search
WP_Query Object
(
    [query] => Array
        (
            [tag] => lake-management
        )

    [query_vars] => Array
        (
            [tag] => lake-management
            [error] => 
            [m] => 
            [p] => 0
            [post_parent] => 
            [subpost] => 
            [subpost_id] => 
            [attachment] => 
            [attachment_id] => 0
            [name] => 
            [pagename] => 
            [page_id] => 0
            [second] => 
            [minute] => 
            [hour] => 
            [day] => 0
            [monthnum] => 0
            [year] => 0
            [w] => 0
            [category_name] => natural-resource-management
            [cat] => 10
            [tag_id] => 617
            [author] => 
            [author_name] => 
            [feed] => 
            [tb] => 
            [paged] => 1
            [meta_key] => 
            [meta_value] => 
            [preview] => 
            [s] => 
            [sentence] => 
            [title] => 
            [fields] => all
            [menu_order] => 
            [embed] => 
            [category__in] => Array
                (
                    [0] => 10
                )

            [category__not_in] => Array
                (
                )

            [category__and] => Array
                (
                )

            [post__in] => Array
                (
                )

            [post__not_in] => Array
                (
                )

            [post_name__in] => Array
                (
                )

            [tag__in] => Array
                (
                )

            [tag__not_in] => Array
                (
                )

            [tag__and] => Array
                (
                )

            [tag_slug__in] => Array
                (
                    [0] => lake-management
                )

            [tag_slug__and] => Array
                (
                )

            [post_parent__in] => Array
                (
                )

            [post_parent__not_in] => Array
                (
                )

            [author__in] => Array
                (
                )

            [author__not_in] => Array
                (
                )

            [search_columns] => Array
                (
                )

            [ignore_sticky_posts] => 
            [suppress_filters] => 
            [cache_results] => 1
            [update_post_term_cache] => 1
            [update_menu_item_cache] => 
            [lazy_load_term_meta] => 1
            [update_post_meta_cache] => 1
            [post_type] => 
            [posts_per_page] => 10
            [nopaging] => 
            [comments_per_page] => 5
            [no_found_rows] => 
            [order] => DESC
        )

    [tax_query] => WP_Tax_Query Object
        (
            [queries] => Array
                (
                    [0] => Array
                        (
                            [taxonomy] => category
                            [terms] => Array
                                (
                                    [0] => 10
                                )

                            [field] => term_id
                            [operator] => IN
                            [include_children] => 
                        )

                    [1] => Array
                        (
                            [taxonomy] => post_tag
                            [terms] => Array
                                (
                                    [0] => lake-management
                                )

                            [field] => slug
                            [operator] => IN
                            [include_children] => 1
                        )

                )

            [relation] => AND
            [table_aliases:protected] => Array
                (
                    [0] => ph_term_relationships
                    [1] => tt1
                )

            [queried_terms] => Array
                (
                    [category] => Array
                        (
                            [terms] => Array
                                (
                                    [0] => 10
                                )

                            [field] => term_id
                        )

                    [post_tag] => Array
                        (
                            [terms] => Array
                                (
                                    [0] => lake-management
                                )

                            [field] => slug
                        )

                )

            [primary_table] => ph_posts
            [primary_id_column] => ID
        )

    [meta_query] => WP_Meta_Query Object
        (
            [queries] => Array
                (
                )

            [relation] => 
            [meta_table] => 
            [meta_id_column] => 
            [primary_table] => 
            [primary_id_column] => 
            [table_aliases:protected] => Array
                (
                )

            [clauses:protected] => Array
                (
                )

            [has_or_relation:protected] => 
        )

    [date_query] => 
    [queried_object] => WP_Term Object
        (
            [term_id] => 617
            [name] => Lake management
            [slug] => lake-management
            [term_group] => 0
            [term_taxonomy_id] => 617
            [taxonomy] => post_tag
            [description] => 
            [parent] => 0
            [count] => 98
            [filter] => raw
            [term_order] => 0
        )

    [queried_object_id] => 617
    [request] => SELECT SQL_CALC_FOUND_ROWS  ph_posts.ID
					 FROM ph_posts  LEFT JOIN ph_term_relationships ON (ph_posts.ID = ph_term_relationships.object_id)  LEFT JOIN ph_term_relationships AS tt1 ON (ph_posts.ID = tt1.object_id)
					 WHERE 1=1  AND ( 
  ph_term_relationships.term_taxonomy_id IN (10) 
  AND 
  tt1.term_taxonomy_id IN (617)
) AND ((ph_posts.post_type = 'post' AND (ph_posts.post_status = 'publish' OR ph_posts.post_status = 'acf-disabled')))
					 GROUP BY ph_posts.ID
					 ORDER BY ph_posts.menu_order, ph_posts.post_date DESC
					 LIMIT 0, 10
    [posts] => Array
        (
            [0] => WP_Post Object
                (
                    [ID] => 18149
                    [post_author] => 1
                    [post_date] => 2025-09-04 13:26:49
                    [post_date_gmt] => 2025-09-04 13:26:49
                    [post_content] => 

Princeton Hydro's Director of Aquatics, Michael Hartshorne, recently traveled to Pietermaritzburg, South Africa, to present at the Southern African Society for Aquatic Scientists (SASAqS) Congress 2025. Hosted by the Institute of Natural Resources (INS) and the University of KwaZulu-Natal, the annual event convened researchers, industry professionals, government officials, and students from around the world to advance aquatic science by linking research with real-world practice.

Over the course of five days, participants shared insights on critical global and regional issues, including water pollution, water security, biodiversity conservation, climate change adaptation, and community-based resource management. The program featured an array of interdisciplinary presentations spanning hydrology, freshwater ecology, and policy, while also creating space for collaboration and connection through interactive workshops, poster sessions and exhibits, networking events, and a gala dinner and awards ceremony. On the closing day, field trips brought attendees out into the surrounding landscape, offering a tangible backdrop to the themes explored throughout the conference.


Michael's Presentation on Harmful Algal Blooms

On the opening day of the SASAqS Congress 2025 program, Michael addressed the full conference audience with a presentation titled “Novel Techniques for the Monitoring of Harmful Algal Blooms (HABs) in Lakes and Rivers of the United States,” which focused on innovative approaches for detecting and managing HABs, a growing worldwide concern driven by nutrient pollution and climate change. Michael illustrated how innovative research can inform practical management strategies while encouraging global collaboration.

HABs are intensifying in frequency, scale, and severity worldwide, presenting challenges for drinking water supplies, recreational lakes, and river ecosystems. Michael’s presentation showcased a suite of monitoring tools, from handheld phycocyanin and phycoerythrin meters, to drones with multispectral lenses, to advanced techniques such as qPCR (quantitative Polymerase Chain Reaction), microscopy, and akinete cell monitoring. Through case studies from lakes, reservoirs, and river systems in New Jersey, Virginia, and Pennsylvania, he highlighted the strengths and limitations of each method, emphasizing the importance of tailoring monitoring strategies to the unique conditions of each waterbody. Michael also discussed management interventions and highlighted how emerging technologies can support more adaptive, science-driven management of HABs.

[gallery link="none" size="large" columns="2" ids="18171,18172"]

“It was an honor to participate in this year’s event and learn alongside so many dedicated professionals who are working to protect and restore aquatic ecosystems,” said Michael. “The international exchange of ideas and techniques is critical in helping us all address the increasingly complex challenges facing our water resources.”

[caption id="attachment_18151" align="aligncenter" width="553"] Michael Hartshorne with Dr. Matthew Burnett, Principal Scientist at the Institute of Natural Resources and member of the SASAqS 2025 local organizing committee.[/caption]

In the Field: Aquatic Science in Action

The conference concluded with optional field trips that gave participants a chance to view South Africa’s aquatic systems and management challenges firsthand. Each excursion highlighted a different aspect of aquatic science in practice:

  • UKZN Zebrafish Research Facility: On the University of KwaZulu-Natal’s Pietermaritzburg campus, this outing introduced participants to the zebrafish as a model organism for studying genetics, development, and aquatic toxicology. The tour provided a window into laboratory-based aquatic science and its applications to regional and global challenges.

  • Lions River Monitoring Demonstration: Hosted by GroundTruth, this field trip took a group to Lions River to observe live demonstrations of water quality and quantity monitoring using advanced tools such as UAVs (drones), USVs (unmanned survey boats), and a suite of citizen science methods, including MiniSASS, clarity tubes, and velocity planks. The excursion showcased how high-tech innovation and community-driven monitoring can complement one another in managing freshwater resources.

  • uMkhomazi Upper Catchment: Michael chose to participate in this field trip, led by the Institute of Natural Resources’ Chief Scientist Jon McCosh and Scientist Zanele Makhaya, which examined grassland rehabilitation efforts aimed at reducing sediment mobilization at catchment scale. Erosion control project implementation and monitoring is conducted locally with participants who are trained as community scientists and restoration ecologists by the INR. Participants learned how erosion control strategies can extend the lifespan of proposed dams on the uMkhomazi River, while also considering the complex socio-ecological impacts of large infrastructure projects on local communities and landscapes.
[gallery link="none" size="medium" ids="18166,18168,18167"]

Travel Highlights Beyond the Conference

Outside of the conference, Michael took the opportunity to explore the diverse beauty and culture of South Africa. At Betty's Bay, a small town on the Western Cape he enjoyed coffee while taking in sweeping coastal views; walked scenic trails; spotted a few Hyraxes and Chacma baboons; and observed the African penguin (Spheniscus demersus) at the Stony Point colony. He also viewed the Cape Rockjumper (Chaetops frenatus), a ground-dwelling bird endemic to the mountain Fynbos, at nearby Rooi-Els.

[gallery link="none" size="medium" ids="18159,18157,18160"]  

He visited Karkloof Nature Reserve in the KwaZulu-Natal province, a rural agricultural area which has implemented conservation efforts for the once endangered, but still threated, Wattled Crane (Grus carunculate).

[gallery link="none" columns="2" ids="18152,18155"]

Michael’s participation in SASAqS Congress 2025 reflects Princeton Hydro’s ongoing commitment to advancing aquatic science and collaborating with experts around the world. By sharing practical monitoring and management strategies for HABs, his contributions added to a rich global dialogue on how science can inform sustainable solutions.

Since joining Princeton Hydro in 2006, Michael has led numerous lake, stream, and watershed studies focused on water quality, restoration, and sustainable management. His expertise includes applied limnology, ecological restoration, TMDL (total maximum daily load) development, and biological surveys. Michael is skilled in designing and implementing monitoring programs that integrate technical rigor with community engagement, ensuring effective outcomes for both ecosystems and stakeholders. To learn more about Michael, click here.

The Institute of Natural Resources promotes the sustainable use of natural resources to benefit both the environment and society. Click here to learn more. To learn more about The University of KwaZulu-Natal a teaching and research-led university with multiple campuses across South Africa, click here.

Earlier this year, Princeton Hydro President Geoffrey M. Goll, PE traveled to Durban, South Africa, to participate in a symposium focused on “Dam Management and Restoration of River Connectivity.” Click here to read the blog about his journey.

[post_title] => International Collaboration in Aquatic Science: Michael Hartshorne Presents in South Africa [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => international-collaboration-in-aquatic-science-michael-hartshorne-presents-in-south-africa [to_ping] => [pinged] => [post_modified] => 2025-09-04 13:26:49 [post_modified_gmt] => 2025-09-04 13:26:49 [post_content_filtered] => [post_parent] => 0 [guid] => https://princetonhydro.com/?p=18149 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [1] => WP_Post Object ( [ID] => 17900 [post_author] => 1 [post_date] => 2025-07-21 14:35:31 [post_date_gmt] => 2025-07-21 14:35:31 [post_content] =>

Welcome to the latest edition of our Client Spotlight blog series, which provides an inside look at our collaboration, teamwork, and accomplishments with one of our client partners.

In this special edition, we’re shining the spotlight on the Town of Mina and Findley Lake Watershed Foundation (FLWF), two organizations working closely together to protect and preserve Findley Lake in Chautauqua County, New York. This charming 300-acre lake is a cherished focal point for recreation, tourism, and community pride, and safeguarding it is a shared responsibility. The Town of Mina and FLWF, a volunteer-led nonprofit, have built a strong partnership dedicated to maintaining the lake’s health and ensuring its long-term sustainability.

We spoke with Rebecca Brumagin, Town of Mina Supervisor, and Ed Mulkearn, Board President of the FLWF.

We kicked-off the conversation with a question for Rebecca:

Q: Rebecca, can you provide an overview of the Town of Mina and the core values the Town prioritizes?

A:

[embed]https://youtu.be/DkloMSAMoyE[/embed]

Rebecca continues: “As part of our 2024 Comprehensive Plan, the Town of Mina identified four core community values that guide our decision-making, with our top priority being Findley Lake!

The lake is the heart of our community. Ensuring it remains clean, beautiful, and accessible for recreation and overall enjoyment is essential to our identity. That’s why we work so closely with FLWF. During the comprehensive planning process, FLWF developed a Lake Management Plan, which now guides our environmental efforts.

Our second core value is economic development. Findley Lake is experiencing an exciting period of growth, with several initiatives underway, including a new warehouse distribution center, growing retail presence, and revitalization in the downtown area. It’s truly a renaissance moment for our community.

Third, we’re deeply committed to preserving and enhancing our community character. We value our rural lifestyle and are working to improve it with expanded trails, new boardwalks, and safer, more accessible green spaces for all to enjoy. And, our fourth core value centers on strengthening local government, becoming more efficient, effective, and responsive to the needs of our residents. We want people to feel heard, supported, and engaged in the future of our town.”


Q: Ed, can you tell us about the history of FLWF and how it evolved into the organization it is today?

A:

“FLWF was established in 2002, but our roots go back much further. Before that, our work was carried out by the Findley Lake Property Owners Association, which formed in the late 1940s after the lake was no longer needed as a power source for milling operations.

At that time, the lake and dam were donated by Larry Schwartz to a group of local, stewardship-minded residents. That group did the best they could with limited resources and knowledge. But as science, lake management practices, and environmental awareness progressed, so did our approach.

By transitioning to a 501(c)(3) nonprofit in 2002, we were able to access grant funding and expand our work significantly. Since then, we’ve purchased weed harvesters, partnered with Princeton Hydro for lake studies, and supported major infrastructure projects like the new sewer system currently in development to address septic-related pollution.

We’ve also taken steps to reduce streambank erosion and manage phosphorus loading that affects lake oxygen levels. Our board is strong and diverse—we have dedicated members with the expertise needed to keep moving the organization and the lake forward. At our core, FLWF is committed to maintaining, enhancing, and improving the quality of Findley Lake and its watershed through science-based action and collaboration.”


Q: Ed, what are the core values that guide FLWF, and which current projects highlight those values in action?

A:

[embed]https://youtu.be/l7ljPic09iE[/embed]

Q: Rebecca, what are some of the initiatives the Town of Mina is leading to support ecological uplift, water quality improvements, and environmental stewardship?

A:

[embed]https://youtu.be/hTb0GMQirgE[/embed]

Rebecca continues: “We’ve made significant strides in advancing the health of our local environment, thanks in part to support from the New York State Department of Environmental Conservation (DEC). We’ve completed three DEC-funded studies that are guiding our next steps.

One study focused on culverts throughout the watershed with the goal of improving water flow and reducing flood risk. Every culvert was assessed to identify those that need repair or replacement. Another study analyzed stormwater runoff, identifying ten key inflow areas to Findley Lake where erosion and sedimentation pose potential threats. Each site was evaluated and prioritized, and we’ve since secured a DEC grant to address the highest-priority site. And, the third study explored in-lake nutrient control strategies, which laid the groundwork for our current partnership with Princeton Hydro on nutrient management efforts.

Beyond lake-focused work, we’re also committed to enhancing community access to nature. We’ve received support from Chautauqua County for efforts that will benefit both the environment and quality of life for residents and visitors alike.”


Q: Ed, reflecting on past collaborations, can you highlight a project or two that FLWF has worked on with Princeton Hydro?

A:

“We first partnered with Princeton Hydro a few years ago when our board recognized the need for expert guidance on lake management. While we have a strong, professional board, we lacked the specialized knowledge in lake ecology and water quality science to move forward confidently with major decisions.

After researching several firms, we chose to bring Princeton Hydro on board to help us better understand nutrient dynamics in the lake. One of our key concerns was the persistent late-summer algae blooms, which we later learned were linked to phosphorus being released from the lake’s sediments.

Princeton Hydro conducted an in-lake nutrient study that clearly explained this internal loading process and helped us chart a path forward. Building on that work, we’re now working with the Princeton Hydro team on a bathymetric and sediment analysis to guide our next step, which will be to install an aeration system to reduce phosphorus release and improve water quality.

Princeton Hydro’s expertise has been instrumental in making complex science understandable and actionable, which has helped us take meaningful steps toward restoring the health of Findley Lake.”

[gallery columns="2" link="none" size="full" ids="17908,17907"]

Q: Rebecca, is there anything you'd like to add about the Town’s collaboration with Princeton Hydro?

A:

[embed]https://youtu.be/vtEIi23Ov98[/embed]

Following Rebecca’s remarks, Ed adds: “I’d just like to echo what Rebecca said—the Princeton Hydro team we worked with this Spring was truly a pleasure to collaborate with. Their depth of knowledge was impressive, but just as important was their ability to communicate complex concepts in a way that was clear and easy for our board to understand. That kind of approachability made a big difference. It was a great experience working with them.”


Q: Ed, for those interested in supporting FLWF’s mission, how can individuals get involved and contribute to your efforts?

A:

“We’re always grateful for donations, they fuel much of what we do. But beyond financial support, one of the most valuable ways people can contribute is by sharing their experiences and ideas.

There are countless lakes and watershed organizations out there facing similar challenges, and many have come up with innovative, cost-effective solutions. We’re always eager to learn from others; whether it's a new technology, a successful restoration approach, or a creative funding strategy. Collaboration and information-sharing are incredibly powerful tools in watershed management. If you’ve worked on a similar issue or simply have ideas that could help, we’d love to hear from you. The more we connect and learn from each other, the better we can protect and improve Findley Lake for generations to come.”

Following Ed’s comments, Rebecca adds: “One of the things that makes the Town of Mina so special is the strong culture of volunteerism. We’re fortunate to have many residents, often individuals who’ve had professional careers elsewhere, who bring their skills, energy, and passion to our community.

Even though we’re a small town, we benefit from a wide network of nonprofit organizations and local initiatives. For example, the Findley Lake Nature Center is actively working on trail development, and there are many other opportunities for people to get involved in stewardship, whether it’s helping maintain green spaces, supporting water quality efforts, or sharing expertise on local projects.

What’s especially unique about our community is how welcoming we are. Newcomers don’t have to wait decades to feel at home here—they’re embraced right away, and their ideas are valued. That openness has really enhanced our ability to protect Findley Lake and strengthen the town as a whole.”


To close out the conversation, we asked Rebecca and Ed if there was anything else they’d like to share.

In the video below, Ed reflects on the strong sense of community in the Town of Mina and the local support that fuels the ongoing efforts to protect and preserve Findley Lake:

[embed]https://youtu.be/nrsMt1WMODw[/embed]

After Ed’s remarks, Rebecca shares a few additional reflections: “One particularly meaningful designation we’ve received is from New York State, which has identified us as one of only two rural NORCs (Naturally Occurring Retirement Communities) out of 43 statewide. This designation recognizes our vibrant population of older adults and has allowed us to pursue new forms of support and services. We’re currently looking into developing a pocket neighborhood to help seniors remain in the community, where they continue to be active, involved, and deeply valued.

And here’s a fun fact that speaks to the energy of Findley Lake: it serves as the practice site for the women’s rowing team from Mercyhurst University, who happen to be the reigning national champions. Pretty cool, right?”

Yes, Rebecca, we think that’s very cool!

[caption id="attachment_17902" align="alignnone" width="1482"] Photo from Chautauqua County Visitors Bureau[/caption]

A heartfelt thank you to Rebecca and Ed for their partnership and for taking the time to speak with us to share their passion for protecting Findley Lake and strengthening the Town of Mina. Their leadership and collaboration exemplify the power of community-driven stewardship.

To learn more about their work and how you can get involved, we encourage you to visit the Town of Mina’s website and FLWF at findleylakewf.org.

Click here to read the previous edition of our Client Spotlight Series featuring Farmington River Watershed Association Executive Director Aimee Petras.

[post_title] => Client Spotlight: The Town of Mina & Findley Lake Watershed Foundation [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => client-spotlight-the-town-of-mina-findley-lake-watershed-foundation [to_ping] => [pinged] => [post_modified] => 2025-07-22 15:14:49 [post_modified_gmt] => 2025-07-22 15:14:49 [post_content_filtered] => [post_parent] => 0 [guid] => https://princetonhydro.com/?p=17900 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [2] => WP_Post Object ( [ID] => 17927 [post_author] => 1 [post_date] => 2025-07-20 14:37:38 [post_date_gmt] => 2025-07-20 14:37:38 [post_content] =>

Ever wondered how scientists measure lake water clarity? One of the simplest and most enduring tools for the job is the Secchi disk.

Long before it became a formal scientific tool, sailors and scientists were already using simple methods to estimate water clarity, like lowering white objects into the water to gauge visibility and depth. In 1865, Italian astronomer Father Pietro Angelo Secchi built on these early techniques by developing a uniform white disk and standardized utilization method. His published findings helped establish the Secchi disk as a practical tool for water quality assessment.

The design was later improved by George C. Whipple, who added alternating black and white quadrants to enhance visibility. Today, this version of the Secchi disk remains a staple in the field kits of aquatic scientists and limnologists worldwide.

As part of our Field Notes blog series, which spotlights essential tools and techniques used by our team, Senior Aquatics Manager Christopher L. Mikolajczyk, CLM, demonstrates how to properly use a Secchi disk and explains how this simple method helps inform lake and pond management strategies. Watch now:

[embed]https://youtu.be/cj7YEctvqRQ[/embed]

As Chris explains in the video, water clarity is a key indicator of overall lake health, and monitoring it provides valuable insight into the condition and functioning of aquatic ecosystems. Regular monitoring helps lake managers understand whether conditions are within a healthy range, identify potential indicators of future algal blooms, and make informed decisions to maintain ecological balance.

Interested in getting involved? With a few simple materials, you can build your own Secchi disk and participate in the Secchi Dip-In, a community science initiative where volunteers measure and report water clarity data. While the Dip-In is traditionally celebrated in July during Lakes Appreciation Month, data collection is welcomed and encouraged year-round.


Chris has dedicated over 25 years to advancing the science and practice of aquatic ecology and water resource management. His expertise spans the management, oversight, and coordination of projects in three key areas: aquatic resource restoration and management, aquatic ecosystem sampling and investigations, and stormwater quality modeling and management. Chris has an Associate's, Bachelor's, and Master's degree in Water and Watershed Resource Management. In addition to his work with Princeton Hydro, Chris currently serves as the President-Elect of the Colorado Lake and Reservoir Management Association’s 2025 Board of Directors and has also served as President of North American Lake Management Society. These leadership roles highlight his dedication to advancing aquatic resource conservation.

[post_title] => Field Notes: How Measure Water Clarity With a Secchi Disk [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => secchidisk [to_ping] => [pinged] => [post_modified] => 2025-07-31 22:27:41 [post_modified_gmt] => 2025-07-31 22:27:41 [post_content_filtered] => [post_parent] => 0 [guid] => https://princetonhydro.com/?p=17927 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [3] => WP_Post Object ( [ID] => 15865 [post_author] => 1 [post_date] => 2024-11-12 10:07:45 [post_date_gmt] => 2024-11-12 10:07:45 [post_content] =>

Lake Hopatcong, New Jersey's largest freshwater lake, spans 2,600 acres and stretches over six miles, forming part of the border between Sussex and Morris counties in the state’s northern Highlands region. Just 40 miles from Manhattan, its proximity to the city, combined with its scenic beauty, recreational appeal, and rich biodiversity, has long made it a desirable destination for visitors, residents, and businesses alike. The lake’s waters and surrounding habitats support diverse wildlife, including aquatic plants, animals, birds, and other terrestrial species.

Increased residential and commercial development, along with the impacts of climate change, have placed growing pressures on the lake’s ecosystem. Managing these pressures is vital to preserving water quality and protecting the biodiversity of both the lake and its watershed.

The Lake Hopatcong Foundation (LHF) and Lake Hopatcong Commission (LHC) are dedicated to protecting the lake and balancing development with environmental stewardship. Through thoughtful planning, long-term sustainability initiatives, and strategic partnerships, they have worked to safeguard the lake’s ecological, economic, and recreational value.

Princeton Hydro, a long-standing partner in this effort, has been involved in restoring the lake and managing its watershed for over 30 years. Our work has focused on reducing pollutant loads, managing stormwater runoff, addressing invasive aquatic plants and nuisance algal blooms, and enhancing habitat quality. Together with LHF, LHC, and funding partners, we have implemented a variety of projects designed to protect the lake and the communities that rely on it.

As a key partner, the New Jersey Highlands Council (Highlands Council) has provided essential funding for many of these critical projects, ensuring they come to fruition. These efforts reflect the Council’s commitment to safeguarding Lake Hopatcong’s future while upholding the Highlands Act’s mission to protect natural resources and foster sustainable community growth. These collaborations are vital to the initiatives that preserve the lake’s water quality, restore habitats, and promote the long-term health of the region.


Showcasing Success at the New Jersey Highlands Council 20th Anniversary Event

In celebration of its 20th anniversary, the Highlands Council hosted a special event, which featured a “Lake Hopatcong Exhibit,” highlighting many of the successful projects that it funded. Representatives from LHC, LHF, Highlands Council, and Princeton Hydro, were on hand to discuss the significance of these projects and their contributions to the long-term health of the lake and surrounding communities.

The exhibit included a variety of interactive experiences, including informative posters and maps detailing project efforts. Participants were able to examine Lake Hopatcong water samples under microscopes with guidance from Dr. Fred S. Lubnow, Princeton Hydro Senior Technical Director of Ecological Services.

By highlighting both the challenges faced and the progress made, the exhibit offered attendees a deeper understanding of the lake’s critical role in the region’s environmental and economic sustainability as well as the ongoing efforts to maintain the lake's water quality and protect its ecological health.

[gallery link="none" columns="2" ids="15868,15871,15869,15872"]

Lake Hopatcong Success Stories Funded by the New Jersey Highlands Council

Through funding from the Council, a variety of partners including LHF, LHC, Princeton Hydro, and local government agencies have been able to implement a myriad of projects. From stormwater management systems to watershed restoration efforts, these initiatives are designed to address issues like nutrient pollution, invasive species, and habitat degradation. These projects are helping to protect the lake’s water quality and ensure its healthy future:

Upper Musconetcong Watershed Implementation Plan (WIP): $109,000 to LHC

In 2021, the Upper Musconetcong River Watershed Restoration Plan was updated to a 9-element WIP. This revision re-evaluated existing conditions, integrated green infrastructure, and incorporated emerging technologies. The WIP has since facilitated funding for projects such as biochar installation, alum treatments to reduce phosphorus, and stormwater management improvements. 25% of the WIP ($27,250) was used as match toward a National Fish and Wildlife Foundation (NFWF) grant ($485,650). This effort led to NJDEP 319 (h) Stormwater Grant for Biofiltration at Lakeside Fields ($239,000).

 

Restoration Plan for Memorial Beach and Park in the Borough of Mount Arlington: $60,000 to Borough of Mount Arlington

A restoration plan was developed for the watershed that directly flows to Memorial Beach through the park. A series of stormwater management measures were recommended and subsequent funding was secured. This effort led to community-funded project for the dredging of Memorial Pond ($277,000) and a slope stabilization with native plantings at Memorial Pond via a NJ Department of Environmental Protection 319(h) grant. $70,500 was also used as match for NFWF Glen Brook Project (Total Project - Glen, Muscy, Witten - $485,650)

 

Preliminary Feasibility Assessment & Data Collection for Beneficial Reuse of Sediment in Landing Channel: $47,650 to Roxbury Township

Erosion of Floating Island, which located in Lake Hopatcong’s  Landing Channel, contributed to significant sediment accumulation. A preliminary feasibility study conducted by Princeton Hydro explored dredging and habitat restoration options. The proposed beneficial reuse/dredging project would rehabilitate the island and lead to reduced phosphorus in the lake, increased beneficial wetland habitat, and improved water quality. The next phase of the project includes engineering design, permitting, and implementation.

 

Feasibility Study Update for Sewering Jefferson Township Section of Lake Hopatcong Watershed: $100,000 to Jefferson Township

A 25+ year-old feasibility study was updated to lay the groundwork for the the installation of sanitary sewers along the lakefront area of Jefferson Township, which is currently using septic systems. This marked the first step in addressing one of largest sources of phosphorus entering Lake Hopatcong and a pivotal milestone in the ongoing efforts to safeguard water quality and mitigate the risk of harmful algal blooms (HABs) on Lake Hopatcong. These efforts led to a Community Funded Project from Congresswoman Sherill’s Office ($750,000).

 

Design of a Bank Stabilization and Planting Project along the Musconetcong River: $89,500 to Roxbury Township

A bank stabilization design and planting plan was completed for a popular fishing location along the Musconetcong River between Lakes Hopatcong and Musconetcong. The project, led by the LHC with technical assistance from Princeton Hydro, aims to reduce sediment and nutrient levels in Lake Musconetcong by improving the condition of a key section of the Musconetcong River. The Highlands Council grant to Roxbury Township provided the critical first step in this long-term, multifaceted project.

 

Oxygenation Feasibility Study: $80,300 to Morris County

Princeton Hydro completed a feasibility study for the design of an oxygenation system for Lake Hopatcong. It aimed to address the lake’s internal phosphorus load that contributes toward the nuisance HABs over the summer months. Since the widespread occurrence of HABs in 2019, the LHF and the LHC have been actively exploring solutions to reduce their frequency. Oxygenation systems help prevent stagnation of water, increasing circulation, disrupting thermal stratification which provides “through-column” mixing, and minimizes the occurrence of HABs. The results of this study will be used to move the project forward into the permitting and implementation phases.

 

Design of a Regenerative Stormwater Conveyance System for Witten Park: $54,000 to Borough of Hopatcong

A planting plan and regenerative stormwater conveyance system design was completed to aid in the mitigation of stormwater in Witten Park. A new system will help to manage and treat stormwater within the park, reducing erosion and sediment that flows into Lake Hopatcong. The system will also restore the floodplain, wetlands, and streams, and improve the ecological health of the area. The funding from the Council was also used by LHC as in-kind match for a NFWF grant award ($353,000) for the permitting & implementation phases.

 

Three Year Trout Habitat Study at Lake Hopatcong: $130,000 to Jefferson Township

One of the most significant recreational draws to Lake Hopatcong is its trout fishery, recognized regionally by anglers and established as an important component of the local economy. Data collected over the past 30 years at the lake was analyzed and showed increasing surface water temperatures, a trend that may suggest that the trout carryover habitat is being negatively impacted. The LHC, in cooperation with the LHF and the Knee-Deep Club, initiated a three-year trout tagging study. The study focused on the introduction of larger trout to assess the long-term population dynamics of those stocked fish and the general health of the fishery.

 

Revitalization of Two Stormwater Basins in Roxbury Township: $98,100 to Roxbury Township

Planning documents, a hydraulic & hydrologic analysis, and an engineering report were prepared for the construction of two stormwater basin retrofits. The stormwater basin retrofit project aims to minimize runoff and reduce pollutants flowing into Lake Hopatcong, thus protecting water quality. The reconstruction of the basins is critical in managing stormwater effectively, preventing erosion, and reducing nutrient loads that contribute to harmful algal blooms. By improving these basins, the project plays a key role in safeguarding the lake's ecosystem and ensuring the long-term health of its water resources.

 

Development of Plans for Catch Basins at Shore Hills Beach Club: $42,500 to Morris County

A field assessment, survey, and engineering design was completed for the installation of stormwater treatment devices at each of the outfall systems at the Shore Hills Beach Club property, which is located at the southern most tip of Lake Hopatcong. The primary goal of the project is to reduce phosphorus loads entering the lake, which can lead to nuisance weed growth, reduced water quality, and the proliferation of HABs. This funding from the Council enabled the project's next phase: construction.


As we celebrate the 20th anniversary of the New Jersey Highlands Council and its vital contributions to Lake Hopatcong, it’s clear that the future of this treasured resource relies on ongoing collaboration among stakeholders, local communities, and environmental organizations. By implementing innovative solutions and promoting sustainable practices, we can ensure that Lake Hopatcong continues to thrive as both an ecological haven and a recreational hub. This collective effort not only enhances the lake’s water quality and biodiversity but also strengthens the economic vitality of the surrounding communities, fostering a legacy of environmental stewardship for generations to come.

[post_title] => Collaborating for a Sustainable Future & Celebrating Lake Hopatcong Success Stories [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => collaborating-for-a-sustainable-future-celebrating-lake-hopatcong-success-stories [to_ping] => [pinged] => [post_modified] => 2024-11-13 19:36:15 [post_modified_gmt] => 2024-11-13 19:36:15 [post_content_filtered] => [post_parent] => 0 [guid] => https://princetonhydro.com/?p=15865 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [4] => WP_Post Object ( [ID] => 15503 [post_author] => 1 [post_date] => 2024-09-05 07:26:46 [post_date_gmt] => 2024-09-05 07:26:46 [post_content] =>

Mercer County Park, spanning over 2,500 acres across the Townships of West Windsor, Hamilton, and Lawrence, is a treasured natural resource. Like many waterbodies throughout New Jersey, some of the lakes within Mercer County Park have been increasingly affected by harmful algal blooms (HABs) in recent years. In response to the growing frequency, duration, and severity of these blooms, the Mercer County Park Commission (MCPC) has intensified its efforts to enhance the overall health of its lakes.

To address these challenges, the County of Mercer tasked the MCPC with developing a comprehensive Lake and Watershed Management Plan. The ultimate goal is to ensure the health, stability, and sustainability of the park's aquatic ecosystems, thereby enhancing the recreational experience for park users. In this endeavor, the MCPC has partnered with Princeton Hydro to bridge gaps in the existing data and create a thorough management plan.

The plan documents the current conditions of waterbodies within the park, including Mercer Lake, which is the largest, and its surrounding watershed; identifies and prioritizes existing and potential water quality challenges; and provides targeted recommendations for treatment and restoration.

Princeton Hydro conducted a detailed analysis of the lakes' ecological health, including water quality monitoring, bathymetric mapping, and assessment of hydrologic and pollutant budgets. These comprehensive efforts have culminated in a robust management plan designed to protect and improve the lakes' ecological balance and recreational value.


Expanding the Initiative Across Mercer County

While Mercer Lake is a key focus, Princeton Hydro's commitment extends beyond this single waterbody. Recognizing the interconnected nature of the county's aquatic ecosystems, the team conducted similar analysis and developed Lake and Watershed Management Plans for three additional lakes in other parks within Mercer County.

These lakes are:
  • Curlis Lake in Curlis Lake Woods Park
  • Rosedale Lake in Rosedale Park
  • Spring Lake in John A. Roebling Memorial Park

Each of these lakes, like Mercer Lake, faces unique challenges related to maintaining water quality, protecting ecological balance, and mitigating HABs. By applying a comprehensive approach tailored to the specific conditions and needs of each lake, Princeton Hydro aims to enhance the overall health of these vital resources.

Let's dive into the details of Mercer Lake's plan!


Historical Data Review: Laying the Foundation for Informed Management

The first crucial step in developing Mercer County Park's comprehensive lake management plan involved a thorough review of historical data obtained from various sources, including the County, New Jersey Department of Environmental Protection (NJDEP), New Jersey Department of Transportation (NJDOT), and U.S. Geological Survey (USGS). This review was essential for capitalizing on established water quality trends, identifying recurring problems, and evaluating the success of previous restoration efforts.

The historical data review spanned an impressive range of years from 1963 to 2016, though it did contain some significant gaps. Despite these gaps, the long-term data provided invaluable insights into the lake's ecological history. By integrating reliable data from past studies, the team could complement their field efforts with supplemental information.

Princeton Hydro examined data on Mercer Lake, a key focus of the management plan initiative, and on all streams within each watershed that feed into the lake. This included any available surface water data from the USGS, a standard approach in aquatic system studies. By analyzing these data, the team identified trends in water quality, highlighted persistent issues, and assessed the effectiveness of past restoration efforts.

This comprehensive historical data review set the stage for a robust watershed assessment, ensuring that the management plan would be informed by a solid foundation of past knowledge.


Bathymetric Survey: Mapping Mercer Lake's Depths and Sediments

A bathymetric survey is a scientific method used to map the depths and topography of waterbodies, providing detailed information about the underwater terrain and the distribution of sediments. This survey is crucial for understanding various aspects of a lake's ecosystem, including sediment thickness, water volume, and potential areas for dredging. The data gathered from a bathymetric survey helps in making informed decisions regarding the restoration and protection of lakes.

Princeton Hydro conducted the bathymetric survey using a calibrated sounding rod for shallow areas and a dual-frequency echo sounder with GPS for deeper regions. The sounding rod was employed in areas with water depths of 12 inches or less and where sediment composition hindered echo sounding. The echo sounder, a Knudsen Engineering model 1612, used high and low frequencies to distinguish the top and bottom of sediment layers. Data points were collected along predetermined transects spaced 150 feet apart, running from shoreline to shoreline in a north-south direction.

Once fieldwork was completed, the collected data was processed using Hypack Max software. This involved editing the raw sounder data to correct errors such as double reflections and interference from aquatic vegetation. The cleaned data was exported to ArcGIS for further analysis and mapping.

The results of the bathymetric survey revealed that Mercer Lake, a key focus of the lake management plan, covers a surface area of approximately 287 acres and is primarily an oval-shaped impoundment. The lake receives inflow from Assunpink Creek and its tributaries and discharges water westward, eventually reaching the Delaware River, Delaware Bay, and the Atlantic Ocean.

Mercer Lake was found to be relatively shallow, with a mean depth of 8.9 feet and a maximum depth of 18.5 feet. The total volume of water in the lake was estimated at around 2,560 acre-feet, or 834.2 million gallons. The survey also indicated significant sediment deposition in the eastern portion of the lake, with a total sediment volume of approximately 855,325 cubic yards. This pattern is likely due to the lake's role as a settling area for sediment carried by tributary inflows and stormwater discharges, which transport debris, leaf litter, and other materials into the lake.

Below is an image of the Bathymetric Survey that provides a detailed view of the sediment thickness contours measured in feet throughout Mercer Lake:

By establishing a detailed understanding of Mercer Lake's depth and sediment distribution, the bathymetric survey provides a robust foundation for the comprehensive lake management plan, informing long-term management decisions. The bathymetric data collected is also essential for evaluating the need for dredging, understanding aquatic plant colonization patterns, and predicting the lake's response to incoming nutrients, helping to guide restoration and protection efforts.


Hydrologic and Pollutant Loading Analysis: Understanding the Sources and Impacts of Pollution

Hydrologic and Pollutant Loading Analysis is crucial for identifying the sources and impacts of pollutants entering a waterbody. It involves delineating watersheds, assessing hydrologic data, and evaluating nutrient loads.

For Mercer Lake, Princeton Hydro conducted an extensive analysis using tools such as USGS StreamStats and Stroud Research Center’s Model My Watershed®. This study provided a detailed understanding of the water and pollutant dynamics within the Mercer Lake watershed. The map below offers an aerial view of the watershed, illustrating the various types of land cover present within the area:

Runoff varied considerably between different sub-watersheds due to factors like land cover types, land-use consumption, impervious surfaces, and topography. Variations in elevation change also determine the impact runoff has on soil erosion, with steeper slopes causing higher erosion rates, especially if little vegetation is present. The chart below shows the various types of soil coverage in areas throughout the Mercer Lake watershed:

Princeton Hydro also assessed other pollutant sources, including groundwater seepage, streambank erosion, and contributions from residential septic systems. Additionally, the impact of waterfowl, particularly Canada Goose, was evaluated using nutrient loading coefficients. The presence of these birds significantly contributes to phosphorus and nitrogen levels.

The hydrologic budget, representing the water balance of the lake, was calculated by considering inputs such as direct precipitation, overland runoff, tributary inflow, and groundwater seepage. This data is vital for conducting trophic state analyses and determining the feasibility of various in-lake restoration techniques. Internal loading of phosphorus, which occurs when anoxic conditions in the lake's bottom sediments release bound phosphorus into the water, was also analyzed.

Results of the analysis revealed that Mercer Lake, covering 287.1 acres, is influenced by a watershed area of 20,551.4 acres, predominantly consisting of cropland and forested areas. The lake's shallow nature coupled with significant sediment deposition in the eastern portion, underscores the importance of managing both external and internal nutrient loads.

Understanding the hydrologic and pollutant dynamics through this detailed analysis allows for the development of a lake management plan that helps to prioritize management efforts, target the primary sources of pollution, and effectively address HABs.


Water Quality Monitoring: Ensuring a Healthy Ecosystem

Monitoring water quality is essential for understanding the existing chemistry of a lake, identifying trends, pinpointing problems, and assessing nutrient levels. It provides critical data that informs management decisions and helps maintain the health and stability of aquatic ecosystems.

For Mercer Lake, Princeton Hydro conducted thorough water quality monitoring from 2021 to 2023. This involved analyzing in-situ, discrete, and plankton data collected over three growing seasons. The monitoring focused on various parameters, including hypolimnetic anoxia and associated phosphorus dynamics, which are key contributors to HABs. The data collected offered a current assessment of the lake’s trophic state and plankton community, providing a baseline to document shifts in water quality in response to future management measures.

The Princeton Hydro team performed 13 sampling events at two consistent stations in Mercer Lake: a deep water station near the dam (ML-1) and a mid-lake station (ML-2). Various parameters were monitored, including water temperature, dissolved oxygen (DO), pH, specific conductivity, chlorophyll a, and phycocyanin, using an In-Situ AquaTROLL 500 meter.

Water samples were collected at both in-lake stations at the surface (0.5 meters) and near the bottom (0.5 meters above the sediment) using a Van Dorn water sampler. Samples were preserved appropriately and transported to the NJDEP-certified laboratory Environmental Compliance Monitoring (ECM) for analysis. The samples were analyzed for total phosphorus (TP), soluble reactive phosphorus (SRP), total dissolved phosphorus (TDP), nitrate-N, nitrite-N, ammonia-N, total suspended solids (TSS), and turbidity. Surface samples were also analyzed for alkalinity, chloride, and hardness.

Additionally, samples were collected for zooplankton and phytoplankton analysis, including species composition, dominant organisms, and relative density. Cyanobacteria (blue-green algae) genera were quantified to estimate cell counts, providing an approximate concentration of cyanobacteria cells per milliliter of water. Samples were also analyzed for the cyanotoxin microcystins using the Abraxis field testing methodology.

The team also evaluated local climatic conditions during the 2021 - 2023 seasons compared to the long-term average. These conditions, including temperature and precipitation, can have significant effects on water quality. The combination of increased precipitation and an increase in temperatures sets the stage for HABs proliferation. The charts below the monthly mean temperatures and monthly precipitation from 2021 – 2023 and the 30-year average; ‘normal’ refers to the monthly average over the 30-year period from 1991 – 2020.

[gallery columns="2" size="medium" ids="15505,15506"]

The Water Quality Monitoring analysis revealed several key insights about Mercer Lake's water quality, and indicated that cropland runoff was the most significant source of phosphorus, a key driver of HABs. Hypolimnetic anoxia (the bottom layer of the lake becomes devoid of oxygen) was observed during all three field sampling seasons, contributing to internal phosphorus loading. The water quality monitoring also provided valuable information on the lake’s trophic state and plankton community.


Trophic State Modeling: Assessing Lake Productivity

Trophic State Modeling is a method used to assess the productivity of a lake by measuring the levels of nutrients, such as phosphorus, and the resulting biological activity. This assessment helps determine the lake's overall health and informs management strategies. The Trophic State Index (TSI) is a common tool used in this process, calculating index values based on phosphorus concentrations, chlorophyll a levels, and Secchi depths.

For MCPC, Princeton Hydro, utilizing data collected in the field and through lake and watershed modeling, estimated the nutrient status and biological activity of Mercer Lake. Here are a few examples of the models the team utilized:

  • The Carlson’s Trophic State Index (TSI): This index assesses the trophic state of lakes by calculating index values based on phosphorus and chlorophyll a concentrations and Secchi depths that relate to each other on a similar scale. The higher these numbers are, the more representative they are of eutrophic conditions. Carlson’s trophic state index (TSI) was calculated for each in-lake sampling event using surface concentrations of TP, Chlorophyll a, and Secchi depths collected during water quality monitoring events throughout the season.
  • Kirchner and Dillon’s Phosphorus Retention: This metric utilizes the incoming hydraulic load from the watershed, as well as the total area of the waterbody, to estimate what percentage of incoming phosphorus will stay within the waterbody rather than be flushed from the system, providing insights into the lake's capacity to hold nutrients and its likelihood of eutrophic conditions.
  • Vollenweider Predicted Phosphorus: this model estimates phosphorus concentrations in a lake by considering incoming total phosphorus, hydraulic load, mean depth, and hydraulic residence time. This model helps assess the lake's nutrient status and its suitability for recreational use.

By leveraging these sophisticated models, Princeton Hydro was able to gain a detailed understanding of Mercer Lake's nutrient dynamics and productivity. Many models were run twice: once for the watershed-based phosphorus load and once for the total combined load. This allowed for a comprehensive assessment of both external and internal nutrient contributions.

To mitigate pollutant loading issues, the Lake and Watershed Management plan outlines a series of Best Management Practices (BMPs) recommendations for implementation throughout the watershed, which include bioretention systems, wetland buffers, riparian buffers, and lakefront aquascaping. Such measures are designed to reduce nutrient loads, improve water quality, and enhance the overall ecological health of the lake and its watershed. By addressing the root causes of nutrient loading and implementing targeted management strategies, the MCPC is continuing their commitment to providing a sustainable and enjoyable recreational experience for park users while safeguarding the lake's ecological integrity.

Stay tuned for more updates as we continue to work with the MCPC on implementing the Mercer Lake and Watershed Management Plan, ensuring the watershed remains a vibrant and healthy resource for generations to come.


The Importance of Regional Watershed Planning

Regional watershed planning is crucial for maintaining the health and sustainability of interconnected waterbodies. By considering entire watersheds rather than individual lakes, we can develop more effective and comprehensive strategies to manage water quality, control pollution, and enhance ecological resilience. This holistic approach ensures that all elements within the watershed are addressed, leading to more long-lasting improvements.

Princeton Hydro’s efforts in developing and implementing management plans for Mercer Lake, Curlis Lake, Rosedale Lake, and Spring Lake demonstrate the power of coordinated, science-based planning. By leveraging detailed data and advanced modeling techniques, our team is able to create tailored solutions that meet the specific needs of each lake while contributing to the overall health of the region's aquatic ecosystems.


To read about another project we’re working on in Mercer County, check out our blog about Miry Run Dam Site 21. Through a blend of engineering and ecological enhancements, we are working with MCPC to revitalize 279 acres. With each phase, we edge closer to a vibrant, inclusive space that harmonizes nature and community.

[post_title] => From Data to Action: Mercer County Watershed Management [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => from-data-to-action-mercer-county-watershed-management [to_ping] => [pinged] => [post_modified] => 2024-12-10 17:47:41 [post_modified_gmt] => 2024-12-10 17:47:41 [post_content_filtered] => [post_parent] => 0 [guid] => https://princetonhydro.com/?p=15503 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [5] => WP_Post Object ( [ID] => 15367 [post_author] => 1 [post_date] => 2024-07-12 16:52:15 [post_date_gmt] => 2024-07-12 16:52:15 [post_content] =>

Nestled at the foot of the Blue Ridge Mountains, Smith Mountain Lake is the largest lake entirely within the Commonwealth of Virginia. Spanning over 20,000 acres with 500 miles of shoreline, the lake's northern and eastern boundary is marked by Bedford County, while Franklin and Pittsylvania counties define its southern and western edges. Created in 1963 by impounding the Roanoke River with the Smith Mountain Dam, the lake serves multiple purposes, including hydroelectric power, public water supply, and recreation.

Throughout the 1960s and 1970s, the area surrounding Smith Mountain Lake was predominantly rural farmland. In the 1980s, however, the lake's natural beauty, recreational appeal, and proximity to Roanoke and Lynchburg began to draw increased attention. This surge in interest sparked a boom in residential and commercial development, transforming Smith Mountain Lake into a vibrant and bustling community.

Today, Smith Mountain Lake not only provides electricity and drinking water, it is also home to 21,000 residents and stands as a premier recreational resource. Thousands flock to Smith Mountain Lake each year to enjoy boating, swimming, fishing, and other water activities. The lake's shores are now dotted with resorts, condominiums, year-round residences, and outdoor industry businesses. The lake's waters and shoreline also provide vital habitats for aquatic plants, animals, birds, and other terrestrial wildlife.

The rapid growth of this pristine lake community underscores the importance of effective environmental management to preserve water quality, strengthen the shoreline, manage stormwater runoff, and protect the local native biodiversity of the lake and its watershed.


Identifying and Addressing Harmful Algal Blooms

The lake is fed by two main tributaries—the Blackwater River and the Roanoke River. The Roanoke River, the larger of the two, drains a watershed that includes the Roanoke Metropolitan area, while the Blackwater River flows through mostly rural and agricultural land.

In 2023, a significant outbreak of harmful algal blooms (HABs) in the Blackwater River subwatershed raised concerns for the Smith Mountain Lake Association (SMLA). These blooms, primarily driven by agricultural runoff, led to swimming advisories and highlighted the need for a comprehensive approach to managing and mitigating these environmental threats.

Recognizing the urgency of the situation, SMLA sought the expertise of Princeton Hydro. The mission: to investigate conditions that cause HABs, protect the lake from future outbreaks, and ensure the long-term health of this vital freshwater resource.


Laying the Groundwork

The project team’s approach began with a thorough review of historical water quality data. Collaborating with SMLA and regulatory bodies including the Virginia Department of Environmental Quality (VDEQ), U.S. Geological Survey (USGS), and U.S. Army Corps of Engineers (USACE), Princeton Hydro compiled a comprehensive dataset. This historical context was crucial for understanding past trends and informing the 2024 Watershed Assessment. SMLA and Ferrum College contributed over 38 years of data through their Volunteer Water Quality Monitoring Program, documenting crucial indicators such as nutrient levels, bacterial counts, and algal blooms. This extensive dataset has been essential in informing effective lake management practices and shaping strategies to address current environmental challenges.

Employing the MapShed model, the team carried out a comprehensive hydrologic and nutrient loading analysis of the Blackwater River subwatershed. They evaluated critical factors, including phosphorus, nitrogen, and sediment levels, to identify and prioritize areas requiring targeted nutrient and sediment management strategies.

To describe its basic function, the MapShed model applies pollutant loading rates to different land cover types, like low-density development or forested wetlands, based on their area. It then uses weather data, soil characteristics, and slopes to adjust these results. The model simulates daily pollutant loads over 30 years using actual climate records, providing monthly and annual outputs. Users can adjust various inputs, like septic system efficiency and population density, to see how the changes affect pollutant loads and water flow.

This analysis laid the foundation for determining effective, focused interventions to curb nutrient runoff and mitigate future HABs.


Understanding Cyanobacteria Behavior Through Innovative Research

In March 2024, an Overwintering Incubation Study was conducted to understand cyanobacteria behavior. Sediment and water samples were taken from six nearshore locations known for high cyanobacteria counts in Summer 2023. At each site, the team also documented temperature, dissolved oxygen, specific conductivity, pH, chlorophyll-a, phycocyanin (PC), and phycoerythrin (PE).

The map below identifies the locations of each of the six sampling sites:

This map identifies the locations of each of the six sampling sites at Smith Mountain Lake [gallery link="none" columns="2" ids="15361,15363"]

For each sample, the lake water was filtered and then incubated with respective sediments to determine the presence and what types of algae may be overwintering. The water and sediment samples were incubated over a period of 15 days at a temperature of approximately 77 degrees Fahrenheit and a light intensity of 2800 lux.

After eight days, the water and sediment samples were removed from the incubator, slightly stirred and then in-situ measurements for PC and PE were collected. These two supplemental pigments are almost exclusively produced by cyanobacteria. While PC is associated with primarily planktonic genera, PE is more associated with benthic genera. Thus, measuring the concentration of these pigments can be used to estimate cyanobacteria biomass as well as provide guidance on the monitoring and management of HABs (planktonic vs. benthic).

After 15 days, the samples were again removed from the incubator, slightly stirred, and then measured for PC and PE to identify and count any overwintering cyanobacteria and determine all the types of algae present.

This study offered critical insights into the conditions that enable cyanobacteria to endure winter and proliferate during warmer months. By understanding the connection between overwintering cyanobacteria and HABs in the lake, we can enhance predictive capabilities and develop more effective management strategies. Two particularly notable findings from the study include:

1. Sediment Composition and Cyanobacteria Growth: Sandier sediments were not conducive to overwintering cyanobacteria, suggesting blooms in these areas likely originate elsewhere in the lake. Conversely, siltier and organic-rich sediments supported cyanobacteria growth, indicating a need for targeted in-lake management measures. 2. Predictive Tools for HABs: Routine measurement of pigments like PC and PE proved effective in estimating cyanobacteria biomass. This information is crucial for long-term monitoring and management, offering predictive tools for HAB events.

Looking Ahead: Holistic Approaches to Tackling HABs

Beyond the initial assessment on the Blackwater River, ongoing monitoring of Smith Mountain Lake’s water quality is crucial for understanding and managing the conditions that trigger HABs. SMLA’s Water Quality Monitoring Program developed and managed by Ferrum College continues the work of tracking the trophic state of the lake. Algal community composition, tributary sampling, and bacterial monitoring are part of this comprehensive 38-year effort. Consistent sampling and water quality monitoring can help identify cyanobacteria and akinetes, the dormant spores that lead to bloom formation.

Because the VDEQ budget historically contains no funding for inland waterway HAB research and response, SMLA actively lobbied the Virginia General Assembly for the allocation of $150,000 for the creation of a watershed study. This request was included in the State budget signed in March of 2024 and the work to develop the objectives and scope of the study is underway now.

Community involvement is also vital for maintaining Smith Mountain Lake as a cherished resource. To this end, SMLA has launched "Dock Watch," a new community science volunteer program designed to monitor HAB activity. Beginning in May of 2024, volunteers have been collecting water samples at select docks around the lake and are examining them to better understand cyanobacteria activity levels and trends. All of the water quality data collected at the lake is from main channel locations. The primary recreational contact with the lake water by residents is at their docks. This data is uploaded to NOAA's Phytoplankton Monitoring Network, contributing to a national database used for HAB research. This collective effort ensures rapid identification and tracking of HAB activity, benefiting both the local community and environmental research on a national level.

“This project exemplifies a holistic approach to lake management and environmental stewardship, integrating historical data, advanced modeling, and community engagement to prioritize and implement innovative strategies that effectively mitigate HABs and protect water quality,” said Chris L. Mikolajczyk, Princeton Hydro’s Senior Manager of Aquatics and Client Manager for Smith Mountain Lake. “This ongoing work highlights the importance of science-based interventions in preserving our precious natural resources.”

[gallery size="medium" link="none" ids="15377,15374,15373"]

The Smith Mountain Lake Association is a 501(c)3 nonprofit with the mission to keep Smith Mountain Lake clean and safe. Founded in 1969, SMLA is the longest serving advocate for the Smith Mountain Lake community, and its focused efforts help to retain the pristine beauty of the lake and the vibrant local economy. Click here to learn more and get involved.

Over the last two decades, the Princeton Hydro team has improved water quality in hundreds of ponds and lakes, restored many miles of rivers, and enhanced thousands of acres of ecosystems in the Northeast. From species surveys to water quality monitoring, our professionals perform comprehensive assessments in order to understand the landscape. Using tools like ArcGIS, we can map and model the watershed and arrive at holistic solutions for resource management. Our natural resources and lake management experts are complemented by our field team who utilize amphibious vehicles for mechanical invasive species removal, install aeration systems to improve water quality, and conduct natural lake treatments to manage algal blooms. We have secured millions of dollars in grant funding for watershed and ecological restoration projects on behalf of our clients.

Click here to learn about the Watershed Management Program in Somerset County, for which we recently helped secure grant funding from the New Jersey Highlands Water Protection and Planning Council.

[post_title] => Using Innovative & Integrated Strategies to Safeguard Smith Mountain Lake's Water Quality [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => smith-mountain-lake [to_ping] => [pinged] => [post_modified] => 2024-12-09 23:22:46 [post_modified_gmt] => 2024-12-09 23:22:46 [post_content_filtered] => [post_parent] => 0 [guid] => https://princetonhydro.com/?p=15367 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [6] => WP_Post Object ( [ID] => 15296 [post_author] => 1 [post_date] => 2024-07-01 04:18:41 [post_date_gmt] => 2024-07-01 04:18:41 [post_content] =>

July is Lakes Appreciation Month, an annual celebration dedicated to highlighting the value and wonder of our lakes and reservoirs. Established by the North American Lake Management Society (NALMS) in 1998, this initiative aims to foster a greater appreciation for these vital water bodies and encourage action to safeguard them. Join us this year as we explore three exciting and meaningful ways to engage with, enjoy, and protect our lakes.


1. Explore and Enjoy Your Local Lakes

[gallery link="none" ids="15299,11826,15298"]

Dive into Lakes Appreciation Month by soaking up the beauty of your local lakes. Whether you’re a bird-watching enthusiast, a kayaking adventurer, a fishing fanatic, or a nature lover who enjoys serene walks, getting outdoors for some lakeside enjoyment is the perfect way to show your appreciation for these natural treasures.

While you're out enjoying your community lakes, participate in the NALMS "Show Your Lakes Appreciation" Photo Contest Challenge! Throughout July, share a #lakeselfie or photos of your friends, family and pets, enjoying or working on a lake or reservoir. Post your pictures on Facebook, Twitter, or Instagram with a fun or informative caption, the name of the lake, and the hashtag #LakesAppreciation. Be sure to tag NALMS in your post for a chance to win exciting prizes. The contest runs from July 1st to 31st, with winners announced on August 2nd.

Always remember to respect nature by following Leave No Trace principles, ensuring our lakes stay pristine and beautiful for everyone to enjoy.


2. Dive into Citizen Science: Monitor Your Lake

Monitoring the health of our lakes is essential for preserving their ecological balance and ensuring they remain vibrant, safe, and enjoyable.

You can contribute to this effort by joining the annual Secchi Dip-In, a citizen science project where volunteers across North America measure water clarity using a Secchi disk. This event, organized by NALMS, helps track changes in water quality over time. By participating, you contribute valuable data to support lake conservation efforts. It's simple to get involved: obtain a Secchi disk, measure the transparency of your lake, and submit your findings online. Check out our instruction video for more info:

[embed]https://m.youtube.com/shorts/zIkIx5uj8-8[/embed]

In addition to measuring water clarity, keep an eye out for harmful algal blooms (HABs). HABs can produce toxins that negatively impact water quality and aquatic life. To track and report HABs consider using the bloomWatch app, a crowdsourced citizen-science tool that allows you to take photos of possible blooms and submit them through the app, sending the information to relevant state officials for further action. Monitoring and reporting HABs is a crucial step in protecting our lakes.


3. Become a Steward for Your Local Lake

 

Volunteering for lake cleanups is a rewarding way to contribute to environmental stewardship, protect water quality, and enhance recreational spaces. Gather friends, family, or community members to spend a day picking up trash and debris around your favorite lake. This not only improves the health and beauty of the lake but also fosters a sense of community pride and collective responsibility. Many lake associations and environmental groups host regular cleanup events, so check their calendars or consider starting your own initiative.

For Lake Hopatcong, New Jersey's largest lake, the Lake Hopatcong Foundation, a long-time client partner of Princeton Hydro, offers a "Lake Hopatcong Water Scout" volunteer program. Water Scouts are responsible for identifying and removing instances of the invasive water chestnut species. Volunteers survey their assigned areas at least once between mid-June and mid-July. You can choose your preferred location to volunteer by reviewing the available areas on their website map. Reach out to your local lake association to find similar opportunities for cleanup and lake stewardship activities.


By raising awareness, fostering collaboration, and implementing effective strategies, we can work towards safeguarding the health and sustainability of our freshwater ecosystems. Let's come together this July to celebrate, protect, and cherish our lakes, ensuring they remain healthy and vibrant for future generations. For more ideas on how to celebrate Lakes Appreciation Month and to learn about NALMS, visit their website. For more information on Princeton Hydro's expansive lake and natural resource management services, go here.

  [post_title] => Make a Splash this July: Three Exciting Ways to Celebrate Lakes Appreciation Month [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => lakes-appreciation-month-2024 [to_ping] => [pinged] => [post_modified] => 2024-07-01 22:26:43 [post_modified_gmt] => 2024-07-01 22:26:43 [post_content_filtered] => [post_parent] => 0 [guid] => https://princetonhydro.com/?p=15296 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [7] => WP_Post Object ( [ID] => 14981 [post_author] => 1 [post_date] => 2024-05-18 05:47:55 [post_date_gmt] => 2024-05-18 05:47:55 [post_content] =>

Did you know that New York State is home to a rich tapestry of natural waterbodies, including over 7,600 freshwater lakes, ponds, and reservoirs? Our team recently journeyed to Lake George, New York, to participate in the 41st annual conference of the New York State Federation of Lake Associations (NYSFOLA).

This year’s conference, themed “It Takes a Community to Protect a Watershed,” brought together environmental experts, lake management professionals, students, recreation enthusiasts, watershed advocates, and lake community members to advance the best available information and techniques for protecting and restoring New York’s watersheds. The two-day program featured a diverse exhibitor hall, networking events, a silent auction, a student poster session and a variety of presentations and workshops that combined science, policy, practical applications, and tangible resources.

Princeton Hydro, a proud sponsor of the conference, led two presentations during the “Climate Resilience and Your Lake" segment of the educational program:

Michael Hartshorne, Director of Aquatics, delivered an insightful presentation titled "Impacts of Climate Change on Lake Ecology," which delved into the significant role of climate change in shaping lake ecosystems. During the session, Michael highlighted key factors such as rising water temperatures, heightened frequency and severity of rainfall, depletion of dissolved oxygen, fluctuating patterns of algal blooms, and the migration of invasive species due to changing latitudinal conditions. His presentation underscored the necessity for evolving approaches to lake management in response to these profound ecological shifts.

[gallery link="none" size="medium" columns="2" ids="14984,14982"] Download the complete presentation now!

Dr. Fred Lubnow, Senior Technical Director of Ecological Services, presented "A Survey of the Ecology of Select Lakes and Ponds in Central Park, NYC," which provided an insightful overview of Princeton Hydro's water quality and ecological monitoring efforts conducted across lakes and ponds of Central Park from 2020 to 2023 for the Central Park Conservancy. These assessments revealed elevated nutrient levels driving planktonic algae, filamentous mat algae and in some cases high densities of aquatic plants, prompting the Central Park Conservancy and Princeton Hydro to collaborate on a tailored Management Plan. Fred’s presentation spotlighted the distinct ecological profiles of key sites, addressed the impact of cyanobacteria on both ecological dynamics and recreational usage, and provided practical management methods and techniques.

[gallery link="none" size="medium" columns="2" ids="14961,14983"] Download the complete presentation now!

Additional educational session topics included, Environmental Justice and New York Lakes, Community Leadership for Healthy Lakes in New York State, and iMap Invasive Species Workshop. Click here to view the complete agenda.

Founded in 1983, NYSFOLA is a not-for-profit coalition of lake associations, individuals, and corporate members dedicated to the protection and restoration of New York lakes. Princeton Hydro is the industry leader in lake restoration and watershed management. We have conducted diagnostic studies and have developed management and restoration plans for over 300+ lakes and watersheds throughout the country. Our long-standing partnership with NYSFOLA as a corporate member, annual conference sponsor, and active participant highlights our unwavering commitment to collaborative initiatives aimed at safeguarding our water resources. To learn more about our lake and natural resource management services and how we're contributing to a healthier environment, click here. 

[post_title] => Insights from the NYSFOLA Conference: Presentations Available for Download [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => insights-from-the-nysfola-conference-presentations-available-for-download [to_ping] => [pinged] => [post_modified] => 2024-06-18 16:16:46 [post_modified_gmt] => 2024-06-18 16:16:46 [post_content_filtered] => [post_parent] => 0 [guid] => https://princetonhydro.com/?p=14981 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [8] => WP_Post Object ( [ID] => 16054 [post_author] => 1 [post_date] => 2024-01-06 15:02:02 [post_date_gmt] => 2024-01-06 15:02:02 [post_content] =>

We are thrilled to announce that Dr. Fred Lubnow, Senior Technical Director of Ecological Services at Princeton Hydro, has been honored with the prestigious Peter Homack Award by the American Water Resources Association, New Jersey Section (NJ-AWRA). The award was presented during NJ-AWRA’s annual meeting in December, recognizing Fred’s outstanding contributions to the multi-disciplinary understanding and management of New Jersey’s water resources.

The Peter Homack Award, established in 1987, commemorates the late Peter Homack, a former NJ-AWRA president and distinguished New Jersey engineer. The award celebrates individuals who exemplify Homack’s legacy of advancing water resource management through collaboration and innovation.

Fred’s selection for this honor is a testament to his decades-long dedication to the restoration and protection of water resources. Since Princeton Hydro’s founding in 1998, Fred has played a pivotal role in the study and restoration of hundreds of lakes across New Jersey and the Mid-Atlantic region. His work at Lake Hopatcong, in particular, stands as a shining example of his commitment. For over 30 years, Fred has partnered with Lake Hopatcong stakeholders to implement comprehensive restoration plans, develop best management practices, and achieve milestones toward the lake’s water quality goals.

Beyond his work at Princeton Hydro, Fred has enriched the field of water resource management through education and stewardship. He teaches watershed management at Delaware Valley University and freshwater ecology at Villanova University, inspiring the next generation of environmental stewards. Fred has contributed to NJ-ARWA over the last five years through a variety of presentations on harmful algal blooms (HABs) and watershed planning. Additionally, he has held leadership roles in the North American Lake Management Society (NALMS) and the Pennsylvania Lake Management Society. Selected as a member of the New Jersey Department of Environmental Protection’s HAB Expert Team, Fred has been instrumental in shaping the HAB advisory and alert systems we rely on today. His contributions have advanced our understanding of the factors driving cyanobacterial blooms in New Jersey’s lakes, offering valuable insights to improve the prediction, prevention, and management of these blooms.

Although Fred could not attend the award ceremony in person, he joined virtually via Zoom as his colleague Michael Hartshorne, Princeton Hydro’s Director of Aquatics, accepted the award on his behalf. During Michael's acceptance speech, he said:

“I’ve worked with Fred since I started at Princeton Hydro in 2006. He’s a humble leader, a dedicated mentor, and an overall fantastic person. Fred’s enthusiasm for lake ecology, particularly algae, is truly infectious. It’s a rare skill to make others genuinely excited about such a niche topic, but Fred has a remarkable way of doing just that. Fred truly embodies the spirit of the Peter Homack Award, and it’s an honor to receive this on his behalf.”

Fred’s passion, expertise, and collaborative spirit have left an indelible mark on water resource management in New Jersey and beyond. Princeton Hydro congratulates him on this well-deserved recognition and looks forward to his continued contributions to the field.

Earlier this year, Fred wrote a piece on "Preparing for Potential Harmful Algal Blooms: An Urgent Call to Action for NJ’s Lakes and Reservoirs." Click here to read it and learn more about his work to address the challenges posed by HABs and protect the integrity of our water bodies. [gallery link="none" ids="16058,4919,2956"] [post_title] => Princeton Hydro’s Dr. Fred Lubnow Receives NJ-AWRA's Peter Homack Award [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => princeton-hydros-dr-fred-lubnow-receives-nj-awras-peter-homack-award [to_ping] => [pinged] => [post_modified] => 2025-03-26 23:50:52 [post_modified_gmt] => 2025-03-26 23:50:52 [post_content_filtered] => [post_parent] => 0 [guid] => https://princetonhydro.com/?p=16054 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [9] => WP_Post Object ( [ID] => 13355 [post_author] => 1 [post_date] => 2023-08-16 07:03:24 [post_date_gmt] => 2023-08-16 07:03:24 [post_content] =>

400 native plants were installed along the western shoreline of Memorial Pond in Mount Arlington, New Jersey. The planting was completed in one day by a team of 20+ volunteers, staff members from Mt. Arlington Department of Public Works (DPW), Lake Hopatcong Foundation, Lake Hopatcong Commission, Princeton Hydro, and a generous community member who volunteered his excavating equipment (and time).

The planting initiative aims to prevent shoreline erosion, promote the growth of native species, increase wildlife habitat, and improve the water quality of Memorial Pond and Lake Hopatcong. Funding for this project was secured through a grant from the New Jersey Department of Environmental Protection, awarded to the Lake Hopatcong Commission in partnership with the Lake Hopatcong Foundation.

[caption id="attachment_13422" align="aligncenter" width="616"] Photo by Lake Hopatcong Foundation Executive Director Kyle Richter[/caption]

Memorial Pond

Drainage Area Aerial Map of Mt. Arlington Memorial Beach and Memorial Park in New Jersey. Created by Princeton Hydro.Memorial Pond is a 0.3-acre stormwater runoff basin that gradually releases into Glen Brook, which then flows into Lake Hopatcong. The pond receives sheet flow of stormwater from the adjacent road, which contributes to nutrient and sediment loading, thus locally reducing water quality in Memorial Pond and ultimately the waters of Lake Hopatcong.

Memorial Park, which includes Memorial Pond and Glen Brook, was identified by Princeton Hydro and the Lake Hopatcong team as a priority site for improvement, targeting initiatives that reduce pollutants and excessive nutrients entering into Lake Hopatcong.

Additionally, the pond’s steeply-sloped shoreline was bare and only stabilized with large rocks at the base of the banks. In the absence of stabilizing vegetation, the pond’s banks were experiencing erosion, and there was some concern about a few mature trees along the shoreline potentially falling into the pond.

[gallery link="none" ids="13416,13407,13413"]

The photos above were taken in April 2023 before the planting initiative.


Shoreline Planting Initiative

The plant selection and layout were designed taking into account the steep slope and presence of mature, existing trees as well as focusing on regionally native plant species that will thrive and help stabilize the eroding shoreline. The planting team, led by Princeton Hydro Landscape Architect Jamie Feinstein, RLA and Aquatics Project Manager Pat Rose, was given precise instructions on how to install the plants to eliminate washouts and ensure the root systems can embrace the soil and hold it in place.

A variety of native herbaceous plants and shrubs were chosen for the site, including pennsylvania sedge, slender mountain mint, blue flag iris, sweet azalea, smooth hydrangea, and maple-leaved viburnum.

[gallery link="none" ids="13427,13421,13428"]

The plants will help reduce stormwater flow, absorb excess nutrients, prevent erosion, and ultimately decrease sedimentation to the pond, while creating a visually pleasing addition to the park and providing a habitat for pollinators and birds. Overall, this project promotes a healthier and more balanced ecosystem in Memorial Park.

[gallery link="none" ids="13400,13392,13394"]

The photos above were taken in July 2023 immediately after the planting initiative.


Multi-Faceted Approach to Water Quality Improvements

The installation of these beneficial plants is part of a series of water quality initiatives on Lake Hopatcong funded by a NJDEP Freshwater Harmful Algal Bloom (HAB) Prevention & Management Grant and 319(h) Grant awarded to Lake Hopatcong Commission in partnership with the Lake Hopatcong Foundation.

Additional initiatives included in the watershed implementation and HABs management plan are, the installation of:

  • floating wetland island (FWI), which are a low-cost, effective green infrastructure solution designed to mimic natural wetlands in a sustainable, efficient, and powerful way. FWIs improve water quality by assimilating and removing excess nutrients; provide valuable ecological habitat for a variety of beneficial species; help mitigate wave and wind erosion impacts; provide an aesthetic element; and add significant biodiversity enhancement within open freshwater environments;

  • biochar filtration bags, which improve water quality by removing phosphorus from waterbodies. Biochar can be placed in floatation balls, cages, or sacks, which are then tethered along the shoreline and in critical locations throughout the waterbody; and

  • nanobubble aeration system, which increases the concentrations of dissolved oxygen in the water, prevents stagnation of water, increases circulation, disrupts thermal stratification which provides “through-column” mixing, and minimizes the occurrence of HABs.

“Paired with biochar filters attached to buoys in the pond and continued monitoring and maintenance of the plantings by the DPW, these steps will set a healthy precedent for what can be achieved through working together with funders, local partners, science, and landscape architecture,” said Feinstein, who sourced plant material, provided logistics and co-led the planning and volunteer planting event along with Rose.

Princeton Hydro's Landscape Architect, Cory Speroff PLA, ASLA, CBLP, designed the planting plan, and Will Kelleher and Jackson Tilves from the Aquatics Team participated in the plant installation event with Feinstein.

Princeton Hydro is also authoring and supplying a maintenance manual that provides guidance on seasonal care of the plantings, when to remove the herbivory protection fencing, pruning, watering, and other activities that support the long term success of the planting initiative. 

“This collaborative effort to enhance water quality serves as a prime example of how seemingly simple actions can have a meaningful impact on safeguarding our water resources for the benefit of future generations,” said the Lake Hopatcong Foundation.

[gallery link="none" ids="13403,13429,13393"]

The photos above from left to right: June 2023 before the planting; July 2023 during the planting (photo by Lake Hopatcong Foundation Executive Director Kyle Richter); and July 2023 immediately after the planting.


Princeton Hydro has been working on Lake Hopatcong, New Jersey’s largest Lake, for 30+ years, restoring the lake, managing the watershed, reducing pollutant loading, and addressing invasive aquatic plants and nuisance algal blooms. To read about some of the other projects we’ve recently worked on at Lake Hopatcong, click here.

[post_title] => Community-Powered Initiative Installs 400 Native Plants to Improve Water Quality in Mount Arlington [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => memorial-pond-planting-2023 [to_ping] => [pinged] => [post_modified] => 2024-01-18 04:26:03 [post_modified_gmt] => 2024-01-18 04:26:03 [post_content_filtered] => [post_parent] => 0 [guid] => https://princetonhydro.com/?p=13355 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) ) [post_count] => 10 [current_post] => -1 [before_loop] => 1 [in_the_loop] => [post] => WP_Post Object ( [ID] => 18149 [post_author] => 1 [post_date] => 2025-09-04 13:26:49 [post_date_gmt] => 2025-09-04 13:26:49 [post_content] =>

Princeton Hydro's Director of Aquatics, Michael Hartshorne, recently traveled to Pietermaritzburg, South Africa, to present at the Southern African Society for Aquatic Scientists (SASAqS) Congress 2025. Hosted by the Institute of Natural Resources (INS) and the University of KwaZulu-Natal, the annual event convened researchers, industry professionals, government officials, and students from around the world to advance aquatic science by linking research with real-world practice.

Over the course of five days, participants shared insights on critical global and regional issues, including water pollution, water security, biodiversity conservation, climate change adaptation, and community-based resource management. The program featured an array of interdisciplinary presentations spanning hydrology, freshwater ecology, and policy, while also creating space for collaboration and connection through interactive workshops, poster sessions and exhibits, networking events, and a gala dinner and awards ceremony. On the closing day, field trips brought attendees out into the surrounding landscape, offering a tangible backdrop to the themes explored throughout the conference.


Michael's Presentation on Harmful Algal Blooms

On the opening day of the SASAqS Congress 2025 program, Michael addressed the full conference audience with a presentation titled “Novel Techniques for the Monitoring of Harmful Algal Blooms (HABs) in Lakes and Rivers of the United States,” which focused on innovative approaches for detecting and managing HABs, a growing worldwide concern driven by nutrient pollution and climate change. Michael illustrated how innovative research can inform practical management strategies while encouraging global collaboration.

HABs are intensifying in frequency, scale, and severity worldwide, presenting challenges for drinking water supplies, recreational lakes, and river ecosystems. Michael’s presentation showcased a suite of monitoring tools, from handheld phycocyanin and phycoerythrin meters, to drones with multispectral lenses, to advanced techniques such as qPCR (quantitative Polymerase Chain Reaction), microscopy, and akinete cell monitoring. Through case studies from lakes, reservoirs, and river systems in New Jersey, Virginia, and Pennsylvania, he highlighted the strengths and limitations of each method, emphasizing the importance of tailoring monitoring strategies to the unique conditions of each waterbody. Michael also discussed management interventions and highlighted how emerging technologies can support more adaptive, science-driven management of HABs.

[gallery link="none" size="large" columns="2" ids="18171,18172"]

“It was an honor to participate in this year’s event and learn alongside so many dedicated professionals who are working to protect and restore aquatic ecosystems,” said Michael. “The international exchange of ideas and techniques is critical in helping us all address the increasingly complex challenges facing our water resources.”

[caption id="attachment_18151" align="aligncenter" width="553"] Michael Hartshorne with Dr. Matthew Burnett, Principal Scientist at the Institute of Natural Resources and member of the SASAqS 2025 local organizing committee.[/caption]

In the Field: Aquatic Science in Action

The conference concluded with optional field trips that gave participants a chance to view South Africa’s aquatic systems and management challenges firsthand. Each excursion highlighted a different aspect of aquatic science in practice:

  • UKZN Zebrafish Research Facility: On the University of KwaZulu-Natal’s Pietermaritzburg campus, this outing introduced participants to the zebrafish as a model organism for studying genetics, development, and aquatic toxicology. The tour provided a window into laboratory-based aquatic science and its applications to regional and global challenges.

  • Lions River Monitoring Demonstration: Hosted by GroundTruth, this field trip took a group to Lions River to observe live demonstrations of water quality and quantity monitoring using advanced tools such as UAVs (drones), USVs (unmanned survey boats), and a suite of citizen science methods, including MiniSASS, clarity tubes, and velocity planks. The excursion showcased how high-tech innovation and community-driven monitoring can complement one another in managing freshwater resources.

  • uMkhomazi Upper Catchment: Michael chose to participate in this field trip, led by the Institute of Natural Resources’ Chief Scientist Jon McCosh and Scientist Zanele Makhaya, which examined grassland rehabilitation efforts aimed at reducing sediment mobilization at catchment scale. Erosion control project implementation and monitoring is conducted locally with participants who are trained as community scientists and restoration ecologists by the INR. Participants learned how erosion control strategies can extend the lifespan of proposed dams on the uMkhomazi River, while also considering the complex socio-ecological impacts of large infrastructure projects on local communities and landscapes.
[gallery link="none" size="medium" ids="18166,18168,18167"]

Travel Highlights Beyond the Conference

Outside of the conference, Michael took the opportunity to explore the diverse beauty and culture of South Africa. At Betty's Bay, a small town on the Western Cape he enjoyed coffee while taking in sweeping coastal views; walked scenic trails; spotted a few Hyraxes and Chacma baboons; and observed the African penguin (Spheniscus demersus) at the Stony Point colony. He also viewed the Cape Rockjumper (Chaetops frenatus), a ground-dwelling bird endemic to the mountain Fynbos, at nearby Rooi-Els.

[gallery link="none" size="medium" ids="18159,18157,18160"]  

He visited Karkloof Nature Reserve in the KwaZulu-Natal province, a rural agricultural area which has implemented conservation efforts for the once endangered, but still threated, Wattled Crane (Grus carunculate).

[gallery link="none" columns="2" ids="18152,18155"]

Michael’s participation in SASAqS Congress 2025 reflects Princeton Hydro’s ongoing commitment to advancing aquatic science and collaborating with experts around the world. By sharing practical monitoring and management strategies for HABs, his contributions added to a rich global dialogue on how science can inform sustainable solutions.

Since joining Princeton Hydro in 2006, Michael has led numerous lake, stream, and watershed studies focused on water quality, restoration, and sustainable management. His expertise includes applied limnology, ecological restoration, TMDL (total maximum daily load) development, and biological surveys. Michael is skilled in designing and implementing monitoring programs that integrate technical rigor with community engagement, ensuring effective outcomes for both ecosystems and stakeholders. To learn more about Michael, click here.

The Institute of Natural Resources promotes the sustainable use of natural resources to benefit both the environment and society. Click here to learn more. To learn more about The University of KwaZulu-Natal a teaching and research-led university with multiple campuses across South Africa, click here.

Earlier this year, Princeton Hydro President Geoffrey M. Goll, PE traveled to Durban, South Africa, to participate in a symposium focused on “Dam Management and Restoration of River Connectivity.” Click here to read the blog about his journey.

[post_title] => International Collaboration in Aquatic Science: Michael Hartshorne Presents in South Africa [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => international-collaboration-in-aquatic-science-michael-hartshorne-presents-in-south-africa [to_ping] => [pinged] => [post_modified] => 2025-09-04 13:26:49 [post_modified_gmt] => 2025-09-04 13:26:49 [post_content_filtered] => [post_parent] => 0 [guid] => https://princetonhydro.com/?p=18149 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [comment_count] => 0 [current_comment] => -1 [found_posts] => 52 [max_num_pages] => 6 [max_num_comment_pages] => 0 [is_single] => [is_preview] => [is_page] => [is_archive] => 1 [is_date] => [is_year] => [is_month] => [is_day] => [is_time] => [is_author] => [is_category] => [is_tag] => 1 [is_tax] => [is_search] => [is_feed] => [is_comment_feed] => [is_trackback] => [is_home] => [is_privacy_policy] => [is_404] => [is_embed] => [is_paged] => [is_admin] => [is_attachment] => [is_singular] => [is_robots] => [is_favicon] => [is_posts_page] => [is_post_type_archive] => [query_vars_hash:WP_Query:private] => f97769680c9b88c50ed44225a9bf0770 [query_vars_changed:WP_Query:private] => 1 [thumbnails_cached] => [allow_query_attachment_by_filename:protected] => [stopwords:WP_Query:private] => [compat_fields:WP_Query:private] => Array ( [0] => query_vars_hash [1] => query_vars_changed ) [compat_methods:WP_Query:private] => Array ( [0] => init_query_flags [1] => parse_tax_query ) [query_cache_key:WP_Query:private] => wp_query:9afbe7d37ae4546b2794e5023b878a1d:0.66840300 17576282250.04265900 1757628226 )

Tag: Lake management

archive
 
Topics
Select Topics