search
WP_Query Object
(
    [query] => Array
        (
            [tag] => stormwater-management
        )

    [query_vars] => Array
        (
            [tag] => stormwater-management
            [error] => 
            [m] => 
            [p] => 0
            [post_parent] => 
            [subpost] => 
            [subpost_id] => 
            [attachment] => 
            [attachment_id] => 0
            [name] => 
            [pagename] => 
            [page_id] => 0
            [second] => 
            [minute] => 
            [hour] => 
            [day] => 0
            [monthnum] => 0
            [year] => 0
            [w] => 0
            [category_name] => environmental-services
            [cat] => 34
            [tag_id] => 1048
            [author] => 
            [author_name] => 
            [feed] => 
            [tb] => 
            [paged] => 1
            [meta_key] => 
            [meta_value] => 
            [preview] => 
            [s] => 
            [sentence] => 
            [title] => 
            [fields] => all
            [menu_order] => 
            [embed] => 
            [category__in] => Array
                (
                    [0] => 34
                )

            [category__not_in] => Array
                (
                )

            [category__and] => Array
                (
                )

            [post__in] => Array
                (
                )

            [post__not_in] => Array
                (
                )

            [post_name__in] => Array
                (
                )

            [tag__in] => Array
                (
                )

            [tag__not_in] => Array
                (
                )

            [tag__and] => Array
                (
                )

            [tag_slug__in] => Array
                (
                    [0] => stormwater-management
                )

            [tag_slug__and] => Array
                (
                )

            [post_parent__in] => Array
                (
                )

            [post_parent__not_in] => Array
                (
                )

            [author__in] => Array
                (
                )

            [author__not_in] => Array
                (
                )

            [search_columns] => Array
                (
                )

            [ignore_sticky_posts] => 
            [suppress_filters] => 
            [cache_results] => 1
            [update_post_term_cache] => 1
            [update_menu_item_cache] => 
            [lazy_load_term_meta] => 1
            [update_post_meta_cache] => 1
            [post_type] => 
            [posts_per_page] => 10
            [nopaging] => 
            [comments_per_page] => 5
            [no_found_rows] => 
            [order] => DESC
        )

    [tax_query] => WP_Tax_Query Object
        (
            [queries] => Array
                (
                    [0] => Array
                        (
                            [taxonomy] => category
                            [terms] => Array
                                (
                                    [0] => 34
                                )

                            [field] => term_id
                            [operator] => IN
                            [include_children] => 
                        )

                    [1] => Array
                        (
                            [taxonomy] => post_tag
                            [terms] => Array
                                (
                                    [0] => stormwater-management
                                )

                            [field] => slug
                            [operator] => IN
                            [include_children] => 1
                        )

                )

            [relation] => AND
            [table_aliases:protected] => Array
                (
                    [0] => ph_term_relationships
                    [1] => tt1
                )

            [queried_terms] => Array
                (
                    [category] => Array
                        (
                            [terms] => Array
                                (
                                    [0] => 34
                                )

                            [field] => term_id
                        )

                    [post_tag] => Array
                        (
                            [terms] => Array
                                (
                                    [0] => stormwater-management
                                )

                            [field] => slug
                        )

                )

            [primary_table] => ph_posts
            [primary_id_column] => ID
        )

    [meta_query] => WP_Meta_Query Object
        (
            [queries] => Array
                (
                )

            [relation] => 
            [meta_table] => 
            [meta_id_column] => 
            [primary_table] => 
            [primary_id_column] => 
            [table_aliases:protected] => Array
                (
                )

            [clauses:protected] => Array
                (
                )

            [has_or_relation:protected] => 
        )

    [date_query] => 
    [queried_object] => WP_Term Object
        (
            [term_id] => 1048
            [name] => stormwater management
            [slug] => stormwater-management
            [term_group] => 0
            [term_taxonomy_id] => 1048
            [taxonomy] => post_tag
            [description] => 
            [parent] => 0
            [count] => 101
            [filter] => raw
            [term_order] => 0
        )

    [queried_object_id] => 1048
    [request] => SELECT SQL_CALC_FOUND_ROWS  ph_posts.ID
					 FROM ph_posts  LEFT JOIN ph_term_relationships ON (ph_posts.ID = ph_term_relationships.object_id)  LEFT JOIN ph_term_relationships AS tt1 ON (ph_posts.ID = tt1.object_id)
					 WHERE 1=1  AND ( 
  ph_term_relationships.term_taxonomy_id IN (34) 
  AND 
  tt1.term_taxonomy_id IN (1048)
) AND ((ph_posts.post_type = 'post' AND (ph_posts.post_status = 'publish' OR ph_posts.post_status = 'acf-disabled')))
					 GROUP BY ph_posts.ID
					 ORDER BY ph_posts.menu_order, ph_posts.post_date DESC
					 LIMIT 0, 10
    [posts] => Array
        (
            [0] => WP_Post Object
                (
                    [ID] => 8948
                    [post_author] => 1
                    [post_date] => 2021-07-13 12:50:00
                    [post_date_gmt] => 2021-07-13 12:50:00
                    [post_content] => 

Volunteers recently came together in Asbury Park, New Jersey to install floating wetland islands (FWIs) in Wesley Lake and Sunset Lake. The initiative, led by the Deal Lake Commission and Princeton Hydro, brought together dozens of volunteers to install a total of 12 FWIs, six in each lake. 

[gallery link="none" ids="8935,8936,8934"]

Photos by Donald Brockel

 

FWIs are a low-cost, effective green infrastructure solution used to mitigate phosphorus and nitrogen stormwater pollution. FWIs are designed to mimic natural wetlands in a sustainable, efficient, and powerful way. They improve water quality by assimilating and removing excess nutrients that could fuel harmful algae blooms; provide valuable ecological habitat for a variety of beneficial species; help mitigate wave and wind erosion impacts; provide an aesthetic element; and add significant biodiversity enhancement within open freshwater environments.

Volunteers install plants in one of the six floating wetland islands launched in Wesley Lake:

The Deal Lake Commission acquired the 12 FWIs through a Clean Water Act Section 319(h) grant awarded by the New Jersey Department of Environmental Protection. During the volunteer event, participants helped plant vegetation in each of the FWIs, and launch and secure each island into the lakes.

We collected so many great photos during the event. Here are some highlights:

[gallery link="none" columns="2" ids="8950,8939,8943,8942,8946,8944,8945,8954,8941,8923"]

NBC New York’s Brian Thompson stopped by to lend a hand and captured footage of the floating wetland island launch. Click here to watch!

To learn more about Floating Wetland Islands, check out the recent Native Plants, Healthy Planet Podcast, which featured Dr. Jack Szczepanski, CBLP, Princeton Hydro Senior Aquatic Ecologist.

[post_title] => Volunteers Install 12 Floating Wetland Islands in Asbury Park, NJ [post_excerpt] => Volunteers installed floating wetland islands (FWIs) in Asbury Park's Wesley Lake and Sunset Lake. The initiative was led by the Deal Lake Commission and Princeton Hydro. [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => volunteers-install-12-floating-wetland-islands-in-asbury-park-nj [to_ping] => [pinged] => [post_modified] => 2024-01-18 05:26:33 [post_modified_gmt] => 2024-01-18 05:26:33 [post_content_filtered] => [post_parent] => 0 [guid] => https://princetonhydro.com/?p=8948 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [1] => WP_Post Object ( [ID] => 5284 [post_author] => 3 [post_date] => 2020-07-28 11:34:38 [post_date_gmt] => 2020-07-28 11:34:38 [post_content] =>

This month we are launching the first blog in our Client Spotlight Blog Series! Each spotlight will feature one of our important client relationships in order to give you an inside look at our collaboration. We pride ourselves on forming strong ties with organizations that share our values of creating a better future for people and our planet. So we are excited to be able to share snippets of the incredible teamwork we've been able to accomplish over the years!

At Princeton Hydro, we value our client relationships, as the collaborative work we are able to complete with organizations like the Lake Hopatcong Foundation (LHF) reaches exponentially further than anything we could complete alone. One of the reasons our organizations have such strong symmetry is that our values align and complement each other.

As their mission states,”Lake Hopatcong Foundation dedicates itself to protecting the lake environment and enhancing the lake experience, bringing together public and private resources to encourage a culture of sustainability and stewardship on and around New Jersey’s largest lake, for this and future generations.” We are so proud to help protect New Jersey’s largest lake with LHF.

We have been working with LHF since its inception in 2012, which is why we are excited to feature them in our first client spotlight blog. We spoke with Jessica Murphy, President/Executive Director of the Foundation, and Donna Macalle-Holly, Grants and Program Director, to give you an insider look at the organization:

Q: What makes the Lake Hopatcong Foundation unique?

A: The Lake Hopatcong Foundation is unique in that our mission spans a wide spectrum of activities. In addition to projects that focus on the lake environment, we also take on initiatives that support education, safety, community-building, recreation, and even arts and culture. The lake is split between two counties and four towns, so bringing the community together for all these things is very important to us, in addition to making sure the lake itself is healthy.

Q: What does the Lake Hopatcong Foundation value?

A: During our strategic planning process, the board and staff developed a list of values that we go back to when operating and making decisions. They are:

  • Collaboration - We operate in a way that brings people together throughout the community.
  • Action - We are committed to our mission, moving quickly to take on projects that have an impact on and around the lake.
  • Sustainability - We are forward-thinking when making decisions, taking future generations into account when considering projects and initiatives.
  • Warmth - We are a friendly face to the community, showing the best of ourselves and bringing out the best in the people of Lake Hopatcong.
Q: How long have you been working with Princeton Hydro?

When we first started the Lake Hopatcong Foundation in 2012, Dr. Fred Lubnow was kind enough to do a water quality presentation as one of our very first events as an organization! In the years since, we’ve worked closely with Princeton Hydro, particularly in a support role as they conduct business with the Lake Hopatcong Commission. The Lake Hopatcong Commission is a state entity created in 2001 through the Lake Hopatcong Protection Act dedicated to protecting the water quality of Lake Hopatcong and to preserve the natural, scenic, historical and recreational resources of the lake. LHF funded Princeton Hydro’s water quality monitoring during the years that the Commission ran out of money

Q: What types of services has Princeton Hydro provided to your organization?

A: In addition to water quality monitoring on the lake, Princeton Hydro has led volunteer training for us in our efforts to prevent the spread of invasive species and to teach local students in our spring field trip program. Dr. Lubnow has also worked alongside us in applying for grants and in providing insight and expertise for other environmental projects at the lake, including helping guide the installation of floating wetland islands, and helping our NJ Lakes Group to work with NJDEP on Harmful Algal Bloom (HAB) policies. He even did a quick fact check on our children’s book, Lake Hopatcong Speaks Out, before we published it!

Q: Do you have a favorite or most memorable project we’ve worked on together?

A: The days that Chris Mikolajczyk spent teaching our volunteers about how to find and remove water chestnuts from the lake were a lot of fun, particularly because we were kayaking on the lake for it! And, also because the kayak we provided Chris was too small for him, and he had to scrunch in to fit, but he was a trouper and paddled on.

Q: What are some exciting things your organization is working on right now?

A: We are working closely with Princeton Hydro and LHC on a series of projects, funded through NJDEP grants, LHC, LHF, and local governments, that we hope will prevent and mitigate HABs on the lake. Those projects include aeration systems, phosphorus-locking technologies, and stormwater infrastructure upgrades. We’re excited to see how effective each can be. Also, on August 7 at 12:30, Dr. Lubnow will be presenting the Lake Hopatcong water quality monitoring project results at LHF’s “Thirst for Knowledge” lunch-and-learn webinar series, which was created to share information and discuss topics of interest to our lake community. To register for the free webinar, visit lakehopatcongfoundation.org.

[caption id="attachment_5249" align="aligncenter" width="584"]Photo by: Colleen Lyons of the Lake Hopatcong Commission  [/caption] Q: What drives you to want to go to work every day?

A: All of us at Lake Hopatcong Foundation have a passion for this lake and want to see it protected; we have a love for the community that surrounds it, too. Jessica Murphy grew up on the lake, met her husband here, and now is raising her four children to love the lake, too. Donna Macalle-Holly also met her husband on Lake Hopatcong, lives on the lake, and has worked professionally to take care of it for nearly two decades. Everyone in our office has made memories on Lake Hopatcong and developed friendships with those who live and work here. Those personal connections fuel our passion for what we do.

Q: How can Princeton Hydro support you/your organization in the future?

A: Continue to be the incredible resource you are! We are so fortunate to have the deep knowledge and expertise that Fred and your entire team provide, and we look forward to continuing to work together in the years ahead.

[caption id="attachment_5286" align="aligncenter" width="576"]  [/caption]

Some recent projects we are/have been working on with LHF include installing biochar bags to help control phosphorus levels and applying Phoslock to help mitigate harmful algal blooms! Because of our history working on Lake Hopatcong, we too have gained a passion for protecting and maintaining this lake. This incredibly important work could not be done without the genuine devotion and dedication from the Lake Hopatcong Foundation. We look forward to continuing great work with this incredible group!

[post_title] => Client Spotlight: Lake Hopatcong Foundation [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => client-spotlight-lake-hopatcong-foundation [to_ping] => [pinged] => [post_modified] => 2025-11-04 02:46:03 [post_modified_gmt] => 2025-11-04 02:46:03 [post_content_filtered] => [post_parent] => 0 [guid] => https://www.princetonhydro.com/blog/?p=5284 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [2] => WP_Post Object ( [ID] => 4934 [post_author] => 3 [post_date] => 2020-05-27 13:51:06 [post_date_gmt] => 2020-05-27 13:51:06 [post_content] =>

Last summer, 39 of New Jersey’s lakes were plagued with toxic algae outbreaks, also known as harmful algae blooms or HABs, causing major water quality degradation, beach closures and health advisories. In response, the NJDEP implemented a unified statewide approach to addressing HABs in freshwater recreational waters and sources of drinking water, and protecting the public from risks associated with exposure to cyanobacteria.

Last week, NJDEP announced a new component to its statewide Cyanobacterial HAB Response Strategy: a color-coded health alert index that provides precise recreational use recommendations for impacted waterbodies based on levels of cyanobacteria and/or cyanotoxins present. The index has six tiers - NONE, WATCH, ALERT, ADVISORY, WARNING, and DANGER - each providing recommendations on the specific activities that should or should not be pursued based on water monitoring results.

"Princeton Hydro is proud to be one of the contributing factors in the development of the Updated Guidance for HABs," said said Dr. Fred Lubnow, Director of Aquatic Resources for Princeton Hydro. "We feel this updated protocol will provide the necessary and objective information for State and local organizations to make informed and rational decisions, based on sound and scientifically-based data, on how to deal with HABs in a recreational setting."

Princeton Hydro and Clean Water Consulting are the technical advisers for the New Jersey Lake Group, who have met a number of times over the last 8 to 9 months to discuss the State's guidance on dealing with HABs.  In late 2019, on behalf of the New Jersey Lake Group, Princeton Hydro and Clean Water Consulting developed a White Paper providing recommended changes for consideration to NJDEP's Recreational Response Strategy to HABs.

"I'm proud to say that many of the provided recommendations were integrated into NJDEP's Updated Guidance for HABs," explained Dr. Lubnow.

WATCH (Suspected or confirmed HAB with potential for allergenic and irritative health effects) This warning will be posted when HAB cell counts exceed 20,000. In this scenario, public beaches remain open, but the index instructs the public to use caution, provides information on the potential less serious health effects, and allows for more informed decision-making.

ALERT (Confirmed HAB that requires greater observation due to increasing potential for toxin production) This warning indicates a public bathing beach closure only and is posted when a HAB has been confirmed with cell counts between 40,000 and 80,000 and no known toxins above the public threshold. Beaches remain open (dependent upon local health authority) and monitoring for future toxin production should be increased.

ADVISORY (Confirmed HAB with moderate risk of adverse health effects and increased potential for toxins above public health thresholds) Signs will be posted for this warning level when cell counts exceed 80,000 or when toxin levels exceed 3 micrograms per milliliter of microcystins. Public bathing beaches will be closed, but the waterbody will remain accessible to some “secondary contact” activities, like boating.

WARNING and DANGER (Confirmed HAB with high risk of adverse health effects due to high toxin levels) and (Confirmed HAB with very high risk of adverse health effects due to high toxin levels) These tiers are designed to alert the public to the presence of HABs that are producing very high levels of toxins which justify additional caution. In some instances, the entire waterbody may be closed for all public use. New Jersey has experienced approximately 12 “warning level” HAB events over the last 3 years; monitoring has never indicated a “danger level” HAB event.

According to their press release, NJDEP is committed to working with local officials to implement the index and get signage posted at lakes throughout the state as soon as possible.

In order to create the health index, NJDEP scientists carefully reviewed HABs data collected over the last three years by Lake Hopatcong Commission, Lake Hopatcong Foundation, Princeton Hydro, and other sources. The tiered warning system will enable lake communities, residents and visitors to make more individualized decisions about what risks they are willing to take and what activities they feel comfortable engaging in at the various levels of HABs.

In the coming days, the NJDEP’s Harmful Algal Bloom website will be updated to include the new health index and accompanying signage, relevant monitoring data, and other information for each of the impacted bodies of water, as well as an updated HAB Monitoring and Response Strategy. For now, you can read the full press release and additional information here: https://www.nj.gov/dep/newsrel/2020/20_0023.htm.

To learn more about HABs, check out our recent blog:

[embed]https://www.princetonhydro.com/blog/harmful-algae-blooms/[/embed]

[post_title] => NJDEP Releases Updated Guidance for Harmful Algal Blooms [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => njdep-habs-guidelines [to_ping] => [pinged] => [post_modified] => 2025-01-02 13:54:12 [post_modified_gmt] => 2025-01-02 13:54:12 [post_content_filtered] => [post_parent] => 0 [guid] => https://www.princetonhydro.com/blog/?p=4934 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [3] => WP_Post Object ( [ID] => 4361 [post_author] => 3 [post_date] => 2019-11-18 15:07:38 [post_date_gmt] => 2019-11-18 15:07:38 [post_content] =>

Harmful Algae Blooms (HABs) were in the spotlight this summer due to the severe impacts they had on lakes throughout the country. The nation-wide HABs outbreak caused beach closures, restricted access to lake usage, and wide-ranging health advisories.

What exactly are HABs? Why were they so severe this summer? Will this trend continue? Can anything be done to prevent the occurrence or mitigate the impacts?

In this blog, we provide answers to all of those questions, exploring what HABs are, why they occur, why they were particularly prevalent this summer, and what we can do to combat them.

[caption id="attachment_1736" align="alignnone" width="1246"]Harmful Algae Bloom Visible in Owasco Lake. Photo by: Tim Schneider Harmful Algae Bloom Visible in Owasco Lake. Photo by: Tim Schneider[/caption]

What are HABs?

Simply put, HABs are rapid, large overgrowths of cyanobacteria. Cyanobacteria, also known as blue-green algae, aren’t actually algae, they are prokaryotes, single-celled aquatic organisms that are closely related to bacteria and can photosynthesize like algae. These microorganisms are a natural part of aquatic ecosystems, but, under the right conditions (primarily heavy rains, followed by hot, sunny days), these organisms can rapidly increase to form cyanobacteria blooms, also known as HABs.

HABs can cause significant water quality issues in lakes and ponds, often forming a visible and sometimes odorous scum on the surface of the water. They can produce toxins that are incredibly harmful (even deadly) to humans, animals, and aquatic organisms.

HABs also negatively impact economic health, especially for communities dependent on the income of jobs and tourism generated through their local lakes and waterways.


What Causes HABs?

HABs are caused by a complex set of conditions, and many questions remain about exactly why they occur and how to predict their timing, duration, and toxicity. Primarily, HABs are caused by warmer temperatures and stormwater run-off pollutants, including fertilizers with phosphates.

NY Times article, featuring Princeton Hydro, looks at how climate change affects lakes nationwide, using NJ as an example. Photo by: Rick Loomis, NY Times.HABs are induced by an overabundance of nutrients in the water. The two most common nutrients are fixed nitrogen (nitrates and ammonia) and phosphorus. Discharges from wastewater treatment plants, runoff from agricultural operations, excessive fertilizer use in urban/suburban areas, and stormwater runoff can carry nitrogen and phosphorus into waterways and promote the growth of cyanobacteria.

Climate change is also a factor in HAB outbreaks, which typically occur when there are heavy rains followed by high temperatures and sunshine. Climate change is leading to more frequent, more intense rainstorms that drive run-off pollutants into waterways, coupled with more hot days to warm the water. These are the ideal conditions for HABs, which in recent years have appeared in more places, earlier in the summer.

With climate change and increasing nutrient pollution causing HABs to occur more often and in locations not previously affected, it's important for us to learn as much as we can about HABs so that we can reduce their harmful effects.


How to Prevent HABs?

Signs on the closed beach at Hopatcong State Park warn residents of the Harmful Algae Bloom at Lake Hopatcong on July 2019, in Landing, NJ. (Photo by: Danielle Parhizkaran of NorthJersey.comThe number one thing individuals can do to protect their waterbodies and prevent HABs is to reduce phosphorous use and reduce nutrient loads to waters.

According to Dr. Fred Lubnow of Princeton Hydro, “Managing loads of phosphorous in watersheds is even more important as the East Coast becomes increasingly warmer and wetter thanks to climate change. Climate change will likely need to be dealt with on a national and international scale. But local communities, groups, and individuals can have a real impact in reducing phosphorous levels in local waters.”

Here are a few steps you can take to improve water quality in your community lakes:

Controlling stormwater runoff is another critical factor in improving water quality and reducing HABs. There are a number of low-cost green infrastructure techniques that can be implemented on an individual and community-wide scale. Click here to read more about green infrastructure stormwater management techniques.

In a recent Op/Ed published on NJ.com, Princeton Hydro President Geoffrey M. Goll, P.E. lists four things that residents, businesses, and local governments should do to prevent another HABs outbreak next summer:

  1. Improve aging “gray” infrastructure
  2. Invest in “green” stormwater infrastructure
  3. Implement regional/watershed-based planning
  4. Pass the Water Quality Protection and Jobs Creation Act

"By making the necessary investments, we can simultaneously create jobs, reduce flood impacts, improve fisheries, maintain or increase lakefront property values, improve water quality and preserve our water-based tourism. The time to act is literally now," said Geoff. Go here, to read the full article.


HABs Management in Action through Floating Wetland Islands

Nitrogen and phosphorus are utilized by plants, which means they uptake these nutrients to sustain growth. We see this naturally occurring in wetland ecosystems where wetlands act as a natural water filtration system and can actually thrive from nutrients flowing in from external sources.

This process is replicated in floating wetland islands (FWIs), where you typically have a constructed floating mat with vegetation planted directly into the material. The plants then grow on the island, rooting through the floating mat.

[caption id="attachment_4363" align="aligncenter" width="554"]This illustration, created by Staff Scientist Ivy Babson, conveys the functionality of a Floating Wetland Island This illustration, created by Staff Scientist Ivy Babson, conveys the functionality of a Floating Wetland Island[/caption]  

Not only do FWIs assimilate and remove excess nitrogen and phosphorus out of the water, they also provide habitat for fish and other aquatic organisms; help mitigate wave and wind erosion impacts; provide an aesthetic element; and can be part of a holistic lake/pond management strategy. Because of this, FWIs are being utilized to improve water quality and control HABs in lakes and ponds throughout the country.

[gallery link="none" size="medium" ids="17718,17310,10666"]

Princeton Hydro has designed and implemented numerous FWIs in waterbodies large and small. Go here to learn how they’re being used in Harveys Lake.


Recognizing and monitoring the changes that are taking place in our local waterways brings the problems of climate change, stormwater pollution and the resulting water quality issues closer to home, which can help raise awareness, inspire environmentally-minded action and promote positive, noticeable change.

If you spot what you believe to be HABs in your community lake, contact your local lake association right away. They, along with their lake management team, can assess the situation and determine what further actions need to be taken. For more information about HABs, click here.

Special thanks to Princeton Hydro Staff Scientist Ivy Babson for her contributions to this blog.

[post_title] => Identifying, Understanding and Addressing Harmful Algae Blooms [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => harmful-algae-blooms [to_ping] => [pinged] => [post_modified] => 2025-11-04 02:33:38 [post_modified_gmt] => 2025-11-04 02:33:38 [post_content_filtered] => [post_parent] => 0 [guid] => https://www.princetonhydro.com/blog/?p=4361 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [4] => WP_Post Object ( [ID] => 5846 [post_author] => 3 [post_date] => 2019-09-19 08:04:13 [post_date_gmt] => 2019-09-19 08:04:13 [post_content] =>

The U.S. is home to thousands of lakes both natural and manmade. Lakes are incredibly important features in the landscape that provide numerous beneficial services, including domestic water supply, hydro-electric power, agricultural water supply, recreation, and tourism. They also provide essential habitat for fish, wildlife and aquatic organisms.

Lakes are complex and dynamic systems, each situated in a unique landscape context. Maintaining the ecological health of a lake is no easy feat. A lot goes on behind the scenes to maintain water quality and a balanced lake ecosystem. Successful, long-term lake management requires a proactive approach that addresses the causes of its water quality problems rather than simply reacting to weed and algae growth and other symptoms of eutrophication.

Chautauqua Magazine recently published an article about the science behind the management of Chautauqua Lake, which features our Director of Aquatic Programs Dr. Fred Lubnow. We’ve included an excerpt below. Click here to view the full article and photos:

Dr. Fred Lubnow is a scientist and director of aquatic programs at Princeton Hydro, a consulting organization based in Exton, Pennsylvania, that is often called on to support lake and watershed regions that want to develop a long-term plan for lake conservation.

He says that while his firm focuses on the development of data and intelligence to inform decision making in regard to freshwater ecosystems, his work is really about coalition building.

"As a scientist and a consultant, you learn over time that you are building a coalition stakeholders and determining what we can agree on to help everyone in the community," Lubnow said.

Ten years ago, Princeton Hydro was hired to do some stream and inlet monitoring for various stakeholders at Chautauqua Lake. More recently, they've been contracted to conduct third-party monitoring of the impacts of the Spring 2019 herbicide applications in the south basin of Chautauqua Lake...

Continue reading!
 

Princeton Hydro is the industry leader in lake restoration and watershed management. We have conducted diagnostic studies and have developed management and restoration plans for over 300 lakes and watersheds throughout the country. This has included work for public and private recreational lakes, major water supply reservoir, and watershed management initiatives conducted as part of USEPA and/or state funded programs. For more information about our lake management services, go here: http://bit.ly/pondlake. 

[post_title] => Dr. Fred Lubnow of Princeton Hydro Featured in Magazine Article on Chautauqua Lake [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => chautauqua-lake [to_ping] => [pinged] => [post_modified] => 2025-10-13 15:59:22 [post_modified_gmt] => 2025-10-13 15:59:22 [post_content_filtered] => [post_parent] => 0 [guid] => https://www.princetonhydro.com/blog/?p=4158 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 1 [filter] => raw ) [5] => WP_Post Object ( [ID] => 5838 [post_author] => 3 [post_date] => 2019-08-08 16:13:09 [post_date_gmt] => 2019-08-08 16:13:09 [post_content] =>

Measuring 630+ acres, Harveys Lake, located in Luzerne County, Pennsylvania, just northeast of Wilkes-Barre, is the largest natural lake (by volume) within the Commonwealth of Pennsylvania, and is one of the most heavily used lakes in the area. It is classified as a high quality - cold water fishery habitat (HQ-CWF) and is designated for protection under the classification.

Since 2002, The Borough of Harveys Lake and the Harveys Lake Environmental Advisory Council  has worked with Princeton Hydro on a variety of lake management efforts focused around maintaining high water quality conditions, strengthening stream banks and shorelines, and managing stormwater runoff.

Successful, sustainable lake management requires identifying and correcting the cause of eutrophication as opposed to simply reacting to the symptoms of eutrophication (algae and weed growth). As such, we collect and analyze data to identify the problem sources and use these scientific findings to develop a customized management plan that includes a combination of biological, mechanical, and source control solutions. Here are some examples of the lake management strategies we've utilized for Harveys Lake:

 
Floating Wetland Islands

Floating Wetland Islands (FWIs) are an effective alternative to large, watershed-based natural wetlands. Often described as self-sustaining, FWIs provide numerous ecological benefits. They assimilate and remove excess nutrients, like nitrate and phosphorous, that could fuel algae growth; provide habitat for fish and other aquatic organisms; help mitigate wave and wind erosion impacts; and provide an aesthetic element. FWIs are also highly adaptable and can be sized, configured, and planted to fit the needs of nearly any lake, pond, or reservoir.

Five floating wetland islands were installed in Harveys Lake to assimilate and reduce nutrients already in the lake. The islands were placed in areas with high concentrations of nutrients, placed 50 feet from the shoreline and tethered in place with steel cables and anchored. A 250-square-foot FWI is estimated to remove up to 10 pounds of nutrients per year, which is significant when it comes to algae.

Princeton Hydro worked with the Harveys Lake Environmental Advisory Council and the Borough of Harveys Lake to obtain funding for the FWIs through the Pennsylvania Department of Environmental Protection (PADEP).

 
Streambank & Shoreline Stabilization

The shoreline habitat of Harveys Lake is minimal and unusual in that a paved road encompasses the lake along the shore with most of the homes and cottages located across the roadway, opposite the lake. In addition to the lake being located in a highly populated area, the limited shoreline area adds to the challenges created by urban stormwater runoff.

Runoff from urban lands and erosion of streambanks and shorelines delivers nutrients and sediment to Harveys Lake. High nutrient levels in the lake contribute to algal blooms and other water quality issues. In order to address these challenges, the project team implemented a number of small-scale streambank and inlet stabilization projects with big impacts.

The work included the stabilization of the streambank downstream for Harveys Lake dam and along Harveys Creek, the design and installation of a riparian buffer immediately along the lake’s shoreline, and selective dredging to remove sediment build up in critical areas throughout the watershed.

 
Invasive Species Management

Hydrilla (Hydrilla verticillata), an aggressively growing aquatic plant, took root in the lake in 2014 and quickly infected 250 acres of the lake in a matter of three years. If left untreated, hydrilla will grow to the water’s surface and create a thick green mat, which prevents sunlight from reaching native plants, fish and other organisms below. The lack of sunlight chokes out all aquatic life.

In order to prevent hydrilla from spreading any further, Princeton Hydro and SePRO conducted an emergency treatment of the impacted area utilizing the systemic herbicide Sonar® (Fluridone), a clay-based herbicide. SonarOne, manufactured by SePRO, blocks hydrilla’s ability to produce chloroplasts, which in turn halts the photosynthetic process. The low-concentration herbicide does not harm fish, wildlife or people using the lake. Surveys conducted after the treatment showed it was working – the hydrilla had turned white and was dying off. Additional Sonar treatments followed and efforts to eradicate hydrilla in the lake continue.

Dr. Fred Lubnow, our Director of Aquatic Programs, estimates complete eradication of the aquatic plant could take around five years. Everyone can do their part in preventing the spread of this and other invasive species. Boaters and lake users must be vigilant and remove all vegetation from the bottom of watercrafts and trailers.

 
Stormwater Best Management Practices (BMPs)

In 2009, Princeton Hydro developed a stormwater implementation plan (SIP) for Harveys Lake. The goal of the stormwater/watershed-based efforts was to reduce the lake’s existing annual total phosphorus load to be in full compliance with the established Total Maximum Daily Load (TMDL). This TMDL is related to watershed-based pollutant loads from total phosphorus (TP) and total suspended solids (TSS), which can contribute to algal blooms.

A number of structural urban runoff projects were implemented throughout the watershed. This includes the design and construction of two natural stream channel projects restoring 500 linear feet of tributaries and reducing the sediment and nutrient loads entering the lake. A series of 38 urban runoff BMPs, including nutrient separating devices and roadside infiltration, were installed in areas immediately adjacent to the lake to further reduce the loads of nutrients and other pollutants reaching the lake.

The photos below show a stormwater project that was completed in the Hemlock Gardens Section of the Watershed. Hemlock Gardens is a 28-acre section of land located in the southeastern portion of the watershed. It contains approximately 26 homes, has very steep slopes, unpaved dirt roads, and previously had no stormwater infrastructure in place.

Two structural stormwater BMPs were installed:

  • A nutrient separating baffle box, which utilizes a three-chamber basin with screens to collect leaf litter, grass clippings and trash
  • A water polishing unit that provides a platform for secondary runoff treatment

In 1994, Harveys Lake was identified as “impaired” by PADEP due to large algal blooms. In 2014, Harveys Lake was removed from the list of impaired waters. Project partners attribute the recovery of this lake to the stream restoration, urban runoff BMP implementation, and the use of in-lake nutrient reduction strategies.

The Harveys Lake Watershed Protection Plan Implementation Project proved that despite the lake being located in an urbanized watershed, it is possible to implement cost-effective green infrastructure and stormwater retrofit solutions capable of significantly decreasing pollutant loading to the lake.

To learn more about our lake and pond management services or schedule a consultation, visit: http://bit.ly/pondlake.

[post_title] => Managing Urban Stormwater Runoff and Revitalizing Natural Habitat at Harveys Lake [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => urban-stormwater-runoff-harveys-lake [to_ping] => [pinged] => [post_modified] => 2025-11-04 02:24:07 [post_modified_gmt] => 2025-11-04 02:24:07 [post_content_filtered] => [post_parent] => 0 [guid] => https://www.princetonhydro.com/blog/?p=4037 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [6] => WP_Post Object ( [ID] => 3837 [post_author] => 3 [post_date] => 2019-07-17 16:25:54 [post_date_gmt] => 2019-07-17 16:25:54 [post_content] =>

Walking through a park isn’t always a walk in the park when it comes to conducting stormwater inspections. Our team routinely spots issues in need of attention when inspecting stormwater infrastructure; that’s why inspections are so important.

Princeton Hydro has been conducting stormwater infrastructure inspections for a variety of municipalities in the Mid-Atlantic region for a decade, including the City of Philadelphia. We are in our seventh year of inspections and assessments of stormwater management practices (SMPs) for the Philadelphia Water Department. These SMPs are constructed on both public and private properties throughout the city and our inspections focus on areas served by combined sewers. 

Our water resource engineers are responsible for construction oversight, erosion and sediment control, stormwater facilities maintenance inspections, and overall inspection of various types of stormwater infrastructure installation (also known as “Best Management Practices” or BMPs).

Our knowledgeable team members inspect various sites regularly, and for some municipalities, we perform inspections on a weekly basis. Here’s a glimpse into what a day of stormwater inspection looks like:

The inspector starts by making sure they have all their necessary safety equipment and protection. For the purposes of a simple stormwater inspection the Personal Protection Equipment (PPE) required includes a neon safety vest, hard hat, eye protection, long pants, and boots. Depending on the type of inspection, our team may also have to add additional safety gear such as work gloves or ear plugs. It is recommended that inspectors hold CPR/First Aid and OSHA 10 Hour Construction Safety training certificates. 

Once they have their gear, our inspection team heads to the site and makes contact with the site superintendent. It’s important to let the superintendent know they’re there so that 1) they aren’t wondering why a random person is perusing their construction site, and 2) in case of an emergency, the superintendent needs to be aware of every person present on the site.

Once they arrive, our team starts by walking the perimeter of the inspection site, making sure that no sediment is leaving the project area. The team is well-versed in the standards of agencies such as the Pennsylvania Department of Environmental Protection, the Pennsylvania Department of Transportation, the New Jersey Department of Environmental Protection, and local County Soil Conservation Districts, among others. These standards and regulations dictate which practices are and are not compliant on the construction site.

After walking the perimeter, the inspection team moves inward, taking notes and photos throughout the walk. They take a detailed look at the infrastructure that has been installed since the last time they inspected, making sure it was correctly installed according to the engineering plans (also called site plans or drainage and utility plans). They also check to see how many inlets were built, how many feet of stormwater pipe were installed, etc.

If something doesn’t look quite right or needs amending, our staff makes recommendations to the municipality regarding BMPs/SMPs and provides suggestions for implementation.

One example of an issue spotted at one of the sites was a stormwater inlet consistently being inundated by sediment. The inlet is directly connected o the subsurface infiltration basin. When sediment falls through the inlet, it goes into the subsurface infiltration bed, which percolates directly into the groundwater. This sediment is extremely difficult to clean out of the subsurface bed, and once it is in the bed, it breaks down and becomes silt, hindering the function of the stormwater basin.

[gallery columns="2" size="medium" ids="3840,3841"]

To remedy this issue, our inspection team suggested they install stone around the perimeter of the inlet on three sides. Although this wasn’t in the original plan, the stones will help to catch sediment before entering the inlet, greatly reducing the threat of basin failure.

Once they’ve thoroughly inspected the site, our team debriefs the site superintendent with their findings. They inform the municipality of any issues they found, any inconsistencies with the construction plans, and recommendations on how to alleviate problems. The inspector will also prepare a Daily Field Report, summarizing the findings of the day, supplemented with photos.

In order to conduct these inspections, one must have a keen eye and extensive stormwater background knowledge. Not only do they need to know and understand the engineering behind these infrastructure implementations, they need to also be intimately familiar with the laws and regulations governing them. Without these routine inspections, mistakes in the construction and maintenance of essential stormwater infrastructure would go unnoticed. Even the smallest overlook can have dangerous effects, which is why our inspections team works diligently to make sure that will not happen.

Our team conducts inspections for municipalities and private entities throughout the Northeast. Click here to read about a stormwater utility investigation and feasibility study we completed in the Town of Hammonton, New Jersey.

[post_title] => A Day in the Life of a Stormwater Inspector [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => stormwater-inspection [to_ping] => [pinged] => [post_modified] => 2024-12-10 22:54:48 [post_modified_gmt] => 2024-12-10 22:54:48 [post_content_filtered] => [post_parent] => 0 [guid] => https://www.princetonhydro.com/blog/?p=3837 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 1 [filter] => raw ) [7] => WP_Post Object ( [ID] => 1376 [post_author] => 3 [post_date] => 2019-07-08 17:54:08 [post_date_gmt] => 2019-07-08 17:54:08 [post_content] =>

Floating Wetland Islands (FWI) are an effective alternative to large, watershed-based, natural wetlands. Often described as self-sustaining, FWIs provide numerous ecological benefits. They assimilate and remove excess nutrients that could fuel algae growth; provide habitat for fish and other aquatic organisms; help mitigate wave and wind erosion impacts; provide an aesthetic element; and can be part of a holistic lake/pond management strategy. FWIs are also highly adaptable and can be sized, configured and planted to fit the needs of nearly any lakepond or reservoir.

[caption id="attachment_4363" align="aligncenter" width="820"]This illustration, created by Staff Scientist Ivy Babson, conveys the functionality of a Floating Wetland Island Illustration by Princeton Hydro Staff Scientist Ivy Babson[/caption]  

Princeton Hydro Senior Scientist Katie Walston recently completed the Floating Island International (FII) Floating Wetland Master Seminar. The seminar provided participants with an in-depth look at the various technologies and products FII offers. Through hands-on examples, course participants learned how to utilize wetland islands for fisheries enhancement, stormwater management, shoreline preservation, wastewater treatment and more.

  "The Master Seminar was truly valuable both personally and professionally," said Katie. "I learned a tremendous amount and thoroughly enjoyed the experience. It's very fulfilling knowing that I can take the knowledge I've learned back to Princeton Hydro and make positive impacts for our clients."

FII was launched by inventor and outdoorsman Bruce Kania who was driven by the desire to reverse the decline of wetland habitats by developing a new and natural stewardship tool that could clean water and, in the process, improve life for all living creatures. He found that the answer lies in Biomimicry: duplicating nature’s processes in a sustainable, efficient and powerful way to achieve impeccable environmental stewardship for the benefit of all life.

[gallery link="none" ids="1379,5050,496"]

Bruce brought together a team of engineers and plant specialists and created BioHaven® floating islands. These islands biomimic natural floating islands to create a “concentrated” wetland effect. Independent laboratory tests show removal rates far in excess of previously published data: 20 times more nitrate, 10 times more phosphate and 11 times more ammonia, using unplanted islands. They are also extremely effective at reducing total suspended solids and dissolved organic carbon in waterways.

Due to population growth, industrialization and climate change, wetlands are at risk of rapidly declining in quantity and quality due. However, every floating wetland island launched by FII provides an effective strategy for mitigating and adapting to the impacts of over development and climate change.
The unique design of BioHaven® floating islands means that 250 square feet of island translates to an acre’s worth of wetland surface area. These versatile floating islands can be launched in either shallow or deep water, and can be securely anchored or tethered to ensure that they remain in a specific location. They are almost infinitely customizable, and can be configured in a variety of ways.  

In addition to ongoing prototype development, FII offers licensing opportunities to businesses and production facilities worldwide. FII continues to research and develop collaborative pilot projects to quantify BioHaven® floating islands’ efficacy.

Many thanks to Bruce and Anne Kania for hosting the Floating Wetland Master Seminar and inspiring action through their knowledge, passion and ongoing endeavors.

[post_title] => Improving Water Quality & Reducing Habitat Loss with Floating Wetland Islands [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => floating-island-international [to_ping] => [pinged] => [post_modified] => 2025-11-04 02:21:44 [post_modified_gmt] => 2025-11-04 02:21:44 [post_content_filtered] => [post_parent] => 0 [guid] => http://www.princetonhydro.com/blog/?p=1376 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [8] => WP_Post Object ( [ID] => 3823 [post_author] => 3 [post_date] => 2019-06-20 14:47:40 [post_date_gmt] => 2019-06-20 14:47:40 [post_content] =>

The summer is upon us and Lakes Appreciation Month is right around the corner, what better time to pay a visit to and learn more about the lakes in your area.

Princeton Hydro conducts work on lakes throughout the Northeast to preserve, protect and improve water quality and ecological health, ensuring that your community lakes can be enjoyed now and into the future. Today, we’re putting the spotlight on Greenwood Lake:

Greenwood Lake, a 7-mile-long interstate lake that straddles the border of New York and New Jersey, is a popular recreation spot for residents and tourists of both states. Considered to be one of the top bass fishing lakes in New Jersey, Greenwood Lake is abundant with largemouth and smallmouth bass, yellow perch, chain pickerel and catfish. The lake is also extensively used by residents for swimming and boating.

For over 35 years, Princeton Hydro’s scientists have worked with New Jersey, local governing municipalities, and the various environmental organizations involved with the protection of Greenwood Lake and its watershed. In the early 2000s, we developed a comprehensive Restoration Plan and a proactive monitoring program that we have used over the years to properly manage the lake and its watershed. The plan was developed for the Greenwood Lake Commission and the Township of West Milford with funding provided through the New Jersey Department of Environmental Protection’s Nonpoint Source 319(h) Program. The Restoration Plan focuses heavily on the implementation of various types of stormwater best management practices (BMPs) to help reduce the influx of sediment and nutrients into the lake. We track the positive effects and benefits achieved through these stormwater projects by conducting both storm-event based and in-lake water quality monitoring.

The goal of the stormwater-based efforts is to ensure the lake’s total phosphorus (TP) load is systematically reduced in accordance with the lake’s established Total Maximum Daily Load (TMDL). The TMDL is a regulatory term in the U.S. Clean Water Act, that identifies the maximum amount of a pollutant (in this case phosphorus) that a waterbody can receive while still meeting water quality standards. Princeton Hydro was instrumental in developing the TMDL for Greenwood Lake. Phosphorus entering the lake from runoff is the primary driver of the lake’s eutrophication. The direct results of eutrophication are increases in the density of aquatic plants and nuisance algae. All this added productivity leads to reduced clarity, reductions in dissolved oxygen concentrations, and a number of other ecological impacts that compromise the quality, aesthetics, and use of the lake.

Last year, Princeton Hydro and the Greenwood Lake Commission, with input from the West Milford Environmental Commission, proposed an updated Watershed Implementation Plan (WIP) for the lake. Approved and funded by the NJ Highlands Council, the updated WIP includes a variety of components that build upon the original Restoration Plan and incorporate newly advanced stormwater management and Nonpoint Source Pollution (NPS) reduction technologies.

 

The WIP includes in?lake and stream monitoring; the assessment of the existing stormwater structures installed through grant?based, watershed activities; and the identification of watershed-based projects that can be completed to support the Lake’s compliance with TMDL TP levels with a specific focus on the stormwater runoff produced by Belcher's Creek, a major tributary to Greenwood Lake.

The WIP also includes the following nine minimum elements considered necessary by both NJDEP and USEPA for funding eligibility:

  1. Identify causes and sources of pollution
  2. Estimate pollutant loading into the watershed and the expected load reductions
  3. Describe management measures that will achieve load reductions and targeted critical areas
  4. Estimate amounts of technical and financial assistance and the relevant authoritiesBelcher's Creek at Edgecumb and Glencross needed to implement the plan
  5. Develop an information/education component
  6. Develop a project schedule
  7. Describe the interim, measurable milestones
  8. Identify indicators to measure progress
  9. Develop a monitoring component

While many of these elements have been indirectly addressed to varying degrees in the original Restoration Plan, in order to maximize Greenwood Lake’s opportunities to obtain State and Federal funding for the design and implementation of watershed control measures, the WIP now explicitly correlates the nine elements to eight specific deliverables, which are as follows:

  1. Conduct a detailed in?lake and watershed?based water quality monitoring program and compare the data to that collected in 2004 and 2005 to document changes or shifts in water quality.
  2. Meet with the Township of West Milford, Passaic County and other stakeholders to inventory recently completed BMPs and other watershed management measures.
  3. Conduct a field?based evaluation of the stormwater project completed since the original 319?grant funded Restoration Plan.
  4. Conduct site assessments to identify other potential stormwater/watershed BMP projects.
  5. Conduct a field assessment of the Belchers Creek Corridor to identify potential Nonpoint Source Pollution Reduction Projects.
  6. Assemble the WIP with all the 9 elements fully satisfied.
  7. Schedule and implement stakeholder and public meetings to evaluate project status.
  8. Submit of final version of WIP to the NJDEP and present the findings and recommendations to the public.

This project was initiated in September 2018 and is projected for completion by September 2019. The Greenwood Lake Commission, serves as the inter?State steward of the Greenwood Lake watershed, and is working closely with Princeton Hydro and the watershed stakeholders (Township of West Milford, Passaic County and others), to ensure the WIP is a holistic document.

Stay tuned for more Greenwood Lake updates as the WIP progresses. For more information about Princeton Hydro’s lake management projects and capabilities, or to discuss your project needs and goals, please contact us.

Some of the photos utilized in this blog are from The Village of Greenwood Lake.

[post_title] => Protecting Greenwood Lake's Water Quality Through Stormwater Management [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => greenwood-lake [to_ping] => [pinged] => [post_modified] => 2025-02-10 19:12:38 [post_modified_gmt] => 2025-02-10 19:12:38 [post_content_filtered] => [post_parent] => 0 [guid] => https://www.princetonhydro.com/blog/?p=3823 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [9] => WP_Post Object ( [ID] => 3213 [post_author] => 3 [post_date] => 2019-04-17 19:39:44 [post_date_gmt] => 2019-04-17 19:39:44 [post_content] =>

Wreck Pond is a tidal pond located on the coast of the Atlantic Ocean in southern Monmouth County, New Jersey. The 73-acre pond, which was originally connected to the sea by a small and shifting inlet, got its name in the 1800s due to the numerous shipwrecks that occurred at the mouth of the inlet. The Sea Girt Lighthouse was built to prevent such accidents. In the 1930s, the inlet was filled in and an outfall pipe was installed, thus creating Wreck Pond. The outfall pipe allowed limited tidal exchange between Wreck Pond and the Atlantic Ocean.

In the 1960s, Wreck Pond flourished with wildlife and was a popular destination for recreational activities with tourists coming to the area mainly from New York City and western New Jersey. In the early spring, hundreds of river herring would migrate into Wreck Pond, travelling up its tributaries — Wreck Pond Brook, Hurleys Pond Brook and Hannabrand Brook — to spawn. During the summer, the pond was bustling with recreational activities like swimming, fishing, and sailing.

Over time, however, the combination of restricted tidal flow and pollution, attributable to increased development of the watershed, led to a number of environmental issues within the watershed, including impaired water quality, reduced fish populations, and flooding.

Throughout the Wreck Pond watershed, high stream velocities during flood conditions have caused the destabilization and erosion of stream banks, which has resulted in the loss of riparian vegetation and filling of wetlands. Discharge from Wreck Pond during heavy rains conveys nonpoint source pollutants that negatively impact nearby Spring Lake and Sea Girt beaches resulting in beach closings due to elevated bacteria counts. Watershed erosion and sediment transported with stormwater runoff has also contributed to excessive amounts of sedimentation and accumulations of settled sediment, not only within Wreck Pond, but at the outfall pipe as well. This sediment further impeded tidal flushing and the passage of anadromous fish into and out of Wreck Pond.

In 2012, Hurricane Sandy caused wide-spread destruction throughout New Jersey and the entire eastern seaboard. The storm event also caused a major breach of the Wreck Pond watershed’s dune beach system and failure of the outfall pipe. The breach formed a natural inlet next to the outfall pipe, recreating the connection to the Atlantic Ocean that once existed. This was the first time the inlet had been open since the 1930s, and the reopening cast a new light on the benefits of additional flow between the pond and the ocean.

Hurricane Sandy sparked a renewed interest in reducing flooding impacts throughout the watershed, including efforts to restore the water quality and ecology of Wreck Pond. The breach caused by Hurricane Sandy was not stable, and the inlet began to rapidly close due to the deposition of beach sand and the discharge of sediment from Wreck Pond and its watershed.

Princeton Hydro and HDR generated the data used to support the goals of the feasibility study through a USACE-approved model of Wreck Pond that examined the dynamics of Wreck Pond along with the water bodies directly upland, the watershed, and the offshore waters in the immediate vicinity of the ocean outfall. The model was calibrated and verified using available “normalized” tide data. Neighboring Deal Lake, which is also tidally connected to the ocean by a similar outfall pipe, was used as the "reference" waterbody. The Wreck Pond System model evaluated the hydraulic characteristics of Wreck Pond with and without the modified outfall pipe, computed pollutant inputs from the surrounding watershed, and predicted Wreck Pond's water quality and ecological response. The calibrated model was also used to investigate the effects and longevity of dredging and other waterway feature modifications.

As part of the study, Princeton Hydro and HDR completed hazardous, toxic, and radioactive waste (HTRW) and geotechnical investigations of Wreck Pond's sediment to assess potential flood damage reduction and ecological restoration efforts of the waterbody. The investigation included the progression of 10 sediment borings conducted within the main body of Wreck Pond, as well as primary tributaries to the pond. The borings, conducted under the supervision of our geotechnical staff, were progressed through the surgical accumulated sediment, not the underlying parent material. Samples were collected for analysis by Princeton Hydro’s AMRL-accredited (AASHTO Materials Reference Library) and USACE-certified laboratory. In accordance with NJDEP requirements, sediment samples were also forwarded to a subcontracted analytical laboratory for analysis of potential nonpoint source pollutants.

In the geotechnical laboratory, the samples were subjected to geotechnical indexing tests, including grain size, organic content, moisture content, and plasticity/liquid limits. For soil strength parameters, the in-field Standard Penetration Test (SPT), as well as laboratory unconfined compression tests, were performed on a clay sample to provide parameters for slope stability modeling.

 

The culvert construction and sediment dredging were completed at the end of 2016. Continued restoration efforts, informed and directed by the data developed through Princeton Hydro's feasibility study, are helping to reduce the risk of flooding to surrounding Wreck Pond communities, increase connectivity between the pond and ocean, and improve water quality. The overall result is a healthier, more diverse, and more resilient Wreck Pond ecosystem.

During the time of the progression of study by the USACE, the American Littoral Society and the towns of Spring Lake and Sea Girt were also progressing their own restoration effort and completed the implementation of an additional culvert to the Atlantic Ocean.  The American Littoral Society was able to utilize the data, analysis, and modeling results developed by the USACE to ensure the additional culvert would increase tidal flushing and look to future restoration projects within Wreck Pond.

To learn more about our geotechnical engineering services, click here.

[post_title] => Study Data Leads to Healthier Wreck Pond Ecosystem [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => wreck-pond [to_ping] => [pinged] => [post_modified] => 2025-06-26 16:42:02 [post_modified_gmt] => 2025-06-26 16:42:02 [post_content_filtered] => [post_parent] => 0 [guid] => http://www.princetonhydro.com/blog/?p=3213 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) ) [post_count] => 10 [current_post] => -1 [before_loop] => 1 [in_the_loop] => [post] => WP_Post Object ( [ID] => 8948 [post_author] => 1 [post_date] => 2021-07-13 12:50:00 [post_date_gmt] => 2021-07-13 12:50:00 [post_content] =>

Volunteers recently came together in Asbury Park, New Jersey to install floating wetland islands (FWIs) in Wesley Lake and Sunset Lake. The initiative, led by the Deal Lake Commission and Princeton Hydro, brought together dozens of volunteers to install a total of 12 FWIs, six in each lake. 

[gallery link="none" ids="8935,8936,8934"]

Photos by Donald Brockel

 

FWIs are a low-cost, effective green infrastructure solution used to mitigate phosphorus and nitrogen stormwater pollution. FWIs are designed to mimic natural wetlands in a sustainable, efficient, and powerful way. They improve water quality by assimilating and removing excess nutrients that could fuel harmful algae blooms; provide valuable ecological habitat for a variety of beneficial species; help mitigate wave and wind erosion impacts; provide an aesthetic element; and add significant biodiversity enhancement within open freshwater environments.

Volunteers install plants in one of the six floating wetland islands launched in Wesley Lake:

The Deal Lake Commission acquired the 12 FWIs through a Clean Water Act Section 319(h) grant awarded by the New Jersey Department of Environmental Protection. During the volunteer event, participants helped plant vegetation in each of the FWIs, and launch and secure each island into the lakes.

We collected so many great photos during the event. Here are some highlights:

[gallery link="none" columns="2" ids="8950,8939,8943,8942,8946,8944,8945,8954,8941,8923"]

NBC New York’s Brian Thompson stopped by to lend a hand and captured footage of the floating wetland island launch. Click here to watch!

To learn more about Floating Wetland Islands, check out the recent Native Plants, Healthy Planet Podcast, which featured Dr. Jack Szczepanski, CBLP, Princeton Hydro Senior Aquatic Ecologist.

[post_title] => Volunteers Install 12 Floating Wetland Islands in Asbury Park, NJ [post_excerpt] => Volunteers installed floating wetland islands (FWIs) in Asbury Park's Wesley Lake and Sunset Lake. The initiative was led by the Deal Lake Commission and Princeton Hydro. [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => volunteers-install-12-floating-wetland-islands-in-asbury-park-nj [to_ping] => [pinged] => [post_modified] => 2024-01-18 05:26:33 [post_modified_gmt] => 2024-01-18 05:26:33 [post_content_filtered] => [post_parent] => 0 [guid] => https://princetonhydro.com/?p=8948 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [comment_count] => 0 [current_comment] => -1 [found_posts] => 35 [max_num_pages] => 4 [max_num_comment_pages] => 0 [is_single] => [is_preview] => [is_page] => [is_archive] => 1 [is_date] => [is_year] => [is_month] => [is_day] => [is_time] => [is_author] => [is_category] => [is_tag] => 1 [is_tax] => [is_search] => [is_feed] => [is_comment_feed] => [is_trackback] => [is_home] => [is_privacy_policy] => [is_404] => [is_embed] => [is_paged] => [is_admin] => [is_attachment] => [is_singular] => [is_robots] => [is_favicon] => [is_posts_page] => [is_post_type_archive] => [query_vars_hash:WP_Query:private] => 84cc088ee29375fc94737baec4c46ad3 [query_vars_changed:WP_Query:private] => 1 [thumbnails_cached] => [allow_query_attachment_by_filename:protected] => [stopwords:WP_Query:private] => [compat_fields:WP_Query:private] => Array ( [0] => query_vars_hash [1] => query_vars_changed ) [compat_methods:WP_Query:private] => Array ( [0] => init_query_flags [1] => parse_tax_query ) [query_cache_key:WP_Query:private] => wp_query:83102de87c508f54f4017ede82a78f4a:0.80924200 17658313080.80069200 1765831308 )

Tag: stormwater management

archive
 
Topics
Select Topics