We’re committed to improving our ecosystems, quality of life, and communities for the better.
Our passion and commitment to the integration of innovative science and engineering drive us to exceed on behalf of every client.
WP_Query Object ( [query] => Array ( [tag] => lake-management ) [query_vars] => Array ( [tag] => lake-management [error] => [m] => [p] => 0 [post_parent] => [subpost] => [subpost_id] => [attachment] => [attachment_id] => 0 [name] => [pagename] => [page_id] => 0 [second] => [minute] => [hour] => [day] => 0 [monthnum] => 0 [year] => 0 [w] => 0 [category_name] => invasive-species-management [cat] => 36 [tag_id] => 617 [author] => [author_name] => [feed] => [tb] => [paged] => 1 [meta_key] => [meta_value] => [preview] => [s] => [sentence] => [title] => [fields] => all [menu_order] => [embed] => [category__in] => Array ( [0] => 36 ) [category__not_in] => Array ( ) [category__and] => Array ( ) [post__in] => Array ( ) [post__not_in] => Array ( ) [post_name__in] => Array ( ) [tag__in] => Array ( ) [tag__not_in] => Array ( ) [tag__and] => Array ( ) [tag_slug__in] => Array ( [0] => lake-management ) [tag_slug__and] => Array ( ) [post_parent__in] => Array ( ) [post_parent__not_in] => Array ( ) [author__in] => Array ( ) [author__not_in] => Array ( ) [search_columns] => Array ( ) [ignore_sticky_posts] => [suppress_filters] => [cache_results] => 1 [update_post_term_cache] => 1 [update_menu_item_cache] => [lazy_load_term_meta] => 1 [update_post_meta_cache] => 1 [post_type] => [posts_per_page] => 10 [nopaging] => [comments_per_page] => 5 [no_found_rows] => [order] => DESC ) [tax_query] => WP_Tax_Query Object ( [queries] => Array ( [0] => Array ( [taxonomy] => category [terms] => Array ( [0] => 36 ) [field] => term_id [operator] => IN [include_children] => ) [1] => Array ( [taxonomy] => post_tag [terms] => Array ( [0] => lake-management ) [field] => slug [operator] => IN [include_children] => 1 ) ) [relation] => AND [table_aliases:protected] => Array ( [0] => ph_term_relationships [1] => tt1 ) [queried_terms] => Array ( [category] => Array ( [terms] => Array ( [0] => 36 ) [field] => term_id ) [post_tag] => Array ( [terms] => Array ( [0] => lake-management ) [field] => slug ) ) [primary_table] => ph_posts [primary_id_column] => ID ) [meta_query] => WP_Meta_Query Object ( [queries] => Array ( ) [relation] => [meta_table] => [meta_id_column] => [primary_table] => [primary_id_column] => [table_aliases:protected] => Array ( ) [clauses:protected] => Array ( ) [has_or_relation:protected] => ) [date_query] => [queried_object] => WP_Term Object ( [term_id] => 617 [name] => Lake management [slug] => lake-management [term_group] => 0 [term_taxonomy_id] => 617 [taxonomy] => post_tag [description] => [parent] => 0 [count] => 98 [filter] => raw [term_order] => 0 ) [queried_object_id] => 617 [request] => SELECT SQL_CALC_FOUND_ROWS ph_posts.ID FROM ph_posts LEFT JOIN ph_term_relationships ON (ph_posts.ID = ph_term_relationships.object_id) LEFT JOIN ph_term_relationships AS tt1 ON (ph_posts.ID = tt1.object_id) WHERE 1=1 AND ( ph_term_relationships.term_taxonomy_id IN (36) AND tt1.term_taxonomy_id IN (617) ) AND ((ph_posts.post_type = 'post' AND (ph_posts.post_status = 'publish' OR ph_posts.post_status = 'acf-disabled'))) GROUP BY ph_posts.ID ORDER BY ph_posts.menu_order, ph_posts.post_date DESC LIMIT 0, 10 [posts] => Array ( [0] => WP_Post Object ( [ID] => 15367 [post_author] => 1 [post_date] => 2024-07-12 16:52:15 [post_date_gmt] => 2024-07-12 16:52:15 [post_content] => Nestled at the foot of the Blue Ridge Mountains, Smith Mountain Lake is the largest lake entirely within the Commonwealth of Virginia. Spanning over 20,000 acres with 500 miles of shoreline, the lake's northern and eastern boundary is marked by Bedford County, while Franklin and Pittsylvania counties define its southern and western edges. Created in 1963 by impounding the Roanoke River with the Smith Mountain Dam, the lake serves multiple purposes, including hydroelectric power, public water supply, and recreation. Throughout the 1960s and 1970s, the area surrounding Smith Mountain Lake was predominantly rural farmland. In the 1980s, however, the lake's natural beauty, recreational appeal, and proximity to Roanoke and Lynchburg began to draw increased attention. This surge in interest sparked a boom in residential and commercial development, transforming Smith Mountain Lake into a vibrant and bustling community. Today, Smith Mountain Lake not only provides electricity and drinking water, it is also home to 21,000 residents and stands as a premier recreational resource. Thousands flock to Smith Mountain Lake each year to enjoy boating, swimming, fishing, and other water activities. The lake's shores are now dotted with resorts, condominiums, year-round residences, and outdoor industry businesses. The lake's waters and shoreline also provide vital habitats for aquatic plants, animals, birds, and other terrestrial wildlife. The rapid growth of this pristine lake community underscores the importance of effective environmental management to preserve water quality, strengthen the shoreline, manage stormwater runoff, and protect the local native biodiversity of the lake and its watershed. Identifying and Addressing Harmful Algal Blooms The lake is fed by two main tributaries—the Blackwater River and the Roanoke River. The Roanoke River, the larger of the two, drains a watershed that includes the Roanoke Metropolitan area, while the Blackwater River flows through mostly rural and agricultural land. In 2023, a significant outbreak of harmful algal blooms (HABs) in the Blackwater River subwatershed raised concerns for the Smith Mountain Lake Association (SMLA). These blooms, primarily driven by agricultural runoff, led to swimming advisories and highlighted the need for a comprehensive approach to managing and mitigating these environmental threats. Recognizing the urgency of the situation, SMLA sought the expertise of Princeton Hydro. The mission: to investigate conditions that cause HABs, protect the lake from future outbreaks, and ensure the long-term health of this vital freshwater resource. Laying the Groundwork The project team’s approach began with a thorough review of historical water quality data. Collaborating with SMLA and regulatory bodies including the Virginia Department of Environmental Quality (VDEQ), U.S. Geological Survey (USGS), and U.S. Army Corps of Engineers (USACE), Princeton Hydro compiled a comprehensive dataset. This historical context was crucial for understanding past trends and informing the 2024 Watershed Assessment. SMLA and Ferrum College contributed over 38 years of data through their Volunteer Water Quality Monitoring Program, documenting crucial indicators such as nutrient levels, bacterial counts, and algal blooms. This extensive dataset has been essential in informing effective lake management practices and shaping strategies to address current environmental challenges. Employing the MapShed model, the team carried out a comprehensive hydrologic and nutrient loading analysis of the Blackwater River subwatershed. They evaluated critical factors, including phosphorus, nitrogen, and sediment levels, to identify and prioritize areas requiring targeted nutrient and sediment management strategies. To describe its basic function, the MapShed model applies pollutant loading rates to different land cover types, like low-density development or forested wetlands, based on their area. It then uses weather data, soil characteristics, and slopes to adjust these results. The model simulates daily pollutant loads over 30 years using actual climate records, providing monthly and annual outputs. Users can adjust various inputs, like septic system efficiency and population density, to see how the changes affect pollutant loads and water flow. This analysis laid the foundation for determining effective, focused interventions to curb nutrient runoff and mitigate future HABs. Understanding Cyanobacteria Behavior Through Innovative Research In March 2024, an Overwintering Incubation Study was conducted to understand cyanobacteria behavior. Sediment and water samples were taken from six nearshore locations known for high cyanobacteria counts in Summer 2023. At each site, the team also documented temperature, dissolved oxygen, specific conductivity, pH, chlorophyll-a, phycocyanin (PC), and phycoerythrin (PE). The map below identifies the locations of each of the six sampling sites: [gallery link="none" columns="2" ids="15361,15363"] For each sample, the lake water was filtered and then incubated with respective sediments to determine the presence and what types of algae may be overwintering. The water and sediment samples were incubated over a period of 15 days at a temperature of approximately 77 degrees Fahrenheit and a light intensity of 2800 lux. After eight days, the water and sediment samples were removed from the incubator, slightly stirred and then in-situ measurements for PC and PE were collected. These two supplemental pigments are almost exclusively produced by cyanobacteria. While PC is associated with primarily planktonic genera, PE is more associated with benthic genera. Thus, measuring the concentration of these pigments can be used to estimate cyanobacteria biomass as well as provide guidance on the monitoring and management of HABs (planktonic vs. benthic). After 15 days, the samples were again removed from the incubator, slightly stirred, and then measured for PC and PE to identify and count any overwintering cyanobacteria and determine all the types of algae present. This study offered critical insights into the conditions that enable cyanobacteria to endure winter and proliferate during warmer months. By understanding the connection between overwintering cyanobacteria and HABs in the lake, we can enhance predictive capabilities and develop more effective management strategies. Two particularly notable findings from the study include: 1. Sediment Composition and Cyanobacteria Growth: Sandier sediments were not conducive to overwintering cyanobacteria, suggesting blooms in these areas likely originate elsewhere in the lake. Conversely, siltier and organic-rich sediments supported cyanobacteria growth, indicating a need for targeted in-lake management measures. 2. Predictive Tools for HABs: Routine measurement of pigments like PC and PE proved effective in estimating cyanobacteria biomass. This information is crucial for long-term monitoring and management, offering predictive tools for HAB events. Looking Ahead: Holistic Approaches to Tackling HABs Beyond the initial assessment on the Blackwater River, ongoing monitoring of Smith Mountain Lake’s water quality is crucial for understanding and managing the conditions that trigger HABs. SMLA’s Water Quality Monitoring Program developed and managed by Ferrum College continues the work of tracking the trophic state of the lake. Algal community composition, tributary sampling, and bacterial monitoring are part of this comprehensive 38-year effort. Consistent sampling and water quality monitoring can help identify cyanobacteria and akinetes, the dormant spores that lead to bloom formation. Because the VDEQ budget historically contains no funding for inland waterway HAB research and response, SMLA actively lobbied the Virginia General Assembly for the allocation of $150,000 for the creation of a watershed study. This request was included in the State budget signed in March of 2024 and the work to develop the objectives and scope of the study is underway now. Community involvement is also vital for maintaining Smith Mountain Lake as a cherished resource. To this end, SMLA has launched "Dock Watch," a new community science volunteer program designed to monitor HAB activity. Beginning in May of 2024, volunteers have been collecting water samples at select docks around the lake and are examining them to better understand cyanobacteria activity levels and trends. All of the water quality data collected at the lake is from main channel locations. The primary recreational contact with the lake water by residents is at their docks. This data is uploaded to NOAA's Phytoplankton Monitoring Network, contributing to a national database used for HAB research. This collective effort ensures rapid identification and tracking of HAB activity, benefiting both the local community and environmental research on a national level. “This project exemplifies a holistic approach to lake management and environmental stewardship, integrating historical data, advanced modeling, and community engagement to prioritize and implement innovative strategies that effectively mitigate HABs and protect water quality,” said Chris L. Mikolajczyk, Princeton Hydro’s Senior Manager of Aquatics and Client Manager for Smith Mountain Lake. “This ongoing work highlights the importance of science-based interventions in preserving our precious natural resources.” [gallery size="medium" link="none" ids="15377,15374,15373"] The Smith Mountain Lake Association is a 501(c)3 nonprofit with the mission to keep Smith Mountain Lake clean and safe. Founded in 1969, SMLA is the longest serving advocate for the Smith Mountain Lake community, and its focused efforts help to retain the pristine beauty of the lake and the vibrant local economy. Click here to learn more and get involved. Over the last two decades, the Princeton Hydro team has improved water quality in hundreds of ponds and lakes, restored many miles of rivers, and enhanced thousands of acres of ecosystems in the Northeast. From species surveys to water quality monitoring, our professionals perform comprehensive assessments in order to understand the landscape. Using tools like ArcGIS, we can map and model the watershed and arrive at holistic solutions for resource management. Our natural resources and lake management experts are complemented by our field team who utilize amphibious vehicles for mechanical invasive species removal, install aeration systems to improve water quality, and conduct natural lake treatments to manage algal blooms. We have secured millions of dollars in grant funding for watershed and ecological restoration projects on behalf of our clients. Click here to learn about the Watershed Management Program in Somerset County, for which we recently helped secure grant funding from the New Jersey Highlands Water Protection and Planning Council. [post_title] => Using Innovative & Integrated Strategies to Safeguard Smith Mountain Lake's Water Quality [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => smith-mountain-lake [to_ping] => [pinged] => [post_modified] => 2024-12-09 23:22:46 [post_modified_gmt] => 2024-12-09 23:22:46 [post_content_filtered] => [post_parent] => 0 [guid] => https://princetonhydro.com/?p=15367 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [1] => WP_Post Object ( [ID] => 12884 [post_author] => 1 [post_date] => 2023-06-27 17:04:58 [post_date_gmt] => 2023-06-27 17:04:58 [post_content] => Harmful Algal Blooms (HABs) represent the rapid proliferation of cyanobacteria, also known as blue-green algae. While cyanobacteria are not technically algae but rather single-celled aquatic organisms related to bacteria, they possess the ability to photosynthesize like algae. These tiny microorganisms naturally inhabit aquatic ecosystems. However, under specific circumstances, such as heavy rainfall followed by scorching sunshine, they can rapidly multiply, resulting in the formation of cyanobacteria blooms, commonly known as HABs. [gallery link="none" ids="4574,1337,1736"] Environmental and Economic Impact of HABs HABs can wreak havoc on waterbodies, leading to significant water quality issues and the unsightly appearance of surface scum, sometimes accompanied by unpleasant odors. The consequences extend beyond aesthetics and pose economic challenges for communities reliant on local lakes and waterways for jobs and tourism. Furthermore, HABs can produce highly toxic substances that pose serious risks to humans, aquatic life, and animals, including our beloved pets, wildlife, and livestock. HAB Impacts on Wildlife and Pets The effects of HABs on animals vary depending on factors such as the animal's size, exposure to cyanobacteria, duration of exposure, specific toxin types, and concentrations. Animals are often the first victims, drawn to bodies of water containing cyanobacteria due to their natural instincts. Dogs, in particular, are vulnerable as they may unwittingly ingest contaminated water during play. Livestock and wildlife are also at risk when drinking from contaminated water sources. In 2021, researchers published a groundbreaking study linking cyanobacteria-generated neurotoxins to the deaths of eagles and waterbirds. After extensive research spanning three decades, scientists determined that cyanotoxins are responsible for a fatal neurological disease called vacuolar myelinopathy, commonly affecting waterbirds, raptors, and bald eagles. Recognizing the Symptoms Cyanobacterial poisoning symptoms can manifest within minutes to a few hours, depending on the severity of exposure. Dogs, in particular, may exhibit symptoms rapidly. Common signs include an accelerated heart rate, breathing difficulties, excessive salivation, disorientation or depression, vomiting or diarrhea, skin irritations, and neurological symptoms such as muscle weakness, dizziness, seizures, or paralysis. It is crucial to seek immediate veterinary care or contact the Poison Control Center if you suspect your pet or livestock may be experiencing symptoms caused by harmful algae, cyanobacteria, or their toxins. The following 24-hour pet poison hotlines are available for assistance:
Nestled at the foot of the Blue Ridge Mountains, Smith Mountain Lake is the largest lake entirely within the Commonwealth of Virginia. Spanning over 20,000 acres with 500 miles of shoreline, the lake's northern and eastern boundary is marked by Bedford County, while Franklin and Pittsylvania counties define its southern and western edges. Created in 1963 by impounding the Roanoke River with the Smith Mountain Dam, the lake serves multiple purposes, including hydroelectric power, public water supply, and recreation.
Throughout the 1960s and 1970s, the area surrounding Smith Mountain Lake was predominantly rural farmland. In the 1980s, however, the lake's natural beauty, recreational appeal, and proximity to Roanoke and Lynchburg began to draw increased attention. This surge in interest sparked a boom in residential and commercial development, transforming Smith Mountain Lake into a vibrant and bustling community.
Today, Smith Mountain Lake not only provides electricity and drinking water, it is also home to 21,000 residents and stands as a premier recreational resource. Thousands flock to Smith Mountain Lake each year to enjoy boating, swimming, fishing, and other water activities. The lake's shores are now dotted with resorts, condominiums, year-round residences, and outdoor industry businesses. The lake's waters and shoreline also provide vital habitats for aquatic plants, animals, birds, and other terrestrial wildlife.
The rapid growth of this pristine lake community underscores the importance of effective environmental management to preserve water quality, strengthen the shoreline, manage stormwater runoff, and protect the local native biodiversity of the lake and its watershed.
The lake is fed by two main tributaries—the Blackwater River and the Roanoke River. The Roanoke River, the larger of the two, drains a watershed that includes the Roanoke Metropolitan area, while the Blackwater River flows through mostly rural and agricultural land.
In 2023, a significant outbreak of harmful algal blooms (HABs) in the Blackwater River subwatershed raised concerns for the Smith Mountain Lake Association (SMLA). These blooms, primarily driven by agricultural runoff, led to swimming advisories and highlighted the need for a comprehensive approach to managing and mitigating these environmental threats.
Recognizing the urgency of the situation, SMLA sought the expertise of Princeton Hydro. The mission: to investigate conditions that cause HABs, protect the lake from future outbreaks, and ensure the long-term health of this vital freshwater resource.
The project team’s approach began with a thorough review of historical water quality data. Collaborating with SMLA and regulatory bodies including the Virginia Department of Environmental Quality (VDEQ), U.S. Geological Survey (USGS), and U.S. Army Corps of Engineers (USACE), Princeton Hydro compiled a comprehensive dataset. This historical context was crucial for understanding past trends and informing the 2024 Watershed Assessment. SMLA and Ferrum College contributed over 38 years of data through their Volunteer Water Quality Monitoring Program, documenting crucial indicators such as nutrient levels, bacterial counts, and algal blooms. This extensive dataset has been essential in informing effective lake management practices and shaping strategies to address current environmental challenges.
Employing the MapShed model, the team carried out a comprehensive hydrologic and nutrient loading analysis of the Blackwater River subwatershed. They evaluated critical factors, including phosphorus, nitrogen, and sediment levels, to identify and prioritize areas requiring targeted nutrient and sediment management strategies.
To describe its basic function, the MapShed model applies pollutant loading rates to different land cover types, like low-density development or forested wetlands, based on their area. It then uses weather data, soil characteristics, and slopes to adjust these results. The model simulates daily pollutant loads over 30 years using actual climate records, providing monthly and annual outputs. Users can adjust various inputs, like septic system efficiency and population density, to see how the changes affect pollutant loads and water flow.
This analysis laid the foundation for determining effective, focused interventions to curb nutrient runoff and mitigate future HABs.
In March 2024, an Overwintering Incubation Study was conducted to understand cyanobacteria behavior. Sediment and water samples were taken from six nearshore locations known for high cyanobacteria counts in Summer 2023. At each site, the team also documented temperature, dissolved oxygen, specific conductivity, pH, chlorophyll-a, phycocyanin (PC), and phycoerythrin (PE).
The map below identifies the locations of each of the six sampling sites:
For each sample, the lake water was filtered and then incubated with respective sediments to determine the presence and what types of algae may be overwintering. The water and sediment samples were incubated over a period of 15 days at a temperature of approximately 77 degrees Fahrenheit and a light intensity of 2800 lux.
After eight days, the water and sediment samples were removed from the incubator, slightly stirred and then in-situ measurements for PC and PE were collected. These two supplemental pigments are almost exclusively produced by cyanobacteria. While PC is associated with primarily planktonic genera, PE is more associated with benthic genera. Thus, measuring the concentration of these pigments can be used to estimate cyanobacteria biomass as well as provide guidance on the monitoring and management of HABs (planktonic vs. benthic).
After 15 days, the samples were again removed from the incubator, slightly stirred, and then measured for PC and PE to identify and count any overwintering cyanobacteria and determine all the types of algae present.
This study offered critical insights into the conditions that enable cyanobacteria to endure winter and proliferate during warmer months. By understanding the connection between overwintering cyanobacteria and HABs in the lake, we can enhance predictive capabilities and develop more effective management strategies. Two particularly notable findings from the study include:
Beyond the initial assessment on the Blackwater River, ongoing monitoring of Smith Mountain Lake’s water quality is crucial for understanding and managing the conditions that trigger HABs. SMLA’s Water Quality Monitoring Program developed and managed by Ferrum College continues the work of tracking the trophic state of the lake. Algal community composition, tributary sampling, and bacterial monitoring are part of this comprehensive 38-year effort. Consistent sampling and water quality monitoring can help identify cyanobacteria and akinetes, the dormant spores that lead to bloom formation.
Because the VDEQ budget historically contains no funding for inland waterway HAB research and response, SMLA actively lobbied the Virginia General Assembly for the allocation of $150,000 for the creation of a watershed study. This request was included in the State budget signed in March of 2024 and the work to develop the objectives and scope of the study is underway now.
Community involvement is also vital for maintaining Smith Mountain Lake as a cherished resource. To this end, SMLA has launched "Dock Watch," a new community science volunteer program designed to monitor HAB activity. Beginning in May of 2024, volunteers have been collecting water samples at select docks around the lake and are examining them to better understand cyanobacteria activity levels and trends. All of the water quality data collected at the lake is from main channel locations. The primary recreational contact with the lake water by residents is at their docks. This data is uploaded to NOAA's Phytoplankton Monitoring Network, contributing to a national database used for HAB research. This collective effort ensures rapid identification and tracking of HAB activity, benefiting both the local community and environmental research on a national level.
“This project exemplifies a holistic approach to lake management and environmental stewardship, integrating historical data, advanced modeling, and community engagement to prioritize and implement innovative strategies that effectively mitigate HABs and protect water quality,” said Chris L. Mikolajczyk, Princeton Hydro’s Senior Manager of Aquatics and Client Manager for Smith Mountain Lake. “This ongoing work highlights the importance of science-based interventions in preserving our precious natural resources.”
The Smith Mountain Lake Association is a 501(c)3 nonprofit with the mission to keep Smith Mountain Lake clean and safe. Founded in 1969, SMLA is the longest serving advocate for the Smith Mountain Lake community, and its focused efforts help to retain the pristine beauty of the lake and the vibrant local economy. Click here to learn more and get involved.
Over the last two decades, the Princeton Hydro team has improved water quality in hundreds of ponds and lakes, restored many miles of rivers, and enhanced thousands of acres of ecosystems in the Northeast. From species surveys to water quality monitoring, our professionals perform comprehensive assessments in order to understand the landscape. Using tools like ArcGIS, we can map and model the watershed and arrive at holistic solutions for resource management. Our natural resources and lake management experts are complemented by our field team who utilize amphibious vehicles for mechanical invasive species removal, install aeration systems to improve water quality, and conduct natural lake treatments to manage algal blooms. We have secured millions of dollars in grant funding for watershed and ecological restoration projects on behalf of our clients.
Click here to learn about the Watershed Management Program in Somerset County, for which we recently helped secure grant funding from the New Jersey Highlands Water Protection and Planning Council.
Harmful Algal Blooms (HABs) represent the rapid proliferation of cyanobacteria, also known as blue-green algae. While cyanobacteria are not technically algae but rather single-celled aquatic organisms related to bacteria, they possess the ability to photosynthesize like algae. These tiny microorganisms naturally inhabit aquatic ecosystems. However, under specific circumstances, such as heavy rainfall followed by scorching sunshine, they can rapidly multiply, resulting in the formation of cyanobacteria blooms, commonly known as HABs.
HABs can wreak havoc on waterbodies, leading to significant water quality issues and the unsightly appearance of surface scum, sometimes accompanied by unpleasant odors. The consequences extend beyond aesthetics and pose economic challenges for communities reliant on local lakes and waterways for jobs and tourism. Furthermore, HABs can produce highly toxic substances that pose serious risks to humans, aquatic life, and animals, including our beloved pets, wildlife, and livestock.
The effects of HABs on animals vary depending on factors such as the animal's size, exposure to cyanobacteria, duration of exposure, specific toxin types, and concentrations. Animals are often the first victims, drawn to bodies of water containing cyanobacteria due to their natural instincts. Dogs, in particular, are vulnerable as they may unwittingly ingest contaminated water during play. Livestock and wildlife are also at risk when drinking from contaminated water sources.
In 2021, researchers published a groundbreaking study linking cyanobacteria-generated neurotoxins to the deaths of eagles and waterbirds. After extensive research spanning three decades, scientists determined that cyanotoxins are responsible for a fatal neurological disease called vacuolar myelinopathy, commonly affecting waterbirds, raptors, and bald eagles.
Cyanobacterial poisoning symptoms can manifest within minutes to a few hours, depending on the severity of exposure. Dogs, in particular, may exhibit symptoms rapidly. Common signs include an accelerated heart rate, breathing difficulties, excessive salivation, disorientation or depression, vomiting or diarrhea, skin irritations, and neurological symptoms such as muscle weakness, dizziness, seizures, or paralysis.
It is crucial to seek immediate veterinary care or contact the Poison Control Center if you suspect your pet or livestock may be experiencing symptoms caused by harmful algae, cyanobacteria, or their toxins. The following 24-hour pet poison hotlines are available for assistance:
To protect your pets and livestock, avoid letting them come into contact with surface scums or heavily discolored water. In case of exposure, rinse them with clean water as soon as possible, as HABs can cling to their fur and pose health risks when they groom themselves. This is particularly important because certain HABs release fast-acting nerve toxins that can be especially dangerous for dogs swimming in affected areas.
Here are some additional steps you can take to safeguard yourself and your pets from the harmful effects of algae and cyanobacteria:
By staying informed and implementing necessary precautions, we can protect ourselves, our pets, and the environment from the risks associated with HABs. For further HABs related information and guidance, click here to watch a Facebook Live presentation with Princeton Hydro HABs experts. To get involved with monitoring and tracking harmful algal blooms, check out the bloomWatch App, a valuable tool for identifying and reporting potential HAB sightings to local authorities.
Our lakes in New Jersey are an invaluable resource for clean drinking water, outdoor recreation, and agriculture and provide habitat for aquatic flora and fauna. Home to about 1,700 lakes, the “Garden State” is also the most densely populated state. Excess nutrients from fertilizers, roadway pollutants, overdevelopment, and failing septic systems can end up in our lakes and impair water quality. Larger rain events can also cause erosion and instability of streams, adding to the influx of more excess nutrients to our lakes and ponds. Changes in hydrology, water chemistry, biology, and/or physical properties in these complex ecosystems can have cascading consequences that can alter water quality and the surrounding ecosystem. For example, excess nutrients can fuel algal and plant growth in lakes and lead to issues like harmful algal blooms (HABs) or fish kills.
In order to ensure that we protect the overall health of our local waterbodies, it’s important that we look beyond just the lake itself. Implementing holistic watershed-based planning is a critical step in managing stormwater runoff, preventing the spread of HABs, and maintaining water quality. A watershed management plan defines and addresses existing or future water quality problems from both point sources and nonpoint sources of pollutants*. This approach addresses all the beneficial uses of a waterbody, the criteria needed to protect the use, and the strategies required to restore water quality or prevent degradation. When developing a watershed plan, we review all the tools in the toolbox and recommend a variety of best management practices to prevent nutrients from entering lakes or streams. Options include short- and long-term solutions such as green stormwater infrastructure, stream bank stabilization, and stormwater basin retrofits.
To reduce nutrient availability in lakes, one innovative tool in our toolbox is floating wetland islands (FWIs). FWIs are a low-cost, effective green infrastructure solution that are designed to mimic natural wetlands in a sustainable, efficient, and powerful way. They improve water quality by assimilating and removing excess nutrients; provide valuable ecological habitat for a variety of beneficial species; help mitigate wave and wind erosion impacts; provide an aesthetic element; and add significant biodiversity enhancement within open freshwater environments. FWIs are also highly effective in a range of waterbodies from big to small, from deep to shallow.
Typically, FWIs consist of a constructed floating mat, usually composed of woven, recycled plastic material, with vegetation planted directly into the material. The islands are then launched into the lake and anchored in place, and, once established, require very little maintenance.
It estimated that one 250-square-foot FWI has a surface area equal to approximately one acre of natural wetland. These floating ecosystems can remove approximately 10 pounds of phosphorus each year. To put that into perspective, one pound of phosphorus can produce 1,100 pounds of algae each year, so each 250-square-feet of FWI can potentially mitigate up to 11,000 pounds of algae.
In addition to removing phosphorus that can feed nuisance aquatic plant growth and algae, FWIs also provide excellent refuge habitat for beneficial forage fish and can provide protection from shoreline erosion.
Princeton Hydro has been working with Lake Hopatcong, New Jersey’s largest Lake, for 30+ years, restoring the lake, managing the watershed, reducing pollutant loading, and addressing invasive aquatic plants and nuisance algal blooms. Back in 2012, Lake Hopatcong became the first public lake in New Jersey to install FWIs. In the summer of 2022, nine more FWIs were installed in the lake with help from staff and volunteers from the Lake Hopatcong Foundation, Lake Hopatcong Commission, and Princeton Hydro. The lake’s Landing Channel and Ashley Cove were chosen for the installations because they are both fairly shallow and prone to weed growth. The installation of these floating wetland islands is part of a series of water quality initiatives on Lake Hopatcong funded by a NJDEP Harmful Algal Bloom Grant and 319(h) Grant awarded to Lake Hopatcong Commission and Lake Hopatcong Foundation.
Princeton Hydro partnered with the Greenwood Lake Commission (GWLC) on a FWI installation in Belcher's Creek, the main tributary of Greenwood Lake. The lake, a 1,920-acre waterbody located in both New Jersey and New York, is a highly valued ecological, economical, and recreational resource. The lake also serves as a headwater supply of potable water that flows to the Monksville Reservoir and eventually into the Wanaque Reservoir, where it supplies over 3 million people with drinking water.
The goal of the FWI Installation was to help decrease total phosphorus loading, improve water quality, and create important habitat for beneficial aquatic, insect, bird, and wildlife species. The project was partially funded by the NJDEP Water Quality Restoration Grants for Nonpoint Source Pollution Program under Section 319(h) of the federal Clean Water Act. GWLC was awarded one of NJDEP’s matching grants, which provided $2 in funding for every $1 invested by the grant applicant.
Measuring 630+ acres, Harveys Lake is the largest natural lake (by volume) in Pennsylvania and is one of the most heavily used lakes in the area. It is classified as a high quality - cold water fishery habitat (HQ-CWF) and is designated for protection under the classification. Since 2002, The Borough of Harveys Lake and Harveys Lake Environmental Advisory Council has worked with Princeton Hydro on a variety of lake management efforts focused around maintaining high water quality conditions, strengthening stream banks and shorelines, and managing stormwater runoff. Five floating wetland islands were installed in Harveys Lake to assimilate and reduce nutrients already in the lake. The islands were placed in areas with high concentrations of nutrients, placed 50 feet from the shoreline and tethered in place with steel cables and anchored. The FWIs were funded by PADEP.
Working with the Deal Lake Commission (DLC), Princeton Hydro designed and installed 12 floating wetland islands at two lakes in Asbury Park, NJ. In order to complete the installation of the floating wetland islands, our team worked with the DLC to train and assist over 30 volunteers to plant plugs in the islands and launch them into the two lakes. Our experts helped disseminate knowledge to the volunteers, not only about how to install the floating wetland islands, but how they scientifically worked to remove excess nutrients from the water. With assistance from Princeton Hydro, DLC acquired the 12 floating islands – six for Wesley Lake and six for Sunset Lake – through a Clean Water Act Section 319(h) grant awarded by NJDEP.
In addition to the direct environmental benefits of FWIs, the planting events themselves, which usually involve individuals from the local lake communities, have long-lasting positive impacts. When community members come together to help plant FWIs, it gives them a deepened sense of ownership and strengthens their connection to the lake. This, in turn, encourages continued stewardship of the watershed and creates a broader awareness of how human behaviors impact the lake and its water quality. And, real water quality improvements begin at the watershed level with how people treat their land.
For more information on watershed planning or installing FWI in your community, click here to contact us. To learn more about ANJEC, go here.
Most of us are familiar with the famous quote "Alone we can do so little; together we can do so much.” This sentiment is at the center point of the Highlands Act and Regional Master Plan, which provides funding to help New Jersey’s Highlands communities take a proactive and regional approach to watershed protection.
Historically, private lake associations and municipalities have worked autonomously to address water quality issues and develop improvement plans. Working together, however, and taking a regional approach to lake and watershed management has much farther-reaching benefits. Taking an integrated approach helps improve water quality and reduce incidents of aquatic invasive species and harmful algal blooms (HABs) not just in one waterbody, but throughout an entire region.
The New Jersey Highlands Water Protection and Planning Council (Highlands Council) is a regional planning agency that works in partnership with municipalities and counties in the Highlands Region of northern New Jersey to encourage exactly such an approach. Created as part of the 2004 New Jersey Highlands Water Protection and Planning Act (the Highlands Act), the Highlands Council has funded numerous water-quality-related planning grants throughout the region.
“Watersheds are inherently regional; they don’t follow municipal boundaries. So the Highlands Council is in a unique position to address these challenges from that perspective,” says Keri Green, Highlands Council Science Manager. “It’s critical for municipalities to understand what is entering their lakes from the surrounding watershed before they can effectively address in-lake issues. Across the region, the stormwater inlets and roadways that encircle and affect lakes are owned and maintained by the municipalities, and when we can evaluate these inputs, we can plan for how to address impairments.”
In 2019, the Highlands Council funded a Lake Management planning grant for the Borough of Ringwood that adopted this wider watershed view, and would ultimately become a model for similar Highlands Council grants within the region. The Borough chose to engage the services of Princeton Hydro to support the project work.
“This regional approach to lake and watershed management is the obvious choice from a scientific, technical, and community point of view. Historically, however, this approach is rarely taken,” said Princeton Hydro’s Senior Project Manager, Christopher Mikolajczyk, who is a Certified Lake Manager and lead designer for this initiative. “We were thrilled to work with the Borough of Ringwood and the Highlands Council to set a precedent, which has opened the door for the Townships of West Milford and Rockaway, and will hopefully inspire the formation of more public-private lake management partnerships.”
Rockaway Township in Morris County, New Jersey received Highlands Council grant approval in January to complete a Lake Management Planning Study. Eleven small- to medium-sized lakes in the township are working together for a watershed assessment and comprehensive regional analysis, which will lead to the creation of a Watershed Implementation Plan (WIP). The WIP will recommend and prioritize key watershed management measures that will have big impacts on water quality improvement.
Given the large number of lakes in Rockaway Township, and in an effort to keep the study to a reasonable scope, a selection process occurred with input from the Township Engineering office, the Township Health Department, Princeton Hydro and the Highlands Council. The lakes in the Rockaway Township Watershed Management Program include Green Pond, Egbert Lake, Durham Pond, Lake Emma, Camp Lewis Lake, Lake Telemark, Lake Ames, Mount Hope Pond, Mount Hope Lake, White Meadow Lake, and Fox’s Pond.
“Rockaway Township has been proactive about implementing watershed improvement projects in the past, so we were happy to provide funding to support continuing their efforts focusing on these 11 lakes,” explains Lisa Plevin, Highlands Council Executive Director. “It was a very productive collaboration with Highlands staff working in partnership with the Township to develop an approach and Princeton Hydro preparing a scope of work that met everyone’s goals.”
The watershed assessment will entail a number of analyses, including watershed modeling; hydrologic and pollutant loading analysis; watershed-based and in-lake water quality assessments; and tropic state assessments. The assessment aims to:
Once all the lab data is processed, the watershed modeling is complete, and historical data reviewed, Princeton Hydro will create a General Assessment Report that will summarize the data/observations and identify which watershed management techniques and measures are best suited for immediate or long-term implementation. The team expects to complete the General Assessment Report in the spring of 2022, after a year's worth of 2021 growing season data has been collected.
In October 2020, the Highlands Council approved funding to support a watershed assessment of 22 private and public lakes in West Milford Township. The watershed assessment project is being implemented in two phases:
For Phase 1, which will take place throughout the course of 2021, Princeton Hydro will provide a historic data review; an examination of hydrologic/pollutant loads; a pollutant removal analysis; and watershed water quality analysis. The pollutants to be modeled include phosphorus, nitrogen, sediment, and bacteria, while the hydrology will include estimates of precipitation, runoff, evapotranspiration, groundwater flux, and ultimately streamflow or discharge.
This analysis will aid the Township in selecting, prioritizing and implementing nutrient and sediment load and stormwater management efforts with a focus on watershed projects that have the greatest overall benefit to the long-term management of surface water quality. The report will also identify examples of site-specific locations where wetland buffers, riparian buffers, and lakefront aqua-scaping can be implemented as part of future watershed management efforts.
For Phase 2 of the project, Princeton Hydro will investigate and assess the water quality of each of the lakes in West Milford Township during the growing season of May - October of 2022. This entails collecting bimonthly water quality samples at each lake, including in-situ water quality data consisting of real-time measurement of clarity, dissolved oxygen, temperature, and pH. The sampling events will also include a general survey of aquatic vegetation and/or algae growth, lake perimeter shoreline observations, and monitoring for nuisance waterfowl. These surveys will provide an objective understanding of the amount and distribution of submerged aquatic vegetation (SAV) and algae occurring throughout each lake over the course of the growing season.
The lakes included in this project are: High Crest Lake, Algonquin Waters, Lake Lookover, Kitchell Lake, Lindys Lake, Mt. Laurel Lake, Shady Lake, Wonder Lake, Mount Glen Lakes (Upper/Lower), Carpi Lake, Pinecliff Lake, Van Nostrand Lake, Upper Greenwood Lake, Post Brook Farms, Farm Crest Acres, Mt. Springs Lake, Forest Hill Park, Johns Lake, Gordon Lake, and Bubbling Springs Lake.
At the end of 2019, the Borough of Ringwood became the first municipality in New Jersey to take a regional approach to private lake management through a public-private partnership with four lake associations: Cupsaw, Erskine, Skyline, and Riconda.
The Borough of Ringwood is situated in the northeast corner of the New Jersey Highlands, is home to several public and private lakes, and provides drinking water to millions of New Jersey residents. In order to take an active role in the management of these natural resources, Ringwood hired Princeton Hydro to design a municipal-wide holistic watershed management plan that identifies and prioritizes watershed management techniques and measures that are best suited for immediate and long-term implementation.
Princeton Hydro recently completed a comprehensive assessment of the lakes and watersheds of Ringwood Borough. The assessment included a historical data review, hydrologic and pollutant loading analysis and in-lake and watershed based water quality data studies. The report details the results of Princeton Hydro’s mapping, modeling, and monitoring efforts in each waterbody and its respective watershed, along with specific recommendations for management implementations that are aimed at curbing the effects of nutrient and sediment loading, both within the lakes and their respective watersheds.
“Ringwood, West Milford, and Rockaway are three great examples of how people from different affiliations and backgrounds can come together to address lake and watershed monitoring and management,” said Mikolajczyk. “The key to success is open communication and a common goal!”
To learn more about Princeton Hydro’s natural resource management services, click here. And, click here to learn more about NJ Highlands Council and available grant funding.
Invasive aquatic weeds can create major impacts on freshwater ecosystems. One of the primary reasons invasives are able to thrive, spread rapidly, and outcompete native species is that the environmental checks and predators that control these species in their natural settings are lacking in the ecosystems and habitat in which they become introduced.
The subsequent damages they cause occur on many ecological levels including competition for food or habitat (feeding, refuge, and/or spawning), direct predation and consumption of native species, introduction of disease or parasites, and other forms of disruption that lead to the replacement of the native species with the invasive species. As a result, invasives often cause serious harm to the environment, the economy, and even human health.
Some of the more commonly occurring non-native aquatic plant species that impact East Coast lakes, ponds, and reservoirs include curly-leaf pondweed, eurasian watermilfoil, hydrilla, and water chestnut.
The introduction of triploid grass carp to freshwater lakes and ponds can be an effective solution and natural alternative to managing and mitigating aquatic weed growth. When stocked at a proper rate, at correct sizes, targeting proper plant species, and the right time, triploid grass carp can reduce or eliminate the need for chemical treatment of the water to control aquatic vegetation.
Originally from Asia, grass carp have been imported to the United States since the 1960s to intentionally release into controlled freshwater environments for aquatic plant control. Grass carp, which rely almost entirely on aquatic plants for their diet, prefer to eat many of the non-native aquatic plant species that negatively impact freshwater environments, including the aforementioned pondweed species and watermilfoil.
Woodridge Lake is a beautiful 385-acre freshwater lake tucked away in the hills of Litchfield County, Connecticut. The lake, which is fed by the Marshepaug River, is a man-made resource, with a dam at one end that allows the level of the lake to be controlled.
Woodridge Lake Property Owners' Association (WLPOA) closely monitors the lake, conducting water sample testing on a weekly basis. As with all waterbodies, the lake experiences aquatic weed growth, some years worse than others due to a variety of factors including climate change.
As a method to naturally mitigate aquatic weed growth, WLPOA plans to introduce triploid grass carp to the waterbody. A study by the Connecticut Agricultural Experiment Station states that grass carp is “the only biological control used successfully in Connecticut.”
Since the grass carp are an introduced species, only triploid grass carp, which are sterile, can be used. This eliminates the possibility that the stocked fish can reproduce and overpopulate the lake, or if any were to escape the lake they could not affect other waterbodies. As an additional measure of protection, to ensure that the carp remain in the lake, a screen, or emigration control device, is required. Princeton Hydro, in partnership with WLPOA, Rowledge Pond Aquaculture, and CTDEEP recently completed the installation of a carp screen.
The screen, which was custom designed by Princeton Hydro, is located in the outlet structure of the Woodridge Lake Dam, downstream of the spillway crest and within the concrete stilling basin of the spillway structure. Subsequently, the installation and operation of the carp screen will have no impact on spillway capacity or water surface elevations at the spillway crest. In addition, there will be no impact on the flow capacity or the water surface elevations of the Marshepuag River downstream of the dam outlet structure.
The emigration control device is a modular, vertical-bar screen composed of eight sections. A modular screen design was chosen to facilitate off-site fabrication and easier installation, as well as repair of an individual section, if necessary. Installed, all eight sections transect the entire 40-foot width of the spillway structure.
The carp screen was specifically designed to be easy to operate and maintain, minimizing clogging and facilitating easy cleaning from the downstream side of the screen during a range of flows. The operation and maintenance plan also consists of inspections every three months and precipitation-based inspections conducted by the WLPOA staff.
To learn more about Rowledge Pond Aquaculture, the oldest private fish hatchery in Connecticut, go here: rowledgepond.com. For more information about Princeton Hydro’s lake management services, go here: bit.ly/pondlake.
…
Looking for a unique and creative way to manage nutrient runoff in freshwater lakes? Installing Floating Wetland Islands (FWI) is a low-cost, effective green infrastructure solution used to mitigate phosporus and nitrogen stormwater pollution often emanating from highly developed communities and/or argricultural lands.
FWIs are designed to mimic natural wetlands in a sustainable, efficient, and powerful way. They improve water quality by assimilating and removing excess nutrients that could fuel algae growth; provide valuable ecological habitat for a variety of beneficial species; help mitigate wave and wind erosion impacts; provide an aesthetic element; and add significant biodiversity enhancement within open freshwater environments.
“A pound of phosphorus can produce 1,100 lbs of algae each year. And, each 250-square foot island can remove 10 lbs of phosphorus annually.” explains Princeton Hydro Staff Scientist Katie Walston. "So, that's 11,000 lbs of algae that is mitigated each year from each 250 square foot of FWI installed!"
Typically, FWIs consist of a constructed floating mat with vegetation planted directly into the material. Once the islands are anchored in the lake, the plants thrive and grow, extending their root systems through the mat and absorbing and removing excess nutrients from the water column such as phosphorus and nitrogen.
The plants uptake a lot of nutrients, but the workhorse of the FWIs is the microbial community. The matrix used within the islands has a very high surface area and it promotes microbial growth, which performs the majority of the nutrient uptake. Additionally, the root growth from the plants continues to increase the surface area for the microbial biofilm to grow on. Both the plants and microbes acting together help optimize nutrient removal.
Princeton Hydro has designed and installed numerous FWIs in waterbodies large and small for the purpose of harmful algal bloom control, fisheries enhancement, stormwater management, shoreline preservation, wastewater treatment, and more. FWIs are also highly adaptable and can be sized, configured, and planted to fit the needs of nearly any lake, pond, or reservoir.
Recently, the Princeton Hydro team completed a FWI installation in Belcher's Creek, the main tributary of Greenwood Lake. The lake, a 1,920-acre waterbody located in both Passaic County, New Jersey and Orange County, New York, is a highly valued ecological and recreational resource for both states and has a substantial impact on the local economies. In addition, the lake serves as a headwater supply of potable water that flows to the Monksville Reservoir and eventually into the Wanaque Reservoir, where it supplies over 3 million people and thousands of businesses with drinking water.
Since the lake was negatively impacted by HABs during the 2019 summer season, Greenwood Lake Commission (GWLC) has made a stronger effort to eliminate HABs and any factors that contribute to cyanobacteria blooms for 2020 and into the future. Factors being addressed include pollutant loading in the watershed, especially that of Belcher's Creek. The installation of FWIs in Belcher's Creek will immediately address nutrients in the water before it enters Greenwood Lake and help decrease total phosphorus loading. In turn this will help reduce HABs, improve water quality throughout the Greenwood Lake watershed, and create important habitat for beneficial aquatic, insect, bird and wildlife species.
“In addition to the direct environmental benefits of FWIs, the planting events themselves, which involve individuals from the local lake communities, have long-lasting positive impacts,” said Dr. Jack Szczepanski, Princeton Hydro Senior Project Manager, Aquatics Resources. “When community members come together to help plant FWIs, it gives them a deepened sense of ownership and strengthens their connection to the lake. This, in turn, encourages continued stewardship of the watershed and creates a broader awareness of how human behaviors impact the lake and its water quality. And, real water quality improvements begin at the watershed level with how people treat their land.”
The project was partially funded by the New Jersey Department of Environmental Protection's (NJDEP) Water Quality Restoration Grants for Nonpoint Source Pollution Program under Section 319(h) of the federal Clean Water Act. As part of the statewide HAB response strategy, the NJDEP made $13.5 million in funding available for local projects that improve water quality and help prevent, mitigate and manage HABs in the state’s lakes and ponds. The GWLC was awarded one of the NJDEPs matching grants, which provided $2 in funding for every $1 invested by the grant applicant. For this project, the GWLC purchased the FWIs and NJDEP provided the 2:1 cash match in order for the GWLC to implement additional HAB prevention and mitigation strategies in critical locations throughout the watershed.
Over the coming weeks, our team will be in Asbury Park, New Jersey installing FWIs in Sunset Lake. Stay tuned for more! For additional information about our lake management services, go here: bit.ly/pondlake.
Last summer, 39 of New Jersey’s lakes were plagued with toxic algae outbreaks, also known as harmful algae blooms or HABs, causing major water quality degradation, beach closures and health advisories. In response, the NJDEP implemented a unified statewide approach to addressing HABs in freshwater recreational waters and sources of drinking water, and protecting the public from risks associated with exposure to cyanobacteria.
Last week, NJDEP announced a new component to its statewide Cyanobacterial HAB Response Strategy: a color-coded health alert index that provides precise recreational use recommendations for impacted waterbodies based on levels of cyanobacteria and/or cyanotoxins present. The index has six tiers - NONE, WATCH, ALERT, ADVISORY, WARNING, and DANGER - each providing recommendations on the specific activities that should or should not be pursued based on water monitoring results.
"Princeton Hydro is proud to be one of the contributing factors in the development of the Updated Guidance for HABs," said said Dr. Fred Lubnow, Director of Aquatic Resources for Princeton Hydro. "We feel this updated protocol will provide the necessary and objective information for State and local organizations to make informed and rational decisions, based on sound and scientifically-based data, on how to deal with HABs in a recreational setting."
Princeton Hydro and Clean Water Consulting are the technical advisers for the New Jersey Lake Group, who have met a number of times over the last 8 to 9 months to discuss the State's guidance on dealing with HABs. In late 2019, on behalf of the New Jersey Lake Group, Princeton Hydro and Clean Water Consulting developed a White Paper providing recommended changes for consideration to NJDEP's Recreational Response Strategy to HABs.
"I'm proud to say that many of the provided recommendations were integrated into NJDEP's Updated Guidance for HABs," explained Dr. Lubnow.
WATCH (Suspected or confirmed HAB with potential for allergenic and irritative health effects) This warning will be posted when HAB cell counts exceed 20,000. In this scenario, public beaches remain open, but the index instructs the public to use caution, provides information on the potential less serious health effects, and allows for more informed decision-making.
ALERT (Confirmed HAB that requires greater observation due to increasing potential for toxin production) This warning indicates a public bathing beach closure only and is posted when a HAB has been confirmed with cell counts between 40,000 and 80,000 and no known toxins above the public threshold. Beaches remain open (dependent upon local health authority) and monitoring for future toxin production should be increased.
ADVISORY (Confirmed HAB with moderate risk of adverse health effects and increased potential for toxins above public health thresholds) Signs will be posted for this warning level when cell counts exceed 80,000 or when toxin levels exceed 3 micrograms per milliliter of microcystins. Public bathing beaches will be closed, but the waterbody will remain accessible to some “secondary contact” activities, like boating.
WARNING and DANGER (Confirmed HAB with high risk of adverse health effects due to high toxin levels) and (Confirmed HAB with very high risk of adverse health effects due to high toxin levels) These tiers are designed to alert the public to the presence of HABs that are producing very high levels of toxins which justify additional caution. In some instances, the entire waterbody may be closed for all public use. New Jersey has experienced approximately 12 “warning level” HAB events over the last 3 years; monitoring has never indicated a “danger level” HAB event.
According to their press release, NJDEP is committed to working with local officials to implement the index and get signage posted at lakes throughout the state as soon as possible.
In order to create the health index, NJDEP scientists carefully reviewed HABs data collected over the last three years by Lake Hopatcong Commission, Lake Hopatcong Foundation, Princeton Hydro, and other sources. The tiered warning system will enable lake communities, residents and visitors to make more individualized decisions about what risks they are willing to take and what activities they feel comfortable engaging in at the various levels of HABs.
In the coming days, the NJDEP’s Harmful Algal Bloom website will be updated to include the new health index and accompanying signage, relevant monitoring data, and other information for each of the impacted bodies of water, as well as an updated HAB Monitoring and Response Strategy. For now, you can read the full press release and additional information here: https://www.nj.gov/dep/newsrel/2020/20_0023.htm.
To learn more about HABs, check out our recent blog:
Harmful Algae Blooms (HABs) were in the spotlight last summer due to the severe impacts they had on lakes throughout the country. Nation-wide, HABs caused beach closures, restricted lake usage, and led to wide-ranging health advisories. There were 39 confirmed harmful algal bloom (HAB) outbreaks in New Jersey alone.
As a reminder, HABs are rapid, large overgrowths of cyanobacteria. These microorganisms are a natural part of aquatic ecosystems, but, under the right conditions (primarily heavy rains, followed by hot, sunny days), these organisms can rapidly increase to form cyanobacteria blooms, also known as HABs. HABs can cause significant water quality issues; produce toxins that are incredibly harmful (even deadly) to humans, animals, and aquatic organisms; and negatively impact economic health, especially for communities dependent on the income of jobs and tourism generated through their local lakes.
“A property’s value near an infested lake can drop by up to $85,000, and waterside communities can lose millions of dollars in revenue from tourism, boating, fishing and other sectors,” reports Princeton Hydro President Geoff Goll, P.E.
Generally, the health of a private lake is funded and managed in isolation by the governing private lake association group. But, in order to mitigate HABs and protect the overall health of our local waterbodies, it’s important that we look beyond just the lake itself. Implementing regional/watershed-based planning is a critical step in preventing the spread of HABs and maintaining the overall health of our natural resources.
At the end of 2019, the Borough of Ringwood became the first municipality in New Jersey to take a regional approach to private lake management through a public-private partnership with four lake associations.
The Borough of Ringwood is situated in the heart of the New Jersey Highlands, is home to several public and private lakes, and provides drinking water to millions of New Jersey residents. In order to take an active role in the management of these natural resources, Ringwood hired Princeton Hydro, a leader in ecological and engineering consulting, to design a municipal-wide holistic watershed management plan that identifies and prioritizes watershed management techniques and measures that are best suited for immediate and long-term implementation.
Funding for Ringwood’s Watershed-based Assessment is being provided by the New Jersey Highlands Council through a grant reimbursement to the Borough of Ringwood. The Highlands Council offers grant funding and assistance to support the development and implementation of a wide range of planning initiatives. Examples of the types of efforts that can be funded for municipalities and counties include:
Chris Mikolajczyk, CLM, Princeton Hydro’s Aquatics Senior Project Manager and the Ringwood project’s lead designer, presented with Keri Green of the NJ Highlands Council, at a recent New Jersey Coalition of Lake Associations meeting. The duo showcased Ringwood’s unique approach, spread the word about available funding through the NJ Highlands Council, and encourage other municipalities to follow Ringwood’s lead in taking a regional approach to lake and watershed management.
Mikolajczyk said, “This regional approach to lake and watershed management is a no-brainer from a scientific, technical, and community point of view. Historically, however, municipal governments and private lake associations have rarely partnered to take such an approach. The hope is that the Borough of Ringwood efforts, funded by the New Jersey Highlands Council, will set a precedent for this logical watershed management strategy and open the door for future public-private partnerships.”
This integrated approach to watershed and lake management is an important preventative measure to improve water quality for millions of people and reduce potential future incidents of aquatic invasive species and harmful algal blooms throughout the region.
To learn more about NJ Highlands Council and available grant funding, go here. To download a complete copy of the presentations given by Mikolajczyk and Green at the recent NJCOLA meeting, go here. To learn more about Princeton Hydro’s pond, lake and watershed management services, go here.
The U.S. is home to thousands of lakes both natural and manmade. Lakes are incredibly important features in the landscape that provide numerous beneficial services, including domestic water supply, hydro-electric power, agricultural water supply, recreation, and tourism. They also provide essential habitat for fish, wildlife and aquatic organisms.
Lakes are complex and dynamic systems, each situated in a unique landscape context. Maintaining the ecological health of a lake is no easy feat. A lot goes on behind the scenes to maintain water quality and a balanced lake ecosystem. Successful, long-term lake management requires a proactive approach that addresses the causes of its water quality problems rather than simply reacting to weed and algae growth and other symptoms of eutrophication.
Chautauqua Magazine recently published an article about the science behind the management of Chautauqua Lake, which features our Director of Aquatic Programs Dr. Fred Lubnow. We’ve included an excerpt below. Click here to view the full article and photos:
Dr. Fred Lubnow is a scientist and director of aquatic programs at Princeton Hydro, a consulting organization based in Exton, Pennsylvania, that is often called on to support lake and watershed regions that want to develop a long-term plan for lake conservation. He says that while his firm focuses on the development of data and intelligence to inform decision making in regard to freshwater ecosystems, his work is really about coalition building. "As a scientist and a consultant, you learn over time that you are building a coalition stakeholders and determining what we can agree on to help everyone in the community," Lubnow said. Ten years ago, Princeton Hydro was hired to do some stream and inlet monitoring for various stakeholders at Chautauqua Lake. More recently, they've been contracted to conduct third-party monitoring of the impacts of the Spring 2019 herbicide applications in the south basin of Chautauqua Lake... Continue reading!
Dr. Fred Lubnow is a scientist and director of aquatic programs at Princeton Hydro, a consulting organization based in Exton, Pennsylvania, that is often called on to support lake and watershed regions that want to develop a long-term plan for lake conservation.
He says that while his firm focuses on the development of data and intelligence to inform decision making in regard to freshwater ecosystems, his work is really about coalition building.
"As a scientist and a consultant, you learn over time that you are building a coalition stakeholders and determining what we can agree on to help everyone in the community," Lubnow said.
Ten years ago, Princeton Hydro was hired to do some stream and inlet monitoring for various stakeholders at Chautauqua Lake. More recently, they've been contracted to conduct third-party monitoring of the impacts of the Spring 2019 herbicide applications in the south basin of Chautauqua Lake...
Princeton Hydro is the industry leader in lake restoration and watershed management. We have conducted diagnostic studies and have developed management and restoration plans for over 300 lakes and watersheds throughout the country. This has included work for public and private recreational lakes, major water supply reservoir, and watershed management initiatives conducted as part of USEPA and/or state funded programs. For more information about our lake management services, go here: http://bit.ly/pondlake.
Your Full Name * Phone Number * Your Email * Organization Address Message *
By EmailBy Phone
Submit
Δ
Couldn’t find a match? Check back often as we post new positions throughout the year.