search
WP_Query Object
(
    [query] => Array
        (
            [tag] => stormwater-management
        )

    [query_vars] => Array
        (
            [tag] => stormwater-management
            [error] => 
            [m] => 
            [p] => 0
            [post_parent] => 
            [subpost] => 
            [subpost_id] => 
            [attachment] => 
            [attachment_id] => 0
            [name] => 
            [pagename] => 
            [page_id] => 0
            [second] => 
            [minute] => 
            [hour] => 
            [day] => 0
            [monthnum] => 0
            [year] => 0
            [w] => 0
            [category_name] => invasive-species-management
            [cat] => 36
            [tag_id] => 1048
            [author] => 
            [author_name] => 
            [feed] => 
            [tb] => 
            [paged] => 1
            [meta_key] => 
            [meta_value] => 
            [preview] => 
            [s] => 
            [sentence] => 
            [title] => 
            [fields] => all
            [menu_order] => 
            [embed] => 
            [category__in] => Array
                (
                    [0] => 36
                )

            [category__not_in] => Array
                (
                )

            [category__and] => Array
                (
                )

            [post__in] => Array
                (
                )

            [post__not_in] => Array
                (
                )

            [post_name__in] => Array
                (
                )

            [tag__in] => Array
                (
                )

            [tag__not_in] => Array
                (
                )

            [tag__and] => Array
                (
                )

            [tag_slug__in] => Array
                (
                    [0] => stormwater-management
                )

            [tag_slug__and] => Array
                (
                )

            [post_parent__in] => Array
                (
                )

            [post_parent__not_in] => Array
                (
                )

            [author__in] => Array
                (
                )

            [author__not_in] => Array
                (
                )

            [search_columns] => Array
                (
                )

            [ignore_sticky_posts] => 
            [suppress_filters] => 
            [cache_results] => 1
            [update_post_term_cache] => 1
            [update_menu_item_cache] => 
            [lazy_load_term_meta] => 1
            [update_post_meta_cache] => 1
            [post_type] => 
            [posts_per_page] => 10
            [nopaging] => 
            [comments_per_page] => 5
            [no_found_rows] => 
            [order] => DESC
        )

    [tax_query] => WP_Tax_Query Object
        (
            [queries] => Array
                (
                    [0] => Array
                        (
                            [taxonomy] => category
                            [terms] => Array
                                (
                                    [0] => 36
                                )

                            [field] => term_id
                            [operator] => IN
                            [include_children] => 
                        )

                    [1] => Array
                        (
                            [taxonomy] => post_tag
                            [terms] => Array
                                (
                                    [0] => stormwater-management
                                )

                            [field] => slug
                            [operator] => IN
                            [include_children] => 1
                        )

                )

            [relation] => AND
            [table_aliases:protected] => Array
                (
                    [0] => ph_term_relationships
                    [1] => tt1
                )

            [queried_terms] => Array
                (
                    [category] => Array
                        (
                            [terms] => Array
                                (
                                    [0] => 36
                                )

                            [field] => term_id
                        )

                    [post_tag] => Array
                        (
                            [terms] => Array
                                (
                                    [0] => stormwater-management
                                )

                            [field] => slug
                        )

                )

            [primary_table] => ph_posts
            [primary_id_column] => ID
        )

    [meta_query] => WP_Meta_Query Object
        (
            [queries] => Array
                (
                )

            [relation] => 
            [meta_table] => 
            [meta_id_column] => 
            [primary_table] => 
            [primary_id_column] => 
            [table_aliases:protected] => Array
                (
                )

            [clauses:protected] => Array
                (
                )

            [has_or_relation:protected] => 
        )

    [date_query] => 
    [queried_object] => WP_Term Object
        (
            [term_id] => 1048
            [name] => stormwater management
            [slug] => stormwater-management
            [term_group] => 0
            [term_taxonomy_id] => 1048
            [taxonomy] => post_tag
            [description] => 
            [parent] => 0
            [count] => 101
            [filter] => raw
            [term_order] => 0
        )

    [queried_object_id] => 1048
    [request] => SELECT SQL_CALC_FOUND_ROWS  ph_posts.ID
					 FROM ph_posts  LEFT JOIN ph_term_relationships ON (ph_posts.ID = ph_term_relationships.object_id)  LEFT JOIN ph_term_relationships AS tt1 ON (ph_posts.ID = tt1.object_id)
					 WHERE 1=1  AND ( 
  ph_term_relationships.term_taxonomy_id IN (36) 
  AND 
  tt1.term_taxonomy_id IN (1048)
) AND ((ph_posts.post_type = 'post' AND (ph_posts.post_status = 'publish' OR ph_posts.post_status = 'acf-disabled')))
					 GROUP BY ph_posts.ID
					 ORDER BY ph_posts.menu_order, ph_posts.post_date DESC
					 LIMIT 0, 10
    [posts] => Array
        (
            [0] => WP_Post Object
                (
                    [ID] => 18586
                    [post_author] => 1
                    [post_date] => 2025-11-06 00:15:54
                    [post_date_gmt] => 2025-11-06 00:15:54
                    [post_content] => 

The New Jersey Department of Environmental Protection (NJDEP) recently announced $8 million in Water Quality Restoration Grants to support projects that reduce nonpoint source pollution, mitigate harmful algal blooms, restore riparian areas, and enhance watershed and climate resilience. Funded through Section 319(h) of the federal Clean Water Act and administered by the DEP's Watershed and Land Management Program, these grants were awarded to municipalities, nonprofit organizations, and academic institutions across the state.

Princeton Hydro is proud to be a partner on five of the 17 funded projects. Our contributions vary by project and encompass activities such as engineering design, water quality assessment, watershed-based planning, and technical support for implementing stormwater and habitat restoration measures. Let's take a deeper look at these collaborative efforts:

1. The Watershed Institute – Watershed-Based Planning for Assunpink Creek

The Watershed Institute received $205K in 319(h) grant funding to develop a watershed-based plan for the Assunpink Creek watershed, located within the Raritan River Basin. This watershed spans 11 municipalities across two counties, where varied landscapes and demographics share common challenges such as localized flooding, stormwater management, and water quality degradation, highlighting the need for a coordinated, watershed-wide, science-driven approach.

The plan will evaluate pollution sources and identify large-scale restoration opportunities, including green infrastructure and riparian buffer restoration, to improve water quality and reduce flooding. It will also assess the cost, feasibility, and pollutant reduction potential of proposed measures to ensure practical implementation. Princeton Hydro supported the Institute in developing the grant proposal and planning framework, leveraging our expertise in watershed-based planning to prioritize nature-based solutions that address both water quality and climate resilience. This initiative represents a critical step toward regional collaboration, enabling upstream and downstream communities to work together on strategies that strengthen watershed health, protect public safety, and build long-term resilience.


2. Lake Hopatcong Commission – Watershed-Based Stormwater BMPs

The Lake Hopatcong Commission (LHC) was awarded $366K to retrofit an existing stormwater detention basin between King Road and Mount Arlington Boulevard in Roxbury Township. This retrofit is part of a larger Watershed Implementation Plan that Princeton Hydro developed in collaboration with LHC, which prioritizes nutrient reduction and stormwater management strategies across the Lake Hopatcong watershed. Over the past several years, LHC has actively implemented multiple elements of this plan to address harmful algal blooms (HABs) and improve water quality.

For this project, Princeton Hydro is providing engineering design and technical oversight to transform the existing basin into a green stormwater infrastructure system that slows, captures, and naturally treats runoff before it enters King Cove. The design incorporates native vegetation, invasive species management, and erosion control measures to stabilize soils and filter pollutants, reducing nutrient loading, which is one key driver of HABs. Public outreach and pre- and post-construction water quality monitoring will ensure performance tracking and measurable improvements. This basin retrofit represents a critical step in a coordinated, science-based approach to restoring ecological health and water quality in New Jersey’s largest lake.


3. Cozy Lake, Jefferson Township – Addressing Emerging Contaminants

Jefferson Township received $350K in grant funding to develop an Emerging Contaminants Management Plan for Cozy Lake, focusing on cyanotoxins and HABs. Cozy Lake is a 28-acre waterbody within a 1,152-acre sub-watershed that includes both forested (60%) and developed (29%) land. The lake is fed by the Rockaway River at its northern end and a smaller southeastern inlet, with outflow through a dam on the western edge.

The shoreline is primarily residential lawn with minimal emergent wetlands, and several inlets and rock-lined drainage ditches exhibit erosion and lack slope protection, contributing to sediment loading. Princeton Hydro provided early technical input to shape this innovative project with the creation of a comprehensive Jefferson Township Lake and Watershed Restoration and Protection Plan. As part of the plan, Princeton Hydro made recommendations for Cozy Lake, which included enhancing shoreline buffers with native vegetation and installing living shorelines at select properties to stabilize soils, filter stormwater and reduce nutrient loading, improve habitat quality, and enhance community access. These measures, combined with in-lake monitoring and proactive management strategies, will help mitigate HABs and protect ecological and public health.


4. Rockaway Township – Watershed-Based Green Infrastructure

Rockaway Township received $399K in grant funding to implement elements of its Watershed Implementation Plan, focusing on green infrastructure stormwater management and nutrient reduction to improve water quality. The project will retrofit the municipal complex by converting a rock-lined drainage swale into a vegetated swale with a bioretention basin, designed to filter stormwater runoff and reduce nonpoint source pollutants entering Fox’s Pond and Fox Brook.

Princeton Hydro played a key role in developing the Watershed Implementation Plan, which encompasses 11 private lakes within the Rockaway River watershed, prioritizing critical locations for intervention and designing cost-effective green infrastructure BMPs. This regional approach aligns with strategies recommended by NJDEP and the Highlands Council. The plan included a comprehensive watershed-based assessment to identify and quantify factors contributing to eutrophication, evaluate management measures, estimate costs, and establish an implementation schedule. Princeton Hydro authored the final report, which guided the Township in applying for the Section 319(h) grant and now informs the design and construction of green stormwater infrastructure that will deliver measurable water quality improvements while supporting ecological restoration goals.


5. Green Trust Alliance – Green Infrastructure and Community Engagement

Green Trust Alliance (GTA), a nationally accredited land trust and public charity dedicated to accelerating large-scale conservation, received $1.39 million in NJDEP funding to implement green infrastructure improvements at Pinelands Regional High School in Tuckerton, New Jersey. This initiative targets the Tuckerton Creek watershed, which drains into Tuckerton Creek and ultimately flows into Barnegat Bay—a critical estuary spanning 33 municipalities in Ocean County and four in Monmouth County. The retrofit will transform the school’s stormwater detention basin into a multi-functional system that mimics natural hydrology, enhances flow control, and improves water quality locally and in the larger Barnegat Bay watershed.

Working with GTA and GreenVest, Princeton Hydro is serving as the design engineer, applying nature-based engineering and ecological restoration techniques to intercept, evapotranspire, and infiltrate stormwater runoff at its source. In addition to its technical objectives, the effort includes a strong community engagement component and an educational platform for students. By bringing green infrastructure into the school environment, the initiative provides hands-on experience with water resources, stormwater management, and ecological engineering, help to build STEM skills while fostering a deeper connection to the surrounding landscape and an understanding of how natural systems work together to support environmental and community health.


Princeton Hydro also assisted several of these partners in developing successful NJDEP Section 319(h) grant applications, providing technical documentation, conceptual designs, and pollutant load reduction estimates to strengthen the proposals.

To date, the Murphy Administration has awarded more than $33M in Water Quality Restoration grants to improve the health of waterways in all corners of the state. Click here to read about all the 2025 grant funding recipients and their innovative projects.

As NJDEP Environmental Protection Commissioner Shawn M. LaTourette noted in the department's press release, “Enhancing the ecological health of our lakes, rivers, streams and coastal waters has long been a priority of the Murphy Administration. The Department of Environmental Protection is pleased to award these grants that will help our partners advance a variety of strategies to improve the health of these waterways and enhance the quality of life in our communities.”

We are proud to play a continued role in advancing that mission: helping communities implement practical, data-driven solutions that make a measurable difference for New Jersey’s waterways and the people who depend on them. Click here to learn more about our work to protect natural habitat and restore water quality throughout the New Jersey.

[post_title] => NJDEP Awards $8M for Water Quality Restoration Projects [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => njdep-319h-grants-2025 [to_ping] => [pinged] => [post_modified] => 2025-11-07 01:20:58 [post_modified_gmt] => 2025-11-07 01:20:58 [post_content_filtered] => [post_parent] => 0 [guid] => https://princetonhydro.com/?p=18586 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [1] => WP_Post Object ( [ID] => 17748 [post_author] => 1 [post_date] => 2025-07-08 09:52:44 [post_date_gmt] => 2025-07-08 09:52:44 [post_content] =>

Invasive species can quickly establish themselves in habitats ranging from freshwater wetlands and riparian corridors to stormwater basins and tidal marshes, disrupting ecological balance and biodiversity, altering hydrology, and displacing native species.

[gallery link="none" columns="4" size="medium" ids="17787,17788,7339,17789"]

Addressing these impacts requires a thoughtful, site-specific approach. Our team at Princeton Hydro works to design and implement targeted strategies that promote long-term ecological function. These integrated efforts aid in native habitat recovery, enhance water quality, and support compliance with regulatory frameworks.

Let’s take a closer look at how invasive species disrupt our ecosystems, why managing them is so important, and the cutting-edge tools and innovative techniques helping to eradicate invasives and restore balance to delicate ecosystems.


Understanding the Impacts of Invasive Species

Invasive species are organisms introduced outside their native range that proliferate in new environments, often to the detriment of local ecosystems and biodiversity. Although some introductions happen naturally, most are caused by human activity—through commercial shipping and transport, travel and outdoor recreation, or sometimes deliberate introduction. Once established, invasive species often outcompete native species by growing more aggressively, reproducing more rapidly, and exploiting resources more efficiently. These advantages are amplified by the absence of natural predators and environmental controls that would normally regulate their populations.

This can lead to a cascade of ecological consequences:

  • Competition for Resources: Invasives often outcompete native species for food, light, and habitat.
  • Direct Harm: Some invasives prey on or parasitize native species.
  • Disease Transmission: Non-native organisms can introduce new diseases or parasites to ecosystems.
  • Loss of Biodiversity: Invasives frequently crowd out or eliminate native species, resulting in monocultures—ecosystems dominated by a single species.

Take common reed (Phragmites australis), for example. This fast-growing plant has overtaken many wetlands, meadows, and shorelines, forming dense stands that outcompete native vegetation. These monocultures reduce food sources that native species rely on and block the movement of wildlife between critical habitats. According to the National Invasive Species Information Center (NISIC), Phragmites was most likely introduced during the 1800s in ballast material used on ships. It was initially established along the Atlantic coast and quickly spread across the continent.

Another example of an aggressive invasive species is Eurasian watermilfoil (Myriophyllum spicatum), a submerged perennial aquatic plant that grows in lakes and ponds. Native to Europe, Asia, and North Africa, it was discovered in the eastern U.S. in the early 1900s, likely introduced and spread through the movement of watercraft. It establishes itself very quickly, grows rapidly, and spreads easily, forming dense mats at the water’s surface.


Why Control Matters: Ecological, Economic, and Regulatory Incentives

Left unmanaged, aggressive invasives like Phragmites and Eurasian watermilfoil can severely impact the stability of critical environmental systems. Effective control strategies help restore balance, preserve biodiversity, and safeguard the services ecosystems provide to humans and wildlife alike.

Control efforts are also driven by:
  • Ecological Benefits: Removing invasive species makes space for native vegetation to regenerate and flourish.
  • Economic Considerations: Invasives can harm agriculture, tourism, and recreation. Control measures help minimize these financial impacts.
  • Regulatory Compliance and State-Level Incentives: Wetland managers, landowners, and developers are increasingly required to control invasives to comply with state/federal environmental regulations aimed at tracking, managing, and reducing the spread of harmful invasives across ecosystems.
  • Land Use Goals: In restoration projects, removing invasives is often the first step in reestablishing natural hydrology, enhancing habitat, and increasing accessibility.
From early detection and rapid response to long-term monitoring and management, invasive species control requires collaboration, planning, and the right set of tools.

Invasive Species Control Methods

At Princeton Hydro, we use a multifaceted approach to invasive species control, employing mechanical, herbicidal, and biological strategies depending on the specific site conditions and project goals. One of our most effective tools is the Marsh Master® 2MX-KC-FH, a fully amphibious machine built to operate with minimal environmental disruption.

Equipped with hydraulic rotary cutting blades, a rear mounted roller/chopper attachment, and a front vegetation plow, the Marsh Master® cuts through dense vegetation like Phragmites, then chops and rolls the stalks, effectively preparing the soil for native seed germination or plug installation, making it ideal for nature preserves, canal banks, and restoration sites. Its light footprint (less than one pound per square inch) means it can traverse sensitive areas without damaging the soil or root layer.

  [gallery size="large" link="none" ids="17780,17779,17805"] By using the Marsh Master®, we’re able to:
  • Control invasive and non-native vegetation efficiently and effectively
  • Minimize impact on ecosystems
  • Prepare sites for seeding and planting native species
  • Access hard-to-reach wetland, bog, marshland and other delicate habitats

Take a look at the Marsh Master® in the field, tackling Phragmites in tough terrain:

[embed]https://youtu.be/lMkkD-WFz3E[/embed]

When paired with herbicide treatments and long-term monitoring, this approach has proven very effective in eradicating invasives, restoring wetland biodiversity, improving water quality, and creating wildlife habitat. Each site is carefully analyzed and, when required for optimal non-native plant management, a site-specific USEPA and state-registered herbicide is chosen to control the target plants while preserving the desirable, native vegetation currently populating the site. Application techniques, which are also specific to each site, include machine broadcast spraying, backpack foliar spraying, hand-wiping, basal applications, herbicide injection lances, along with various other techniques.

[gallery link="none" columns="2" size="medium" ids="13019,13022"]

Case Studies: Invasive Species Mitigation in Action

GreenVest Baltimore: Phragmites Control & Tidal Marsh Restoration

In partnership with GreenVest and the U.S. Army Corps of Engineers Baltimore District, Princeton Hydro contributed to a tidal marsh restoration project along the Patapsco River in Baltimore, Maryland. This initiative is part of the broader “Reimagine Middle Branch” plan, a community-driven revitalization effort to restore natural habitat and improve public access along 11 miles of Patapsco River shoreline.

At the project site near Reed Bird Island, roughly five acres of marsh had been overtaken by dense stands of Phragmites. The goal was to restore hydrologic connections to the Patapsco River and convert the monoculture into a thriving mosaic of native marsh vegetation. Our team used the Marsh Master® to mow and manage the Phragmites, followed by mechanical grading and sediment redistribution to create high and low marsh zones. The restoration plan included planting 5+ acres with a combination of native species and incorporating habitat features like woody debris and unplanted cobblestone patches to facilitate fish passage.

This project demonstrates how targeted invasive species control can support large-scale ecosystem restoration, community-led initiatives, and watershed-wide environmental goals.

[embed]https://youtu.be/R3x7vb0EHKk[/embed]

Mercer County: Long-Term Invasive Species Management

Princeton Hydro has worked alongside New Jersey’s Mercer County Park Commission for over a decade to restore and protect some of the region’s most ecologically valuable landscapes. From comprehensive planning to boots-on-the-ground restoration, our efforts have focused on mitigating the spread of invasive species and promoting long-term ecological resilience.

John A. Roebling Memorial Park, part of the Abbott Marshlands, an ecologically rich freshwater tidal ecosystem that contains valuable habitat for many rare species, experienced a significant amount of loss and degradation, partially due to the introduction of Phragmites. In areas where Phragmites had overtaken native wetland communities, our team developed and executed an invasive species management plan tailored to the park’s unique hydrology and habitat types. Seasonal mowing in the winter and early spring with the Marsh Master® and targeted herbicide applications helped suppress invasive growth and enabled the rebound of native species, including Wild rice (Zizania aquatica), a culturally and ecologically significant plant.

[gallery columns="1" link="none" size="medium" ids="17756,17755"]

Building on that success, we contributed to the development and implementation of the Master Plan for the Miry Run Dam Site 21, a comprehensive roadmap for ecological restoration and public access. We are advancing that vision through mitigating invasive species (primarily Phragmites), leading lake dredging, and executing a variety of habitat uplift efforts. Click here to learn more about this award-winning restoration initiative.

In 2024, Mercer County retained Princeton Hydro under an on-call contract for invasive species management across its park system, enabling our team to respond rapidly to emerging threats and support the county’s ongoing commitment to long-term ecosystem health.


Lower Raritan Mitigation Site: Multi-Year, Multi-Faceted Wetland Restoration

At the Lower Raritan Mitigation Site in central New Jersey, Princeton Hydro has led a multi-year invasive species control effort as part of a larger wetland and stream restoration initiative. Dominated by reed canary grass (Phalaris arundinacea) and Phragmites, the site had lost most (if not all) of its native biodiversity and ecological function.

Our team used a phased approach—mechanical mowing, herbicide treatment, and active planting of native species—to gradually suppress invasives and restore a healthy plant community. Monitoring data over several growing seasons has shown a significant decrease in invasive cover and a measurable increase in native diversity. Ongoing eradication of aggressive species and the promotion of native plant diversity are steadily guiding the site toward a resilient, self-sustaining ecosystem.


South Cape May Meadows Nature Preserve: Restoring Balance & Enhancing Access

Owned and managed by The Nature Conservancy in New Jersey, the South Cape May Meadows Preserve is a 200-acre freshwater wetland and coastal habitat in southern New Jersey that serves as a critical refuge for migratory birds and other native wildlife. The preserve attracts over 90,000 visitors each year and is internationally recognized as a prime birdwatching destination.

Princeton Hydro is collaborating with The Nature Conservancy on a multi-faceted effort to both improve public access and restore the site’s ecological integrity. In 2023 and 2024, our team initiated the mechanical removal of dense stands of Phragmites using the Marsh Master® to suppress monocultures and promote native plant regeneration. Future phases may include targeted herbicide treatments and additional mechanical work.

[gallery link="none" columns="2" size="medium" ids="17772,17771"]

In addition to the invasive species management component, this project collaboration has led to the construction of 2,675 feet of new elevated boardwalks, a 480-square-foot viewing platform, and enhancements to existing trails. Designing and installing these features across sensitive wetland terrain required a thoughtful, low-impact approach. The result is a more welcoming, species-rich, and resilient landscape that invites people into nature while actively protecting it.


Stormwater Basin Maintenance & MS4 Compliance: Managing Invasives & Non-Natives

Invasive vegetation doesn’t just affect wild landscapes, it also poses challenges for stormwater infrastructure. Many municipalities struggle with invasives overtaking stormwater basins, reducing their capacity and function, which can lead to violations of Municipal Separate Storm Sewer System (MS4) permits and municipality stormwater management regulatory requirements.

Princeton Hydro designs and implements comprehensive stormwater basin maintenance programs that include invasive species management. Removing Phragmites, broadleaf cattail (Typha latifolia), and other aggressive species from stormwater infrastructure helps to restore hydrologic flow and ensures the basins perform as designed. These maintenance programs also help maintain MS4 compliance, protect downstream water quality, and reduce flooding risks—while enhancing habitat value where possible.


Protecting the Future of Our Wetlands and Wildlife

The fight against invasive and aggressive non-native species is ongoing, and success requires a combination of science, strategy, and stewardship. Each effort implemented and every acre reclaimed is a step toward protecting the ecosystems we all depend on.

[post_title] => Invasive Species in Focus: Impacts, Solutions, and Restoration Successes [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => invasive-species-in-focus-impacts-solutions-and-restoration-successes [to_ping] => [pinged] => [post_modified] => 2025-11-07 19:48:23 [post_modified_gmt] => 2025-11-07 19:48:23 [post_content_filtered] => [post_parent] => 0 [guid] => https://princetonhydro.com/?p=17748 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [2] => WP_Post Object ( [ID] => 10630 [post_author] => 1 [post_date] => 2022-05-06 12:15:24 [post_date_gmt] => 2022-05-06 12:15:24 [post_content] =>

In October 2021, the largest stream restoration in Maryland was completed. Over 7 miles (41,000 linear feet) of Tinkers Creek and its tributaries were stabilized and restored.

The project was designed by Princeton Hydro for GV-Petro, a partnership between GreenVest and Petro Design Build Group. Working with Prince George’s County Department of the Environment and coordinating with the Maryland-National Capital Parks and Planning Commission, this full-delivery project was designed to meet the County’s Watershed Implementation Plan total maximum daily load (TMDL) requirements and its National Pollutant Discharge Elimination System Municipal Separate Storm Sewer System (MS4) Discharge Permit conditions.

Today, we are thrilled to report that the once highly urbanized watershed is flourishing and teeming with life:

[gallery columns="2" size="medium" link="none" ids="10632,10631"]

We used nature-based design and bioengineering techniques like riparian zone planting and live staking to prevent erosion and restore wildlife habitat.

[gallery columns="2" size="medium" ids="10635,10634"]

10,985 native trees and shrubs were planted in the riparian area, and 10,910 trees were planted as live stakes along the streambank.

[gallery columns="2" size="medium" ids="10637,10636"]

For more information about the project visit GreenVest's website and check out our blog:

[post_title] => Revisiting Tinkers Creek Stream Restoration [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => revisiting-tinkers-creek-stream-restoration [to_ping] => [pinged] => [post_modified] => 2022-05-06 16:15:35 [post_modified_gmt] => 2022-05-06 16:15:35 [post_content_filtered] => [post_parent] => 0 [guid] => https://princetonhydro.com/?p=10630 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [3] => WP_Post Object ( [ID] => 9813 [post_author] => 1 [post_date] => 2021-12-28 02:38:00 [post_date_gmt] => 2021-12-28 02:38:00 [post_content] =>

Thousands of native flowering plants and grasses were planted at Thompson Park in Middlesex County, New Jersey. Once established, the native plant meadow will not only look beautiful, it will reduce stormwater runoff and increase habitat for birds, pollinators, and other critical species.

The planting was completed by community volunteers along with Eric Gehring of  Kramer+Marks Architects, Middlesex County Youth Conservation Corps, Rutgers Cooperative Extension of Middlesex County, South Jersey Resource Conservation and Development Council, and Princeton Hydro Landscape Architect Cory Speroff, PLA, ASLA, CBLP. 

All of the plants that were installed are native to the north-central region of New Jersey. Volunteers planted switchgrass (panicum virgatum), orange coneflower (rudbeckia fulgida), blue wild indigo (baptisia australis), partridge pea (chamaecrista fasciculata), Virginia mountain mint (pycnanhemum virginianum), and aromatic aster (symphyotrichum oblongifolium). In selecting the location for each of the plants, special consideration was given to each species' drought tolerance and sunlight and shade requirements. The selected plant species all provide important wildlife value, including providing food and shelter for migratory birds.

Photos provided by: Michele Bakacs

The planting initiative is one part of a multi-faceted Stormwater Treatment Train project recently completed in Thompson Park. The project is funded by a Water Quality Restoration 319(h) grant awarded to South Jersey Resource Conservation and Development Council by the NJDEP.

Middlesex County Office of Parks and Recreation and Office of Planning, NJDEP, South Jersey Resource Conservation and Development Council, Middlesex County Mosquito Extermination Commission, Freehold Soil Conservation District, Rutgers Cooperative Extension, Enviroscapes, and Princeton Hydro worked together to bring this project to fruition.

To learn more about the Thompson Park Zoo stormwater project, check out our recent blog:

[post_title] => Thousands of Native Plants Installed in Thompson Park [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => thompson-park-native-plant-meadow [to_ping] => [pinged] => [post_modified] => 2021-12-27 12:58:34 [post_modified_gmt] => 2021-12-27 12:58:34 [post_content_filtered] => [post_parent] => 0 [guid] => https://princetonhydro.com/?p=9813 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [4] => WP_Post Object ( [ID] => 8324 [post_author] => 1 [post_date] => 2021-05-28 15:54:02 [post_date_gmt] => 2021-05-28 15:54:02 [post_content] =>

Most of us are familiar with the famous quote "Alone we can do so little; together we can do so much.” This sentiment is at the center point of the Highlands Act and Regional Master Plan, which provides funding to help New Jersey’s Highlands communities take a proactive and regional approach to watershed protection.

Historically, private lake associations and municipalities have worked autonomously to address water quality issues and develop improvement plans. Working together, however, and taking a regional approach to lake and watershed management has much farther-reaching benefits. Taking an integrated approach helps improve water quality and reduce incidents of aquatic invasive species and harmful algal blooms (HABs) not just in one waterbody, but throughout an entire region.

The New Jersey Highlands Water Protection and Planning Council (Highlands Council) is a regional planning agency that works in partnership with municipalities and counties in the Highlands Region of northern New Jersey to encourage exactly such an approach. Created as part of the 2004 New Jersey Highlands Water Protection and Planning Act (the Highlands Act), the Highlands Council has funded numerous water-quality-related planning grants throughout the region.

“Watersheds are inherently regional; they don’t follow municipal boundaries. So the Highlands Council is in a unique position to address these challenges from that perspective,” says Keri Green, Highlands Council Science Manager. “It’s critical for municipalities to understand what is entering their lakes from the surrounding watershed before they can effectively address in-lake issues. Across the region, the stormwater inlets and roadways that encircle and affect lakes are owned and maintained by the municipalities, and when we can evaluate these inputs, we can plan for how to address impairments.”

In 2019, the Highlands Council funded a Lake Management planning grant for the Borough of Ringwood that adopted this wider watershed view, and would ultimately become a model for similar Highlands Council grants within the region. The Borough chose to engage the services of Princeton Hydro to support the project work.

“This regional approach to lake and watershed management is the obvious choice from a scientific, technical, and community point of view. Historically, however, this approach is rarely taken,” said Princeton Hydro’s Senior Project Manager, Christopher Mikolajczyk, who is a Certified Lake Manager and lead designer for this initiative. “We were thrilled to work with the Borough of Ringwood and the Highlands Council to set a precedent, which has opened the door for the Townships of West Milford and Rockaway, and will hopefully inspire the formation of more public-private lake management partnerships.”

Rockaway Receives Lake Management Planning Grant from the Highlands Council

Rockaway Township in Morris County, New Jersey received Highlands Council grant approval in January to complete a Lake Management Planning Study. Eleven small- to medium-sized lakes in the township are working together for a watershed assessment and comprehensive regional analysis, which will lead to the creation of a Watershed Implementation Plan (WIP). The WIP will recommend and prioritize key watershed management measures that will have big impacts on water quality improvement.

Given the large number of lakes in Rockaway Township, and in an effort to keep the study to a reasonable scope, a selection process occurred with input from the Township Engineering office, the Township Health Department, Princeton Hydro and the Highlands Council. The lakes in the Rockaway Township Watershed Management Program include Green Pond, Egbert Lake, Durham Pond, Lake Emma, Camp Lewis Lake, Lake Telemark, Lake Ames, Mount Hope Pond, Mount Hope Lake, White Meadow Lake, and Fox’s Pond.

“Rockaway Township has been proactive about implementing watershed improvement projects in the past, so we were happy to provide funding to support continuing their efforts focusing on these 11 lakes,” explains Lisa Plevin, Highlands Council Executive Director. “It was a very productive collaboration with Highlands staff working in partnership with the Township to develop an approach and Princeton Hydro preparing a scope of work that met everyone’s goals.”

The watershed assessment will entail a number of analyses, including watershed modeling; hydrologic and pollutant loading analysis; watershed-based and in-lake water quality assessments; and tropic state assessments. The assessment aims to:

  1. Identify, quantify and prioritize the watershed-based factors which may cause eutrophication;
  2. Identify the watershed management measures needed to address general causes of water quality impairments;
  3. Identify the relative cost of the recommended general watershed management measures; and
  4. Generate a general schedule, based on priority, for the implementation of the recommended watershed management measures.

Once all the lab data is processed, the watershed modeling is complete, and historical data reviewed, Princeton Hydro will create a General Assessment Report that will summarize the data/observations and identify which watershed management techniques and measures are best suited for immediate or long-term implementation. The team expects to complete the General Assessment Report in the spring of 2022, after a year's worth of 2021 growing season data has been collected.

A Watershed Management Program is Underway in West Milford

In October 2020, the Highlands Council approved funding to support a watershed assessment of 22 private and public lakes in West Milford Township. The watershed assessment project is being implemented in two phases:

For Phase 1, which will take place throughout the course of 2021, Princeton Hydro will provide a historic data review; an examination of hydrologic/pollutant loads; a pollutant removal analysis; and watershed water quality analysis. The pollutants to be modeled include phosphorus, nitrogen, sediment, and bacteria, while the hydrology will include estimates of precipitation, runoff, evapotranspiration, groundwater flux, and ultimately streamflow or discharge.

This analysis will aid the Township in selecting, prioritizing and implementing nutrient and sediment load and stormwater management efforts with a focus on watershed projects that have the greatest overall benefit to the long-term management of surface water quality. The report will also identify examples of site-specific locations where wetland buffers, riparian buffers, and lakefront aqua-scaping can be implemented as part of future watershed management efforts.

For Phase 2 of the project, Princeton Hydro will investigate and assess the water quality of each of the lakes in West Milford Township during the growing season of May - October of 2022. This entails collecting bimonthly water quality samples at each lake, including in-situ water quality data consisting of real-time measurement of clarity, dissolved oxygen, temperature, and pH. The sampling events will also include a general survey of aquatic vegetation and/or algae growth, lake perimeter shoreline observations, and monitoring for nuisance waterfowl. These surveys will provide an objective understanding of the amount and distribution of submerged aquatic vegetation (SAV) and algae occurring throughout each lake over the course of the growing season.

The lakes included in this project are: High Crest Lake, Algonquin Waters, Lake Lookover, Kitchell Lake, Lindys Lake, Mt. Laurel Lake, Shady Lake, Wonder Lake, Mount Glen Lakes (Upper/Lower), Carpi Lake, Pinecliff Lake, Van Nostrand Lake, Upper Greenwood Lake, Post Brook Farms, Farm Crest Acres, Mt. Springs Lake, Forest Hill Park, Johns Lake, Gordon Lake, and Bubbling Springs Lake.

Leading the Way on Regional Lake Management in Ringwood, NJ

At the end of 2019, the Borough of Ringwood became the first municipality in New Jersey to take a regional approach to private lake management through a public-private partnership with four lake associations: Cupsaw, Erskine, Skyline, and Riconda.

The Borough of Ringwood is situated in the northeast corner of the New Jersey Highlands, is home to several public and private lakes, and provides drinking water to millions of New Jersey residents. In order to take an active role in the management of these natural resources, Ringwood hired Princeton Hydro to design a municipal-wide holistic watershed management plan that identifies and prioritizes watershed management techniques and measures that are best suited for immediate and long-term implementation.

Princeton Hydro recently completed a comprehensive assessment of the lakes and watersheds of Ringwood Borough. The assessment included a historical data review, hydrologic and pollutant loading analysis and in-lake and watershed based water quality data studies. The report details the results of Princeton Hydro’s mapping, modeling, and monitoring efforts in each waterbody and its respective watershed, along with specific recommendations for management implementations that are aimed at curbing the effects of nutrient and sediment loading, both within the lakes and their respective watersheds.

“Ringwood, West Milford, and Rockaway are three great examples of how people from different affiliations and backgrounds can come together to address lake and watershed monitoring and management,” said Mikolajczyk. “The key to success is open communication and a common goal!”

To learn more about Princeton Hydro’s natural resource management services, click here. And, click here to learn more about NJ Highlands Council and available grant funding.

[post_title] => Private & Public Lake Communities in NJ's Highlands Region Partner to Reduce HABs [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => regional-approach-to-lake-management-2021 [to_ping] => [pinged] => [post_modified] => 2025-10-13 15:59:22 [post_modified_gmt] => 2025-10-13 15:59:22 [post_content_filtered] => [post_parent] => 0 [guid] => https://princetonhydro.com/?p=8324 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [5] => WP_Post Object ( [ID] => 5757 [post_author] => 3 [post_date] => 2021-01-19 17:48:32 [post_date_gmt] => 2021-01-19 17:48:32 [post_content] =>

When monitoring and managing the health of a lake or pond, dissolved oxygen is one of the most important indicators of water quality. Dissolved oxygen refers to the level of free, non-compound oxygen present in water. It is an important parameter in assessing water quality because of its influence on the organisms living within a body of water; the vast majority of aquatic life needs sufficient amounts of oxygen dissolved in water in order to survive.

Pollutants, the decomposition of invasive aquatic weed growth, and algae blooms significantly reduce dissolved oxygen. The purpose of aeration in lake management is to increase the concentrations of dissolved oxygen in the water. Aeration systems achieve these water quality improvements by helping prevent stagnation of water, increasing circulation, disrupting thermal stratification which provides “through-column” mixing, and minimizes the occurrence of harmful algal blooms (HABs).

Princeton Hydro has been working with the Lake Hopatcong Commission and Lake Hopatcong Foundation to implement several projects aimed at reducing the impacts of HABs in Lake Hopatcong, including the installation of three innovative aeration systems in different areas of the lake. Funding for these projects have come from a NJ Department of Environmental Protection Water Quality Restoration HAB grant awarded to the Commission in 2020, with additional funding and support coming from the Foundation, Morris and Sussex Counties, and four municipalities that surround Lake Hopatcong.


Air Curtain Aeration System

Our team completed the installation of an air curtain system at Shore Hills Country Club in Roxbury Township in early November 2020. The system produces a wall of bubbles that provide the kinetic energy to push and deflect away floating cyanobacteria and other toxins trying to enter the waterway. Installed near the shoreline, the air curtain increases the movement of the water, making it more difficult for floating debris, pollutants, and HABs to accumulate near the shore and in nearby shallow water areas.


Nanobubble Aeration System

Image by: Nanobubble Systems

Nanobubbles are extremely small gas bubbles that have several unique physical properties that make them very different from normal bubbles. Nanobubble aerators directly saturate the water with significantly more oxygen than traditional water aeration systems. These systems produce ultra-fine bubbles that are nearly invisible to the human eye. Unlike “traditional” aeration systems that push air bubbles to the surface in order to circulate the water and increase the dissolved oxygen levels, nanobubbles are so small that they remain within the water column for an extended period of time, directly oxygenating the water. Our team is scheduled to complete a nanobubble system install for Lake Hopatcong in the Spring of 2021.


Nanobubble Aeration System with Ozone

At Lake Hopatcong’s Lake Forest Yacht Club in Jefferson Township, our team installed a Nanobubble System with Ozone, which was completed in November 2020. This system generates ultrafine microbubbles (nanobubbles) containing ozone, which is used to disinfect water supplies and works to break down organic material in the water. These nanobubbles harness the unique biocidal power of ozone and place it into a safe delivery mechanism that is highly effective but also ensures human and environmental safety. The resulting ozone nanobubbles eliminate a wide range of polluting chemicals as well as herbicides, pesticides, and microbial toxins, which are all known causes of HABs.

The nanobubble technology is a relatively new strategy for preventing cyanobacteria blooms. Evaluation of the air curtain and both nanobubble systems in controlling and minimizing HABs in Lake Hopatcong will begin in Spring 2021. Our team will closely monitor the effectiveness throughout the 2021 season and provide detailed reports of our findings. Stay tuned for more info!


Increasing the dissolved oxygen levels in a pond or lake provides many benefits including improved water quality, healthier fish and plants, more efficient filtration, and reduced nuisance algae growth. To learn more about Princeton Hydro's collaborative efforts to protect our valuable water resources, click here.

[post_title] => Preventing Harmful Algal Blooms with Innovative Aeration Technology [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => innovative-aeration-technology [to_ping] => [pinged] => [post_modified] => 2025-03-12 11:03:33 [post_modified_gmt] => 2025-03-12 11:03:33 [post_content_filtered] => [post_parent] => 0 [guid] => https://www.princetonhydro.com/blog/?p=5757 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [6] => WP_Post Object ( [ID] => 4864 [post_author] => 3 [post_date] => 2020-07-08 19:08:41 [post_date_gmt] => 2020-07-08 19:08:41 [post_content] =>

Native plants on the floating island designed by Princeton Hydro that will help reduce the phosphers and algae in the lake at Frances Slocum State ParkLooking for a unique and creative way to manage nutrient runoff in freshwater lakes? Installing Floating Wetland Islands (FWI) is a low-cost, effective green infrastructure solution used to mitigate phosporus and nitrogen stormwater pollution often emanating from highly developed communities and/or argricultural lands.

FWIs are designed to mimic natural wetlands in a sustainable, efficient, and powerful way. They improve water quality by assimilating and removing excess nutrients that could fuel algae growth; provide valuable ecological habitat for a variety of beneficial species; help mitigate wave and wind erosion impacts; provide an aesthetic element; and add significant biodiversity enhancement within open freshwater environments.

“A pound of phosphorus can produce 1,100 lbs of algae each year. And, each 250-square foot island can remove 10 lbs of phosphorus annually.” explains Princeton Hydro Staff Scientist Katie Walston. "So, that's 11,000 lbs of algae that is mitigated each year from each 250 square foot of FWI installed!"

[caption id="attachment_4363" align="aligncenter" width="777"]This illustration, created by Staff Scientist Ivy Babson, conveys the functionality of a Floating Wetland Island This illustration, created by Staff Scientist Ivy Babson, conveys the functionality of a Floating Wetland Island[/caption]  

Typically, FWIs consist of a constructed floating mat with vegetation planted directly into the material. Once the islands are anchored in the lake, the plants thrive and grow, extending their root systems through the mat and absorbing and removing excess nutrients from the water column such as phosphorus and nitrogen.

The plants uptake a lot of nutrients, but the workhorse of the FWIs is the microbial community. The matrix used within the islands has a very high surface area and it promotes microbial growth, which performs the majority of the nutrient uptake. Additionally, the root growth from the plants continues to increase the surface area for the microbial biofilm to grow on. Both the plants and microbes acting together help optimize nutrient removal.

Princeton Hydro has designed and installed numerous FWIs in waterbodies large and small for the purpose of harmful algal bloom control, fisheries enhancement, stormwater management, shoreline preservation, wastewater treatment, and more. FWIs are also highly adaptable and can be sized, configured, and planted to fit the needs of nearly any lake, pond, or reservoir.

Greenwood Lake

Recently, the Princeton Hydro team completed a FWI installation in Belcher's Creek, the main tributary of Greenwood Lake. The lake, a 1,920-acre waterbody located in  both Passaic County, New Jersey and Orange County, New York, is a highly valued ecological and recreational resource for both states and has a substantial impact on the local economies. In addition, the lake serves as a headwater supply of potable water that flows to the Monksville Reservoir and eventually into the Wanaque Reservoir, where it supplies over 3 million people and thousands of businesses with drinking water. 

Since the lake was negatively impacted by HABs during the 2019 summer season, Greenwood Lake Commission (GWLC) has made a stronger effort to eliminate HABs and any factors that contribute to cyanobacteria blooms for 2020 and into the future. Factors being addressed include pollutant loading in the watershed, especially that of Belcher's Creek. The installation of FWIs in Belcher's Creek will immediately address nutrients in the water before it enters Greenwood Lake and help decrease total phosphorus loading. In turn this will help reduce HABs, improve water quality throughout the Greenwood Lake watershed, and create important habitat for beneficial aquatic, insect, bird and wildlife species.

“In addition to the direct environmental benefits of FWIs, the planting events themselves, which involve individuals from the local lake communities, have long-lasting positive impacts,” said Dr. Jack Szczepanski, Princeton Hydro Senior Project Manager, Aquatics Resources. “When community members come together to help plant FWIs, it gives them a deepened sense of ownership and strengthens their connection to the lake. This, in turn, encourages continued stewardship of the watershed and creates a broader awareness of how human behaviors impact the lake and its water quality. And, real water quality improvements begin at the watershed level with how people treat their land.”

The project was partially funded by the New Jersey Department of Environmental Protection's (NJDEP) Water Quality Restoration Grants for Nonpoint Source Pollution Program under Section 319(h) of the federal Clean Water Act. As part of the statewide HAB response strategy, the NJDEP made $13.5 million in funding available for local projects that improve water quality and help prevent, mitigate and manage HABs in the state’s lakes and ponds. The GWLC was awarded one of the NJDEPs matching grants, which provided $2 in funding for every $1 invested by the grant applicant. For this project, the GWLC purchased the FWIs and NJDEP provided the 2:1 cash match in order for the GWLC to implement additional HAB prevention and mitigation strategies in critical locations throughout the watershed.

Check out the photos from last month's installation: [gallery columns="2" link="none" ids="5117,5118,5113,5109"]

Over the coming weeks, our team will be in Asbury Park, New Jersey installing FWIs in Sunset Lake. Stay tuned for more! For additional information about our lake management services, go here: bit.ly/pondlake.

[post_title] => Floating Wetland Islands: A Sustainable Solution for Lake Management [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => install-floating-wetland-islands [to_ping] => [pinged] => [post_modified] => 2025-01-02 13:54:25 [post_modified_gmt] => 2025-01-02 13:54:25 [post_content_filtered] => [post_parent] => 0 [guid] => https://www.princetonhydro.com/blog/?p=4864 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [7] => WP_Post Object ( [ID] => 4934 [post_author] => 3 [post_date] => 2020-05-27 13:51:06 [post_date_gmt] => 2020-05-27 13:51:06 [post_content] =>

Last summer, 39 of New Jersey’s lakes were plagued with toxic algae outbreaks, also known as harmful algae blooms or HABs, causing major water quality degradation, beach closures and health advisories. In response, the NJDEP implemented a unified statewide approach to addressing HABs in freshwater recreational waters and sources of drinking water, and protecting the public from risks associated with exposure to cyanobacteria.

Last week, NJDEP announced a new component to its statewide Cyanobacterial HAB Response Strategy: a color-coded health alert index that provides precise recreational use recommendations for impacted waterbodies based on levels of cyanobacteria and/or cyanotoxins present. The index has six tiers - NONE, WATCH, ALERT, ADVISORY, WARNING, and DANGER - each providing recommendations on the specific activities that should or should not be pursued based on water monitoring results.

"Princeton Hydro is proud to be one of the contributing factors in the development of the Updated Guidance for HABs," said said Dr. Fred Lubnow, Director of Aquatic Resources for Princeton Hydro. "We feel this updated protocol will provide the necessary and objective information for State and local organizations to make informed and rational decisions, based on sound and scientifically-based data, on how to deal with HABs in a recreational setting."

Princeton Hydro and Clean Water Consulting are the technical advisers for the New Jersey Lake Group, who have met a number of times over the last 8 to 9 months to discuss the State's guidance on dealing with HABs.  In late 2019, on behalf of the New Jersey Lake Group, Princeton Hydro and Clean Water Consulting developed a White Paper providing recommended changes for consideration to NJDEP's Recreational Response Strategy to HABs.

"I'm proud to say that many of the provided recommendations were integrated into NJDEP's Updated Guidance for HABs," explained Dr. Lubnow.

WATCH (Suspected or confirmed HAB with potential for allergenic and irritative health effects) This warning will be posted when HAB cell counts exceed 20,000. In this scenario, public beaches remain open, but the index instructs the public to use caution, provides information on the potential less serious health effects, and allows for more informed decision-making.

ALERT (Confirmed HAB that requires greater observation due to increasing potential for toxin production) This warning indicates a public bathing beach closure only and is posted when a HAB has been confirmed with cell counts between 40,000 and 80,000 and no known toxins above the public threshold. Beaches remain open (dependent upon local health authority) and monitoring for future toxin production should be increased.

ADVISORY (Confirmed HAB with moderate risk of adverse health effects and increased potential for toxins above public health thresholds) Signs will be posted for this warning level when cell counts exceed 80,000 or when toxin levels exceed 3 micrograms per milliliter of microcystins. Public bathing beaches will be closed, but the waterbody will remain accessible to some “secondary contact” activities, like boating.

WARNING and DANGER (Confirmed HAB with high risk of adverse health effects due to high toxin levels) and (Confirmed HAB with very high risk of adverse health effects due to high toxin levels) These tiers are designed to alert the public to the presence of HABs that are producing very high levels of toxins which justify additional caution. In some instances, the entire waterbody may be closed for all public use. New Jersey has experienced approximately 12 “warning level” HAB events over the last 3 years; monitoring has never indicated a “danger level” HAB event.

According to their press release, NJDEP is committed to working with local officials to implement the index and get signage posted at lakes throughout the state as soon as possible.

In order to create the health index, NJDEP scientists carefully reviewed HABs data collected over the last three years by Lake Hopatcong Commission, Lake Hopatcong Foundation, Princeton Hydro, and other sources. The tiered warning system will enable lake communities, residents and visitors to make more individualized decisions about what risks they are willing to take and what activities they feel comfortable engaging in at the various levels of HABs.

In the coming days, the NJDEP’s Harmful Algal Bloom website will be updated to include the new health index and accompanying signage, relevant monitoring data, and other information for each of the impacted bodies of water, as well as an updated HAB Monitoring and Response Strategy. For now, you can read the full press release and additional information here: https://www.nj.gov/dep/newsrel/2020/20_0023.htm.

To learn more about HABs, check out our recent blog:

[embed]https://www.princetonhydro.com/blog/harmful-algae-blooms/[/embed]

[post_title] => NJDEP Releases Updated Guidance for Harmful Algal Blooms [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => njdep-habs-guidelines [to_ping] => [pinged] => [post_modified] => 2025-01-02 13:54:12 [post_modified_gmt] => 2025-01-02 13:54:12 [post_content_filtered] => [post_parent] => 0 [guid] => https://www.princetonhydro.com/blog/?p=4934 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [8] => WP_Post Object ( [ID] => 5859 [post_author] => 3 [post_date] => 2020-04-10 07:48:09 [post_date_gmt] => 2020-04-10 07:48:09 [post_content] =>

A densely developed, flood-prone, former industrial site in Bloomfield, New Jersey is being transformed into a thriving public park and 4.2 acres of wetlands. This is thanks to the Third River Floodplain Wetland Enhancement Project, which broke ground in March of 2019. The project will restore valuable ecological functions and natural floodplain connection, enhance aquatic and wildlife habitat, and increase flood storage capacity for urban stormwater runoff.

The project team has already made tremendous progress at the site, which is located along the Third River and Spring Brook, two freshwater tributaries of the Passaic River. Princeton Hydro is serving as the ecological engineer to Bloomfield Township; our scientists and engineers have assisted in obtaining grants, collected background ecological data through field sampling and surveying, created a water budget, completed all necessary permitting, designed both the conceptual and final restoration plans, and continues to conduct construction oversight during the implementation of this important urban wetland creation project.

The project team recently utilized a drone to document the significant progress being made:

[caption id="attachment_4686" align="aligncenter" width="584"]Close-up view of the wetland construction progress. Note the hummocks and hollows created with the wetland soil as well as the habitat features constructed of trees and natural rock uncovered during the excavation process. Photo provided by Creamer Environmental. Close-up view of the wetland construction progress. Note: the hummocks and hollows created with the wetland soil as well as the habitat features constructed of trees and natural rock uncovered during the excavation process. Photo provided by Creamer Environmental.[/caption] Over 500 trees and shrubs have been planted in the new wetland with additional trees and shrubs planted along Lion Gate Drive and in existing woodlands. The selected native plant species all provide important wildlife value, including providing food and shelter for migratory birds. Enviroscapes was contracted to install all of the trees and wetland plants at this site and has nearly finished planting efforts: [caption id="attachment_4705" align="aligncenter" width="584"]Removing invasive species and replacing them with native plants, shrubs and trees sets the stage for a flourishing native plant community year after year. Removing invasive species and replacing them with native plants, shrubs and trees, sets the stage for a flourishing wetland habitat.[/caption] The project is progressing quickly as the weather warms. Nearly all of the plantings have been installed and seeding is happening in the next two weeks. [caption id="attachment_4704" align="aligncenter" width="584"]This green infrastructure project will re-establish the natural floodplain wetland and riparian plant communities. This green infrastructure project will re-establish the natural floodplain wetland and riparian plant communities.[/caption]

We're excited to see what the restoration will look like when it's all finished. Check out additional photos below and stay tuned for project updates!

[gallery link="file" ids="4711,4708,4710,4714,4709,4713,4719,4712,4707"]

To learn more, check out the full story below:

[embed]https://www.princetonhydro.com/blog/urban-wetland-restoration/[/embed]

[post_title] => Bloomfield: Restoration Efforts Transforming Industrial Site Into Thriving Public Park [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => bloomfield-restoration-update-2 [to_ping] => [pinged] => [post_modified] => 2024-12-10 22:43:20 [post_modified_gmt] => 2024-12-10 22:43:20 [post_content_filtered] => [post_parent] => 0 [guid] => https://www.princetonhydro.com/blog/?p=4635 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [9] => WP_Post Object ( [ID] => 4646 [post_author] => 3 [post_date] => 2020-03-17 21:17:55 [post_date_gmt] => 2020-03-17 21:17:55 [post_content] =>

The City of Elizabeth, the fourth most populous in New Jersey, is not exactly the first place that comes to mind when envisioning a wild landscape. This bustling urban area is well known for its Port Newark-Elizabeth Marine Terminal and the Philips 66 Bayway Refinery, and sits at the intersection of several major roadways like the NJ Turnpike and the Goethals Bridge. The landscape, which was once teeming with dense wetlands and associated habitats, is now heavily urbanized with a vast mix of residential, commercial, and industrial properties. The largely channelized Elizabeth River courses through the city for 4.2 miles before draining into the Arthur Kill waterway. However, in this 14-square mile city, native flora and fauna are taking root again thanks to ecological restoration and mitigation efforts.

Urban landscapes like Elizabeth can pose significant challenges for restoration efforts, but they also provide an array of opportunity for significant ecological uplift.

In 2004, Princeton Hydro was retained to restore an 18-acre site adjacent to the Elizabeth Seaport Business Park, which is located in an area that was once part of a large contiguous wetland system abutting Newark Bay. The site was comprised of a significantly disturbed mosaic of wetland and upland areas and a monoculture of Phragmites australis, also known as Common Reed, on historic fill. Historic fill consists of non-native material, historically placed to raise grades, and typically contains contaminated material not associated with the operations of the site on which it was placed.

The highly invasive Phragmites australis had overtaken most of the wetland areas, and the upland woodland areas only contained four tree species, mostly Eastern Cottonwood, with very low wildlife value. The 18-acre site had huge potential but was significantly degraded and was being vastly underutilized. Overall, the mitigation plan focused on the enhancement of existing wetland and transition areas to increase the area’s wildlife value through the establishment of a more desirable, diverse assemblage of native species subsequent to eradication of non-native-invasive species.

2005 (Before Plantings)
2019
In 2004, Prologis hired Princeton Hydro to restore an 18-acre area adjacent to the Elizabeth Seaport Business Park, which a significantly disturbed and degraded mosaic of wetland and upland areas. This project serves as an example of how degraded urban areas can be successfully rehabilitated and the land’s natural function restored and enhanced.

The freshwater wetland aspect of the mitigation plan, which included inundated emergent, emergent, and forested habitat, was designed to be a combination of wetland creation (2.40 acres) and enhancement (8.79 acres), emphasizing the establishment of more species rich wetlands in order to increase biodiversity and improve the site’s wildlife food value.

The upland forest aspect of the mitigation plan involved the enhancement of 5.40 acres and creation of 1.45 acres of upland forest to foster the development of a species rich and structurally complex upland forest. The upland areas targeted for enhancement/creation consisted of areas where woody vegetation was lacking or forested areas that were dominated by eastern cottonwood.

2008
2019
The 18-acre site in Elizabeth, NJ had huge potential but was significantly degraded and was being vastly underutilized. The mitigation plan emphasized the establishment of more species rich wetlands in order to increase biodiversity and improve the site’s wildlife habitat value.

The project team worked to remove Phragmites australis from the site utilizing a combination of herbicide and mechanical removal techniques. Once the Phragmites australis was cleared, the team installed 27,000 two-inch native herbaceous plant plugs in the wetland portions of the mitigation site, and 2,705 native trees/shrubs throughout the site.

In order to ensure the continued success of the mitigation project, monitoring is regularly conducted at the site. A monitoring report conducted at the end of 2019 revealed a plethora of well-established habitat areas, a diverse community of plant and tree species, and a thriving, highly-functional landscape.

2004 (Before Plantings)
september 2019

Presently, the Elizabeth Seaport Business Park Mitigation Site boasts a variety of productive wildlife habitats that are rare in a highly urbanized setting and provides valuable ecosystem services, including sediment retention and roosting, foraging, and nesting opportunities for both resident and migratory bird species with over 150 bird species identified within the mitigation site.

2008
2019
The Elizabeth Seaport Business Park site was comprised of a monoculture of Phragmites australis, also known as Common Reed. The mitigation plan focused on enhancing the existing wetland by eradicating non-native-invasive plant species, like Phragmites, and establishing more diverse population of productive, native species with high ecological value.

This project serves as an example of how degraded urban areas can be successfully rehabilitated and the land’s natural function restored and enhanced.  If you'd like to learn more about this project from our Natural Resources Senior Project Manager Michael Rehman, check out the video of his presentation at the 2020 Delaware Wetlands Conference below.

[embed]https://fb.watch/5qexvCRUUm/[/embed]  

If you're interested in learning more about our wetland restoration and mitigation services, go here!

[post_title] => Ecological Uplift in an Urban Setting [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => elizabeth-wetland-mitigation [to_ping] => [pinged] => [post_modified] => 2025-10-13 15:59:21 [post_modified_gmt] => 2025-10-13 15:59:21 [post_content_filtered] => [post_parent] => 0 [guid] => https://www.princetonhydro.com/blog/?p=4646 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) ) [post_count] => 10 [current_post] => -1 [before_loop] => 1 [in_the_loop] => [post] => WP_Post Object ( [ID] => 18586 [post_author] => 1 [post_date] => 2025-11-06 00:15:54 [post_date_gmt] => 2025-11-06 00:15:54 [post_content] =>

The New Jersey Department of Environmental Protection (NJDEP) recently announced $8 million in Water Quality Restoration Grants to support projects that reduce nonpoint source pollution, mitigate harmful algal blooms, restore riparian areas, and enhance watershed and climate resilience. Funded through Section 319(h) of the federal Clean Water Act and administered by the DEP's Watershed and Land Management Program, these grants were awarded to municipalities, nonprofit organizations, and academic institutions across the state.

Princeton Hydro is proud to be a partner on five of the 17 funded projects. Our contributions vary by project and encompass activities such as engineering design, water quality assessment, watershed-based planning, and technical support for implementing stormwater and habitat restoration measures. Let's take a deeper look at these collaborative efforts:

1. The Watershed Institute – Watershed-Based Planning for Assunpink Creek

The Watershed Institute received $205K in 319(h) grant funding to develop a watershed-based plan for the Assunpink Creek watershed, located within the Raritan River Basin. This watershed spans 11 municipalities across two counties, where varied landscapes and demographics share common challenges such as localized flooding, stormwater management, and water quality degradation, highlighting the need for a coordinated, watershed-wide, science-driven approach.

The plan will evaluate pollution sources and identify large-scale restoration opportunities, including green infrastructure and riparian buffer restoration, to improve water quality and reduce flooding. It will also assess the cost, feasibility, and pollutant reduction potential of proposed measures to ensure practical implementation. Princeton Hydro supported the Institute in developing the grant proposal and planning framework, leveraging our expertise in watershed-based planning to prioritize nature-based solutions that address both water quality and climate resilience. This initiative represents a critical step toward regional collaboration, enabling upstream and downstream communities to work together on strategies that strengthen watershed health, protect public safety, and build long-term resilience.


2. Lake Hopatcong Commission – Watershed-Based Stormwater BMPs

The Lake Hopatcong Commission (LHC) was awarded $366K to retrofit an existing stormwater detention basin between King Road and Mount Arlington Boulevard in Roxbury Township. This retrofit is part of a larger Watershed Implementation Plan that Princeton Hydro developed in collaboration with LHC, which prioritizes nutrient reduction and stormwater management strategies across the Lake Hopatcong watershed. Over the past several years, LHC has actively implemented multiple elements of this plan to address harmful algal blooms (HABs) and improve water quality.

For this project, Princeton Hydro is providing engineering design and technical oversight to transform the existing basin into a green stormwater infrastructure system that slows, captures, and naturally treats runoff before it enters King Cove. The design incorporates native vegetation, invasive species management, and erosion control measures to stabilize soils and filter pollutants, reducing nutrient loading, which is one key driver of HABs. Public outreach and pre- and post-construction water quality monitoring will ensure performance tracking and measurable improvements. This basin retrofit represents a critical step in a coordinated, science-based approach to restoring ecological health and water quality in New Jersey’s largest lake.


3. Cozy Lake, Jefferson Township – Addressing Emerging Contaminants

Jefferson Township received $350K in grant funding to develop an Emerging Contaminants Management Plan for Cozy Lake, focusing on cyanotoxins and HABs. Cozy Lake is a 28-acre waterbody within a 1,152-acre sub-watershed that includes both forested (60%) and developed (29%) land. The lake is fed by the Rockaway River at its northern end and a smaller southeastern inlet, with outflow through a dam on the western edge.

The shoreline is primarily residential lawn with minimal emergent wetlands, and several inlets and rock-lined drainage ditches exhibit erosion and lack slope protection, contributing to sediment loading. Princeton Hydro provided early technical input to shape this innovative project with the creation of a comprehensive Jefferson Township Lake and Watershed Restoration and Protection Plan. As part of the plan, Princeton Hydro made recommendations for Cozy Lake, which included enhancing shoreline buffers with native vegetation and installing living shorelines at select properties to stabilize soils, filter stormwater and reduce nutrient loading, improve habitat quality, and enhance community access. These measures, combined with in-lake monitoring and proactive management strategies, will help mitigate HABs and protect ecological and public health.


4. Rockaway Township – Watershed-Based Green Infrastructure

Rockaway Township received $399K in grant funding to implement elements of its Watershed Implementation Plan, focusing on green infrastructure stormwater management and nutrient reduction to improve water quality. The project will retrofit the municipal complex by converting a rock-lined drainage swale into a vegetated swale with a bioretention basin, designed to filter stormwater runoff and reduce nonpoint source pollutants entering Fox’s Pond and Fox Brook.

Princeton Hydro played a key role in developing the Watershed Implementation Plan, which encompasses 11 private lakes within the Rockaway River watershed, prioritizing critical locations for intervention and designing cost-effective green infrastructure BMPs. This regional approach aligns with strategies recommended by NJDEP and the Highlands Council. The plan included a comprehensive watershed-based assessment to identify and quantify factors contributing to eutrophication, evaluate management measures, estimate costs, and establish an implementation schedule. Princeton Hydro authored the final report, which guided the Township in applying for the Section 319(h) grant and now informs the design and construction of green stormwater infrastructure that will deliver measurable water quality improvements while supporting ecological restoration goals.


5. Green Trust Alliance – Green Infrastructure and Community Engagement

Green Trust Alliance (GTA), a nationally accredited land trust and public charity dedicated to accelerating large-scale conservation, received $1.39 million in NJDEP funding to implement green infrastructure improvements at Pinelands Regional High School in Tuckerton, New Jersey. This initiative targets the Tuckerton Creek watershed, which drains into Tuckerton Creek and ultimately flows into Barnegat Bay—a critical estuary spanning 33 municipalities in Ocean County and four in Monmouth County. The retrofit will transform the school’s stormwater detention basin into a multi-functional system that mimics natural hydrology, enhances flow control, and improves water quality locally and in the larger Barnegat Bay watershed.

Working with GTA and GreenVest, Princeton Hydro is serving as the design engineer, applying nature-based engineering and ecological restoration techniques to intercept, evapotranspire, and infiltrate stormwater runoff at its source. In addition to its technical objectives, the effort includes a strong community engagement component and an educational platform for students. By bringing green infrastructure into the school environment, the initiative provides hands-on experience with water resources, stormwater management, and ecological engineering, help to build STEM skills while fostering a deeper connection to the surrounding landscape and an understanding of how natural systems work together to support environmental and community health.


Princeton Hydro also assisted several of these partners in developing successful NJDEP Section 319(h) grant applications, providing technical documentation, conceptual designs, and pollutant load reduction estimates to strengthen the proposals.

To date, the Murphy Administration has awarded more than $33M in Water Quality Restoration grants to improve the health of waterways in all corners of the state. Click here to read about all the 2025 grant funding recipients and their innovative projects.

As NJDEP Environmental Protection Commissioner Shawn M. LaTourette noted in the department's press release, “Enhancing the ecological health of our lakes, rivers, streams and coastal waters has long been a priority of the Murphy Administration. The Department of Environmental Protection is pleased to award these grants that will help our partners advance a variety of strategies to improve the health of these waterways and enhance the quality of life in our communities.”

We are proud to play a continued role in advancing that mission: helping communities implement practical, data-driven solutions that make a measurable difference for New Jersey’s waterways and the people who depend on them. Click here to learn more about our work to protect natural habitat and restore water quality throughout the New Jersey.

[post_title] => NJDEP Awards $8M for Water Quality Restoration Projects [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => njdep-319h-grants-2025 [to_ping] => [pinged] => [post_modified] => 2025-11-07 01:20:58 [post_modified_gmt] => 2025-11-07 01:20:58 [post_content_filtered] => [post_parent] => 0 [guid] => https://princetonhydro.com/?p=18586 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [comment_count] => 0 [current_comment] => -1 [found_posts] => 21 [max_num_pages] => 3 [max_num_comment_pages] => 0 [is_single] => [is_preview] => [is_page] => [is_archive] => 1 [is_date] => [is_year] => [is_month] => [is_day] => [is_time] => [is_author] => [is_category] => [is_tag] => 1 [is_tax] => [is_search] => [is_feed] => [is_comment_feed] => [is_trackback] => [is_home] => [is_privacy_policy] => [is_404] => [is_embed] => [is_paged] => [is_admin] => [is_attachment] => [is_singular] => [is_robots] => [is_favicon] => [is_posts_page] => [is_post_type_archive] => [query_vars_hash:WP_Query:private] => f4e2b7e1150bc0e58cab4eed16331a91 [query_vars_changed:WP_Query:private] => 1 [thumbnails_cached] => [allow_query_attachment_by_filename:protected] => [stopwords:WP_Query:private] => [compat_fields:WP_Query:private] => Array ( [0] => query_vars_hash [1] => query_vars_changed ) [compat_methods:WP_Query:private] => Array ( [0] => init_query_flags [1] => parse_tax_query ) [query_cache_key:WP_Query:private] => wp_query:48f694fc672545d3ccaac4961154337c:0.58726100 17658618200.57966900 1765861820 )

Tag: stormwater management

archive
 
Topics
Select Topics