We’re committed to improving our ecosystems, quality of life, and communities for the better.
Our passion and commitment to the integration of innovative science and engineering drive us to exceed on behalf of every client.
WP_Query Object ( [query] => Array ( [tag] => stormwater-management ) [query_vars] => Array ( [tag] => stormwater-management [error] => [m] => [p] => 0 [post_parent] => [subpost] => [subpost_id] => [attachment] => [attachment_id] => 0 [name] => [pagename] => [page_id] => 0 [second] => [minute] => [hour] => [day] => 0 [monthnum] => 0 [year] => 0 [w] => 0 [category_name] => environmental-action [cat] => 32 [tag_id] => 1048 [author] => [author_name] => [feed] => [tb] => [paged] => 1 [meta_key] => [meta_value] => [preview] => [s] => [sentence] => [title] => [fields] => all [menu_order] => [embed] => [category__in] => Array ( [0] => 32 ) [category__not_in] => Array ( ) [category__and] => Array ( ) [post__in] => Array ( ) [post__not_in] => Array ( ) [post_name__in] => Array ( ) [tag__in] => Array ( ) [tag__not_in] => Array ( ) [tag__and] => Array ( ) [tag_slug__in] => Array ( [0] => stormwater-management ) [tag_slug__and] => Array ( ) [post_parent__in] => Array ( ) [post_parent__not_in] => Array ( ) [author__in] => Array ( ) [author__not_in] => Array ( ) [search_columns] => Array ( ) [ignore_sticky_posts] => [suppress_filters] => [cache_results] => 1 [update_post_term_cache] => 1 [update_menu_item_cache] => [lazy_load_term_meta] => 1 [update_post_meta_cache] => 1 [post_type] => [posts_per_page] => 10 [nopaging] => [comments_per_page] => 5 [no_found_rows] => [order] => DESC ) [tax_query] => WP_Tax_Query Object ( [queries] => Array ( [0] => Array ( [taxonomy] => category [terms] => Array ( [0] => 32 ) [field] => term_id [operator] => IN [include_children] => ) [1] => Array ( [taxonomy] => post_tag [terms] => Array ( [0] => stormwater-management ) [field] => slug [operator] => IN [include_children] => 1 ) ) [relation] => AND [table_aliases:protected] => Array ( [0] => ph_term_relationships [1] => tt1 ) [queried_terms] => Array ( [category] => Array ( [terms] => Array ( [0] => 32 ) [field] => term_id ) [post_tag] => Array ( [terms] => Array ( [0] => stormwater-management ) [field] => slug ) ) [primary_table] => ph_posts [primary_id_column] => ID ) [meta_query] => WP_Meta_Query Object ( [queries] => Array ( ) [relation] => [meta_table] => [meta_id_column] => [primary_table] => [primary_id_column] => [table_aliases:protected] => Array ( ) [clauses:protected] => Array ( ) [has_or_relation:protected] => ) [date_query] => [queried_object] => WP_Term Object ( [term_id] => 1048 [name] => stormwater management [slug] => stormwater-management [term_group] => 0 [term_taxonomy_id] => 1048 [taxonomy] => post_tag [description] => [parent] => 0 [count] => 101 [filter] => raw [term_order] => 0 ) [queried_object_id] => 1048 [request] => SELECT SQL_CALC_FOUND_ROWS ph_posts.ID FROM ph_posts LEFT JOIN ph_term_relationships ON (ph_posts.ID = ph_term_relationships.object_id) LEFT JOIN ph_term_relationships AS tt1 ON (ph_posts.ID = tt1.object_id) WHERE 1=1 AND ( ph_term_relationships.term_taxonomy_id IN (32) AND tt1.term_taxonomy_id IN (1048) ) AND ((ph_posts.post_type = 'post' AND (ph_posts.post_status = 'publish' OR ph_posts.post_status = 'acf-disabled'))) GROUP BY ph_posts.ID ORDER BY ph_posts.menu_order, ph_posts.post_date DESC LIMIT 0, 10 [posts] => Array ( [0] => WP_Post Object ( [ID] => 18586 [post_author] => 1 [post_date] => 2025-11-06 00:15:54 [post_date_gmt] => 2025-11-06 00:15:54 [post_content] => The New Jersey Department of Environmental Protection (NJDEP) recently announced $8 million in Water Quality Restoration Grants to support projects that reduce nonpoint source pollution, mitigate harmful algal blooms, restore riparian areas, and enhance watershed and climate resilience. Funded through Section 319(h) of the federal Clean Water Act and administered by the DEP's Watershed and Land Management Program, these grants were awarded to municipalities, nonprofit organizations, and academic institutions across the state. Princeton Hydro is proud to be a partner on five of the 17 funded projects. Our contributions vary by project and encompass activities such as engineering design, water quality assessment, watershed-based planning, and technical support for implementing stormwater and habitat restoration measures. Let's take a deeper look at these collaborative efforts: 1. The Watershed Institute – Watershed-Based Planning for Assunpink Creek The Watershed Institute received $205K in 319(h) grant funding to develop a watershed-based plan for the Assunpink Creek watershed, located within the Raritan River Basin. This watershed spans 11 municipalities across two counties, where varied landscapes and demographics share common challenges such as localized flooding, stormwater management, and water quality degradation, highlighting the need for a coordinated, watershed-wide, science-driven approach. The plan will evaluate pollution sources and identify large-scale restoration opportunities, including green infrastructure and riparian buffer restoration, to improve water quality and reduce flooding. It will also assess the cost, feasibility, and pollutant reduction potential of proposed measures to ensure practical implementation. Princeton Hydro supported the Institute in developing the grant proposal and planning framework, leveraging our expertise in watershed-based planning to prioritize nature-based solutions that address both water quality and climate resilience. This initiative represents a critical step toward regional collaboration, enabling upstream and downstream communities to work together on strategies that strengthen watershed health, protect public safety, and build long-term resilience. 2. Lake Hopatcong Commission – Watershed-Based Stormwater BMPs The Lake Hopatcong Commission (LHC) was awarded $366K to retrofit an existing stormwater detention basin between King Road and Mount Arlington Boulevard in Roxbury Township. This retrofit is part of a larger Watershed Implementation Plan that Princeton Hydro developed in collaboration with LHC, which prioritizes nutrient reduction and stormwater management strategies across the Lake Hopatcong watershed. Over the past several years, LHC has actively implemented multiple elements of this plan to address harmful algal blooms (HABs) and improve water quality. For this project, Princeton Hydro is providing engineering design and technical oversight to transform the existing basin into a green stormwater infrastructure system that slows, captures, and naturally treats runoff before it enters King Cove. The design incorporates native vegetation, invasive species management, and erosion control measures to stabilize soils and filter pollutants, reducing nutrient loading, which is one key driver of HABs. Public outreach and pre- and post-construction water quality monitoring will ensure performance tracking and measurable improvements. This basin retrofit represents a critical step in a coordinated, science-based approach to restoring ecological health and water quality in New Jersey’s largest lake. 3. Cozy Lake, Jefferson Township – Addressing Emerging Contaminants Jefferson Township received $350K in grant funding to develop an Emerging Contaminants Management Plan for Cozy Lake, focusing on cyanotoxins and HABs. Cozy Lake is a 28-acre waterbody within a 1,152-acre sub-watershed that includes both forested (60%) and developed (29%) land. The lake is fed by the Rockaway River at its northern end and a smaller southeastern inlet, with outflow through a dam on the western edge. The shoreline is primarily residential lawn with minimal emergent wetlands, and several inlets and rock-lined drainage ditches exhibit erosion and lack slope protection, contributing to sediment loading. Princeton Hydro provided early technical input to shape this innovative project with the creation of a comprehensive Jefferson Township Lake and Watershed Restoration and Protection Plan. As part of the plan, Princeton Hydro made recommendations for Cozy Lake, which included enhancing shoreline buffers with native vegetation and installing living shorelines at select properties to stabilize soils, filter stormwater and reduce nutrient loading, improve habitat quality, and enhance community access. These measures, combined with in-lake monitoring and proactive management strategies, will help mitigate HABs and protect ecological and public health. 4. Rockaway Township – Watershed-Based Green Infrastructure Rockaway Township received $399K in grant funding to implement elements of its Watershed Implementation Plan, focusing on green infrastructure stormwater management and nutrient reduction to improve water quality. The project will retrofit the municipal complex by converting a rock-lined drainage swale into a vegetated swale with a bioretention basin, designed to filter stormwater runoff and reduce nonpoint source pollutants entering Fox’s Pond and Fox Brook. Princeton Hydro played a key role in developing the Watershed Implementation Plan, which encompasses 11 private lakes within the Rockaway River watershed, prioritizing critical locations for intervention and designing cost-effective green infrastructure BMPs. This regional approach aligns with strategies recommended by NJDEP and the Highlands Council. The plan included a comprehensive watershed-based assessment to identify and quantify factors contributing to eutrophication, evaluate management measures, estimate costs, and establish an implementation schedule. Princeton Hydro authored the final report, which guided the Township in applying for the Section 319(h) grant and now informs the design and construction of green stormwater infrastructure that will deliver measurable water quality improvements while supporting ecological restoration goals. 5. Green Trust Alliance – Green Infrastructure and Community Engagement Green Trust Alliance (GTA), a nationally accredited land trust and public charity dedicated to accelerating large-scale conservation, received $1.39 million in NJDEP funding to implement green infrastructure improvements at Pinelands Regional High School in Tuckerton, New Jersey. This initiative targets the Tuckerton Creek watershed, which drains into Tuckerton Creek and ultimately flows into Barnegat Bay—a critical estuary spanning 33 municipalities in Ocean County and four in Monmouth County. The retrofit will transform the school’s stormwater detention basin into a multi-functional system that mimics natural hydrology, enhances flow control, and improves water quality locally and in the larger Barnegat Bay watershed. Working with GTA and GreenVest, Princeton Hydro is serving as the design engineer, applying nature-based engineering and ecological restoration techniques to intercept, evapotranspire, and infiltrate stormwater runoff at its source. In addition to its technical objectives, the effort includes a strong community engagement component and an educational platform for students. By bringing green infrastructure into the school environment, the initiative provides hands-on experience with water resources, stormwater management, and ecological engineering, help to build STEM skills while fostering a deeper connection to the surrounding landscape and an understanding of how natural systems work together to support environmental and community health. Princeton Hydro also assisted several of these partners in developing successful NJDEP Section 319(h) grant applications, providing technical documentation, conceptual designs, and pollutant load reduction estimates to strengthen the proposals. To date, the Murphy Administration has awarded more than $33M in Water Quality Restoration grants to improve the health of waterways in all corners of the state. Click here to read about all the 2025 grant funding recipients and their innovative projects. As NJDEP Environmental Protection Commissioner Shawn M. LaTourette noted in the department's press release, “Enhancing the ecological health of our lakes, rivers, streams and coastal waters has long been a priority of the Murphy Administration. The Department of Environmental Protection is pleased to award these grants that will help our partners advance a variety of strategies to improve the health of these waterways and enhance the quality of life in our communities.” We are proud to play a continued role in advancing that mission: helping communities implement practical, data-driven solutions that make a measurable difference for New Jersey’s waterways and the people who depend on them. Click here to learn more about our work to protect natural habitat and restore water quality throughout the New Jersey. [post_title] => NJDEP Awards $8M for Water Quality Restoration Projects [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => njdep-319h-grants-2025 [to_ping] => [pinged] => [post_modified] => 2025-11-07 01:20:58 [post_modified_gmt] => 2025-11-07 01:20:58 [post_content_filtered] => [post_parent] => 0 [guid] => https://princetonhydro.com/?p=18586 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [1] => WP_Post Object ( [ID] => 4571 [post_author] => 3 [post_date] => 2020-02-13 09:08:42 [post_date_gmt] => 2020-02-13 09:08:42 [post_content] => Last year, there were more than 70 suspected and 39 confirmed Harmful Algal Blooms (HABs) in New Jersey, which is significantly higher than the previous two years. New Jersey wasn’t the only state impacted by HABs. The increase caused severe impacts on lakes throughout the country, resulting in beach closures, restricting access to lake usage, and prompting wide-ranging health advisories. In November, New Jersey Governor Phil Murphy and officials from the New Jersey Department of Environmental Protection (NJDEP) announced a three-pronged, $13 million initiative to reduce and prevent future HABs in the state. As part of the initiative, NJDEP hosted its first regional HABs Summit with the goal of prevention by improving communication throughout lake communities and sharing information ahead of the warmer months when HABs begin to appear. The summit, which was held on January 28, 2020 at NJDEP's Pequest Trout Hatchery and Natural Resource Education Center in Warren County included a Q&A panel discussion, information resource tables for one-on-one discussions, and presentations from a variety of NJDEP representatives and environmental experts. Princeton Hydro's Director of Aquatics and regional HABs expert Dr. Fred Lubnow’s presentation focused on how to properly and effectively manage HABs. According to Dr. Lubnow, “Managing loads of phosphorous in watersheds is even more important as the East Coast becomes increasingly warmer and wetter thanks to climate change. Climate change will likely need to be dealt with on a national and international scale. But local communities, groups, and individuals can have a real impact in reducing phosphorous levels in local waters.” In a recent press release from Governor Murphy’s office, the NJDEP Chief of Staff Shawn LaTourette said, “We will reduce HABs by working closely with our local partners on prevention and treatment techniques, while relying on the best available science to clearly communicate risk to the public. Our new HABs initiative will enhance the Department’s ability to evaluate statewide strategies and increase the capacity of lake communities to reduce future blooms.” New Jersey’s new HABs initiative is comprised of three main components: Providing Funding: More than $13 million in funding will be available to local communities to assist in preventing HABs, including:
The New Jersey Department of Environmental Protection (NJDEP) recently announced $8 million in Water Quality Restoration Grants to support projects that reduce nonpoint source pollution, mitigate harmful algal blooms, restore riparian areas, and enhance watershed and climate resilience. Funded through Section 319(h) of the federal Clean Water Act and administered by the DEP's Watershed and Land Management Program, these grants were awarded to municipalities, nonprofit organizations, and academic institutions across the state.
Princeton Hydro is proud to be a partner on five of the 17 funded projects. Our contributions vary by project and encompass activities such as engineering design, water quality assessment, watershed-based planning, and technical support for implementing stormwater and habitat restoration measures. Let's take a deeper look at these collaborative efforts:
The Watershed Institute received $205K in 319(h) grant funding to develop a watershed-based plan for the Assunpink Creek watershed, located within the Raritan River Basin. This watershed spans 11 municipalities across two counties, where varied landscapes and demographics share common challenges such as localized flooding, stormwater management, and water quality degradation, highlighting the need for a coordinated, watershed-wide, science-driven approach.
The plan will evaluate pollution sources and identify large-scale restoration opportunities, including green infrastructure and riparian buffer restoration, to improve water quality and reduce flooding. It will also assess the cost, feasibility, and pollutant reduction potential of proposed measures to ensure practical implementation. Princeton Hydro supported the Institute in developing the grant proposal and planning framework, leveraging our expertise in watershed-based planning to prioritize nature-based solutions that address both water quality and climate resilience. This initiative represents a critical step toward regional collaboration, enabling upstream and downstream communities to work together on strategies that strengthen watershed health, protect public safety, and build long-term resilience.
The Lake Hopatcong Commission (LHC) was awarded $366K to retrofit an existing stormwater detention basin between King Road and Mount Arlington Boulevard in Roxbury Township. This retrofit is part of a larger Watershed Implementation Plan that Princeton Hydro developed in collaboration with LHC, which prioritizes nutrient reduction and stormwater management strategies across the Lake Hopatcong watershed. Over the past several years, LHC has actively implemented multiple elements of this plan to address harmful algal blooms (HABs) and improve water quality.
For this project, Princeton Hydro is providing engineering design and technical oversight to transform the existing basin into a green stormwater infrastructure system that slows, captures, and naturally treats runoff before it enters King Cove. The design incorporates native vegetation, invasive species management, and erosion control measures to stabilize soils and filter pollutants, reducing nutrient loading, which is one key driver of HABs. Public outreach and pre- and post-construction water quality monitoring will ensure performance tracking and measurable improvements. This basin retrofit represents a critical step in a coordinated, science-based approach to restoring ecological health and water quality in New Jersey’s largest lake.
Jefferson Township received $350K in grant funding to develop an Emerging Contaminants Management Plan for Cozy Lake, focusing on cyanotoxins and HABs. Cozy Lake is a 28-acre waterbody within a 1,152-acre sub-watershed that includes both forested (60%) and developed (29%) land. The lake is fed by the Rockaway River at its northern end and a smaller southeastern inlet, with outflow through a dam on the western edge.
The shoreline is primarily residential lawn with minimal emergent wetlands, and several inlets and rock-lined drainage ditches exhibit erosion and lack slope protection, contributing to sediment loading. Princeton Hydro provided early technical input to shape this innovative project with the creation of a comprehensive Jefferson Township Lake and Watershed Restoration and Protection Plan. As part of the plan, Princeton Hydro made recommendations for Cozy Lake, which included enhancing shoreline buffers with native vegetation and installing living shorelines at select properties to stabilize soils, filter stormwater and reduce nutrient loading, improve habitat quality, and enhance community access. These measures, combined with in-lake monitoring and proactive management strategies, will help mitigate HABs and protect ecological and public health.
Rockaway Township received $399K in grant funding to implement elements of its Watershed Implementation Plan, focusing on green infrastructure stormwater management and nutrient reduction to improve water quality. The project will retrofit the municipal complex by converting a rock-lined drainage swale into a vegetated swale with a bioretention basin, designed to filter stormwater runoff and reduce nonpoint source pollutants entering Fox’s Pond and Fox Brook.
Princeton Hydro played a key role in developing the Watershed Implementation Plan, which encompasses 11 private lakes within the Rockaway River watershed, prioritizing critical locations for intervention and designing cost-effective green infrastructure BMPs. This regional approach aligns with strategies recommended by NJDEP and the Highlands Council. The plan included a comprehensive watershed-based assessment to identify and quantify factors contributing to eutrophication, evaluate management measures, estimate costs, and establish an implementation schedule. Princeton Hydro authored the final report, which guided the Township in applying for the Section 319(h) grant and now informs the design and construction of green stormwater infrastructure that will deliver measurable water quality improvements while supporting ecological restoration goals.
Green Trust Alliance (GTA), a nationally accredited land trust and public charity dedicated to accelerating large-scale conservation, received $1.39 million in NJDEP funding to implement green infrastructure improvements at Pinelands Regional High School in Tuckerton, New Jersey. This initiative targets the Tuckerton Creek watershed, which drains into Tuckerton Creek and ultimately flows into Barnegat Bay—a critical estuary spanning 33 municipalities in Ocean County and four in Monmouth County. The retrofit will transform the school’s stormwater detention basin into a multi-functional system that mimics natural hydrology, enhances flow control, and improves water quality locally and in the larger Barnegat Bay watershed.
Working with GTA and GreenVest, Princeton Hydro is serving as the design engineer, applying nature-based engineering and ecological restoration techniques to intercept, evapotranspire, and infiltrate stormwater runoff at its source. In addition to its technical objectives, the effort includes a strong community engagement component and an educational platform for students. By bringing green infrastructure into the school environment, the initiative provides hands-on experience with water resources, stormwater management, and ecological engineering, help to build STEM skills while fostering a deeper connection to the surrounding landscape and an understanding of how natural systems work together to support environmental and community health.
Princeton Hydro also assisted several of these partners in developing successful NJDEP Section 319(h) grant applications, providing technical documentation, conceptual designs, and pollutant load reduction estimates to strengthen the proposals.
To date, the Murphy Administration has awarded more than $33M in Water Quality Restoration grants to improve the health of waterways in all corners of the state. Click here to read about all the 2025 grant funding recipients and their innovative projects.
As NJDEP Environmental Protection Commissioner Shawn M. LaTourette noted in the department's press release, “Enhancing the ecological health of our lakes, rivers, streams and coastal waters has long been a priority of the Murphy Administration. The Department of Environmental Protection is pleased to award these grants that will help our partners advance a variety of strategies to improve the health of these waterways and enhance the quality of life in our communities.”
We are proud to play a continued role in advancing that mission: helping communities implement practical, data-driven solutions that make a measurable difference for New Jersey’s waterways and the people who depend on them. Click here to learn more about our work to protect natural habitat and restore water quality throughout the New Jersey.
Last year, there were more than 70 suspected and 39 confirmed Harmful Algal Blooms (HABs) in New Jersey, which is significantly higher than the previous two years. New Jersey wasn’t the only state impacted by HABs. The increase caused severe impacts on lakes throughout the country, resulting in beach closures, restricting access to lake usage, and prompting wide-ranging health advisories.
In November, New Jersey Governor Phil Murphy and officials from the New Jersey Department of Environmental Protection (NJDEP) announced a three-pronged, $13 million initiative to reduce and prevent future HABs in the state. As part of the initiative, NJDEP hosted its first regional HABs Summit with the goal of prevention by improving communication throughout lake communities and sharing information ahead of the warmer months when HABs begin to appear.
The summit, which was held on January 28, 2020 at NJDEP's Pequest Trout Hatchery and Natural Resource Education Center in Warren County included a Q&A panel discussion, information resource tables for one-on-one discussions, and presentations from a variety of NJDEP representatives and environmental experts. Princeton Hydro's Director of Aquatics and regional HABs expert Dr. Fred Lubnow’s presentation focused on how to properly and effectively manage HABs.
According to Dr. Lubnow, “Managing loads of phosphorous in watersheds is even more important as the East Coast becomes increasingly warmer and wetter thanks to climate change. Climate change will likely need to be dealt with on a national and international scale. But local communities, groups, and individuals can have a real impact in reducing phosphorous levels in local waters.”
In a recent press release from Governor Murphy’s office, the NJDEP Chief of Staff Shawn LaTourette said, “We will reduce HABs by working closely with our local partners on prevention and treatment techniques, while relying on the best available science to clearly communicate risk to the public. Our new HABs initiative will enhance the Department’s ability to evaluate statewide strategies and increase the capacity of lake communities to reduce future blooms.”
New Jersey’s new HABs initiative is comprised of three main components:
More than $13 million in funding will be available to local communities to assist in preventing HABs, including:
$2.5 million will be available as matching funds for lakes and HABs management grants, including treatment and prevention demonstration projects.
Up to $1 million in Watershed Grant funding will be made available for planning and projects that reduce the nonpoint source pollution, including nutrients, that contribute to HABs in surface waters of the State.
$10 million in principal forgiveness grants will be offered through the Clean Water State Revolving Fund for half of the cost, capped at $2 million, of sewer and stormwater upgrades to reduce the flow of nutrients to affected waterbodies.
Per the Governor’s press release, “the second element of the initiative is to build upon the state’s scientific expertise and enhance its capacity to respond to HAB events. This includes establishing a team of experts from across various sectors to evaluate the state’s strategies to prevent HABs and pursuing additional monitoring, testing and data management capacity.”
The third component is focused on increasing NJDEP’s ability to communicate with affected communities. The regional HABs Summit held on January 28 was one of two Summits that will occur in early 2020 (the date of the next Summit has not yet been announced). NJDEP has also developed new web tools to provide HABs education, offer a forum to discuss and report potential HAB sightings, and better communicate HAB incidents.
To learn more about New Jersey's new HABs Initiative, click here. To learn more about HABs, check out our recent blog: "Identifying, Understanding and Addressing Harmful Algae Blooms"
There are lots of things we can do to preserve our precious water resources. Reducing stormwater pollution in our neighborhoods is something everyone can take part in. Storm drain cleaning is a great place to start!
Urbanization has fundamentally altered the way that water moves through the landscape. Stormwater that doesn’t soak into the ground runs along streets and parking lots and picks up pollutants. Much of the pollution in our nation’s waterways comes from everyday materials like fertilizers, pesticides, motor oil, and household chemicals. Rainwater washes these substances from streets, yards and driveways into storm drains.
It’s a common misconception that storm drains lead to wastewater treatment plants. In actuality, storm drains rarely lead to treatment plants and instead stormwater systems carry untreated water directly to the nearest waterway. This polluted runoff can have negative impacts on water quality, overstimulate algal growth (both toxic and non-toxic), harm aquatic species and wildlife, and cause trash and debris to enter our lakes, streams, rivers and oceans.
We can all do our part to improve and preserve water resources in our community and beyond! Keeping neighborhood storm drains cleaned is one simple step. Removing debris that collects in nearby stormwater catch basins, storm drains and along curbs promotes cleaner runoff, reduces the potential for flooding, and decreases the amount of pollution and trash entering our waterways.
Follow these simple steps for DIY storm drain cleaning:
The American Littoral Society was awarded the Governor’s Environmental Excellence Award in the Water Resources category this year for their Clean Water, Beautiful Bay projects in Barnegat Bay.
According to the Barnegat Bay Partnership, over 33% of the Barnegat Bay watershed has been altered to urban land cover. The construction of communities, roads and business has greatly increased the total amount of impervious surfaces in the watershed. With the added impervious cover has come a steady increase in the amount of nutrients, sediment, pathogens and other contaminants transported into the Bay by runoff. This accelerated the degradation of the Bay’s water quality and triggered changes to the Bay’s ecology.
Recognizing the importance of the Barnegat Bay, the American Littoral Society proposed green infrastructure measures to decrease runoff volume and nutrient loading to the bay and its tributaries. Princeton Hydro was contracted by American Littoral Society to design four projects and provide oversight on the construction of the bioretention basins, rain gardens, porous pavement, etc. The projects were funded by the largest 319 grant ever administered by the NJDEP, totaling around $1 million. The project aimed to:
From our team, Dr. Steve Souza and Paul Cooper worked to develop a unique Scoring Matrix for the selection of best management practices for retrofit projects. They have been asked several times to present on the matrix and demonstrate how to beneficially utilize it. In addition to design, Princeton Hydro participated in much of the public outreach for these projects, including giving presentations, leading workshops, and helping high school students plant vegetation around their school.
According to NJDEP, the Clean Water, Beautiful Bay projects were successful in reducing flooding in a private residential homeowner community, improving a stormwater basin and public open space area at a hospital, introducing golf course staff and golfers to environmentally friendly golf course management practices, and engaging high school students in planting projects on school property. The projects demonstrated that green infrastructure construction projects can reduce flooding and water pollution at business, community, school and public recreation locations, and can be publicly accepted and valued for the environmentally protective and restorative benefits they provide to Barnegat Bay.
Last year, the American Littoral Society’s Barnegat Bay Green Infrastructure Project was named “Project of the Year” by The American Society of Civil Engineers Central Jersey Branch.
For more information on Princeton Hydro's green infrastructure and stormwater management services, please visit: bit.ly/stormwatermgmt
The Pin Oak Forest Conservation Area is a 97-acre tract of open space that contains an extremely valuable wetland complex at the headwaters of Woodbridge Creek. The site is located in a heavily developed landscape of northern Middlesex County and is surrounded by industrial, commercial, and residential development. As such, the area suffered from wetland and stream channel degradation, habitat fragmentation, decreased biodiversity due to invasive species, and ecological impairment. The site was viewed as one of only a few large-scale freshwater wetland restoration opportunities remaining in this highly developed region of New Jersey.
Recognizing the unique qualities and great potential for rehabilitating and enhancing ecological function on this county-owned parkland, a dynamic partnership between government agencies, NGOs, and private industry, was formed to restore the natural function of the wetlands complex, transform the Pin Oak Forest site into thriving habitat teeming with wildlife, and steward this property back to life. The team designed a restoration plan that converted 28.94 acres of degraded freshwater wetlands, 0.33 acres of disturbed uplands dominated by invasive species, and 1,018 linear feet of degraded or channelized streams into a species-rich and highly functional headwater wetland complex.
We used an innovative approach to restore the hydraulic connection of the stream channel with its floodplain in order to support wetland enhancement. Additionally, to further enhance wetlands with hydrologic uplift, the team incorporated microtopography techniques, which creates a variable surface that increases groundwater infiltration and niches that support multiple habitat communities. This resulted in a spectrum of wetland and stream habitats, including the establishment of a functional system of floodplain forest, scrub shrub, emergent wetlands and open water. Biodiversity was also increased through invasive species management, which opened the door for establishing key native flora such as red maple, pin oak, swamp white oak, and swamp rose. The restored headwater wetland system also provides stormwater quality management, floodplain storage, enhanced groundwater recharge onsite, and surface water flows to Woodbridge Creek.
Completed in 2017, the integrated complex of various wetland and upland communities continues to provide high quality habitat for a wide variety of wildlife species including the state-threatened Black-crowned Night heron and Red-headed Woodpecker. The work done at the site significantly enhanced ecological function, providing high-quality habitat on indefinitely-preserved public lands that offer countless benefits to both wildlife and the community.
Public and private partnerships were and continue to be critical to the success of this project. The diverse partnership includes Middlesex County Office of Parks and Recreation, Woodbridge Township, Woodbridge River Watch, New Jersey Freshwater Wetlands Mitigation Council, GreenTrust Alliance, GreenVest, and Princeton Hydro. The partners joined together as stakeholders to identify long term restoration and stewardship goals for Pin Oak Forest Preserve, and nearly four years later, the partners all remain involved in various aspects of managing the property and this project itself, ranging from fiscal oversight by New Jersey Freshwater Wetland Mitigation Council and GreenTrust Alliance, to permit and landowner access coordination performed by Woodbridge Township and Middlesex County, or the ongoing stewardship, maintenance, and monitoring of the project and the larger park, being conducted by being conducted by GreenTrust Alliance, GreenVest, and NJ Department of Environmental Protection.
This project was funded through the New Jersey Freshwater Wetland In-Lieu Fee program. In 2014, GreenTrust Alliance, GreenVest, and Princeton Hydro secured $3.8 million dollars of funding on behalf of the Middlesex County Parks Department to restore three wetland sites, which included Pin Oak Forest.
The Pin Oak Forest project is a great model for showcasing a successful approach to the enhancement of public lands through a dynamic multidisciplinary, multi-stakeholder partnership. And, because of proper planning and design, it has become a thriving wildlife oasis tucked in the middle of a densely-populated suburban landscape.
Princeton Hydro specializes in the planning, design, permitting, implementing, and maintenance of wetland rehabilitation projects. To learn about another wetland restoration, creation, and enhancement project, click here.
A volunteer effort, lead by the Middlesex County, New Jersey Parks and Recreation Department and the Rutgers Cooperative Extension, recently took place at Thompson Park.
Despite the rainy weather, 78 volunteers and members of the Youth Conservation Corps removed litter from the shoreline of Manalapan Lake, repaired fencing, made improvements to the park’s walking trails, weeded and mulched the park’s rain garden and native plant garden, and installed new plants in the rain garden.
The park’s rain garden was originally designed by Princeton Hydro Senior Water Resource Engineer Dr. Clay Emerson, PE, CFM. Rain gardens are cost effective, attractive and sustainable means to minimize stormwater runoff. They also help to reduce erosion, promote groundwater recharge, minimize flooding and remove pollutants from runoff.
By definition, a rain garden is a shallow depression that is planted with deep-rooted native plants and grasses, and positioned near a runoff source to capture rainwater. Planting native plants also helps to attract pollinators and birds and naturally reduces mosquitos by removing standing water thus reducing mosquito breeding areas.
Rain gardens temporarily store rainwater and runoff, and filter the water of hydrocarbons, oil, heavy metals, phosphorous, fertilizers and other pollutants that would normally find their way to the sewer and even our rivers and waterways.
On the day of the volunteer event, Central New Jersey received 0.44 inches of rain. "We got to see the rain garden in action, which was really exciting," said Princeton Hydro Senior Project Manager Kelly Klein, who volunteered at the event.
Volunteers from the following organizations participated:
The Middlesex County Parks and Recreation Department’s next public volunteer event is tomorrow (June 2) in Davidson’s Mill Pond Park.
The Princeton Hydro team has designed and constructed countless stormwater management systems, including rain gardens in locations throughout the Eastern U.S. Click here for more information about our stormwater management services.
…
Your Full Name * Phone Number * Your Email * Organization Address Message *
By EmailBy Phone
Submit
Δ
Couldn’t find a match? Check back often as we post new positions throughout the year.