so future inspections can determine whether a condition is getting worse. We also try to anticipate every potential hazard and ensure we have everything we might need before leaving the office. Sometimes we’re hiking through thick brush to reach a spillway or crawling into an outlet conduit—so having a solid plan and the right gear isn’t just helpful, it’s critical.”
Today’s inspection takes place at Assunpink Dam #6, an earth embankment dam located in Robbinsville Township, Mercer County, New Jersey. Built in 1975, the dam is part of a flood control system designed to reduce risks along Assunpink Creek. The structure stands 31 feet high and stretches 2,500 feet long, with a total storage capacity of 12,653 acre-feet. It features a concrete spillway and an upstream water control structure. Owned by the New Jersey Division of Fish & Wildlife, the dam is regulated by the state and classified as a high-hazard structure—meaning its failure could result in significant downstream impacts, making regular inspections essential.
To begin the inspection, Casey walks the full length of the embankment, conducting a detailed visual assessment. He looks for telltale warning signs: animal burrows, seepage, erosion, settlement, slope instability, and woody vegetation that could damage the dam face or block visibility during future inspections. One of the most common and problematic issues he encounters is overgrown vegetation, which can significantly hinder the ability to properly evaluate the structure. Keeping the dam clear is critical for spotting early warning signs and maintaining long-term safety.
“Each dam tells its own story,” Casey explains. “Some may show signs of movement, others are perfectly stable. One site might have seepage issues, while another remains completely dry. It all depends on the structure and how it’s aged.”
He carefully inspects the embankment and associated structures for signs of movement, depressions, sloughing, cracking, and uncontrolled seepage, any of which could indicate an underlying issue that requires remediation.
“We follow a standard checklist during every inspection, but each dam is unique,” he adds. “Part of the job is understanding how these systems were built—some decades or even over a century ago—and how they’ve changed over time.”
After completing the full inspection, including the downstream toe, abutments, and emergency spillway, Casey wraps up his field notes, double-checks measurements, and ensures that all required photos have been captured. Before leaving the site, he often debriefs with the site representative, noting any immediate maintenance needs and outlining the next steps in the reporting process.
Back in the office, Casey begins transcribing his notes into a formal inspection report. He uploads and labels photos, updates GIS data where applicable, and reviews the dam’s historical inspection records to identify long-term trends or recurring issues. These records often help tell a broader story about the structure’s condition over time, highlighting vegetation growth, erosion patterns, or the effectiveness of past repairs.
Safety is always the top priority. If the inspection reveals anything that could pose an immediate risk to people or property downstream, such as uncontrolled seepage, excessive settlement, or slope instability, Casey contacts the dam owner and the NJDEP right away to recommend prompt action. Beyond urgent concerns, the inspection report also includes recommendations for routine maintenance and identifies any outdated analyses or studies that should be updated.
In many cases, the findings involve standard upkeep: clearing overgrown vegetation, reseeding disturbed areas, monitoring minor cracks or depressions, or maintaining access to critical features. One frequently emphasized point is the importance of operating the dam’s low-level outlet, if one is present, on a regular basis. Doing so helps ensure the outlet remains free of sediment or debris and functions properly in an emergency when water levels need to be lowered quickly.
New Jersey is home to more than 1,700 dams, according to data from NJDEP Bureau of Dam Safety. These regulated structures range from low-hazard to high-hazard classifications, the latter being dams whose failure could result in significant property damage or loss of life. Regular inspections are not only a regulatory requirement, but a frontline defense against catastrophic failure. They help identify small problems before they become serious, support safe operation, and guide critical maintenance and repair decisions that protect both people and ecosystems.
“Dam inspection doesn’t always get the spotlight, but it’s essential,” says Casey. “We’re helping communities prevent disasters before they happen by keeping a close eye on structures that quietly serve very big purposes.”
For more information about New Jersey’s dam infrastructure and safety programs, go here!
Casey Pantaleo, PE has over a decade of experience in the Geotechnical Engineering field and expertise in dam inspection, stormwater infrastructure, and regulatory permitting. He is a licensed Professional Engineer in New Jersey, Pennsylvania, Connecticut, Delaware, Maryland, and New York. He maintains a wide range of professional responsibilities for the firm including subsurface explorations, development of geotechnical laboratory testing programs, shallow and deep foundation analysis and design, settlement evaluation, earth retaining system design, slope stability analyses, and management of geotechnical field operations. He also has extensive experience with stormwater infiltration analysis and testing, as well as performing annual dam inspections in compliance with the NJDEP Division of Dam Safety. He completes regular inspection reports, as well as reviews of O&M Manuals and Emergency Action Plans. He has experience with the design of dams for rehabilitation, preparation of engineering plans, and submission of relevant dam permits.
Casey earned his Master of Science in Civil Engineering with a Geotechnical focus from Rowan University. While at Rowan he performed comprehensive research on the effects of particle morphology in geotechnical testing using discrete element modeling and has several peer reviewed journal and conference publications outlining the results of this research.
Stay tuned for more “Day in the Life” stories. In the meantime, click here to read a recent “A Day in the Life” blog where we join Patrick Rose, an Environmental Scientist and Project Manager in Princeton Hydro’s Aquatics Division, for a day out on the lake!
add comment
Δ
Your Full Name * Phone Number * Your Email * Organization Address Message *
By EmailBy Phone
Submit
Couldn’t find a match? Check back often as we post new positions throughout the year.