We’re committed to improving our ecosystems, quality of life, and communities for the better.
Our passion and commitment to the integration of innovative science and engineering drive us to exceed on behalf of every client.
Invasive species can quickly establish themselves in habitats ranging from freshwater wetlands and riparian corridors to stormwater basins and tidal marshes, disrupting ecological balance and biodiversity, altering hydrology, and displacing native species.
Addressing these impacts requires a thoughtful, site-specific approach. Our team at Princeton Hydro works to design and implement targeted strategies that promote long-term ecological function. These integrated efforts aid in native habitat recovery, enhance water quality, and support compliance with regulatory frameworks.
Let’s take a closer look at how invasive species disrupt our ecosystems, why managing them is so important, and the cutting-edge tools and innovative techniques helping to eradicate invasives and restore balance to delicate ecosystems.
Invasive species are organisms introduced outside their native range that proliferate in new environments, often to the detriment of local ecosystems and biodiversity. Although some introductions happen naturally, most are caused by human activity—through commercial shipping and transport, travel and outdoor recreation, or sometimes deliberate introduction. Once established, invasive species often outcompete native species by growing more aggressively, reproducing more rapidly, and exploiting resources more efficiently. These advantages are amplified by the absence of natural predators and environmental controls that would normally regulate their populations.
This can lead to a cascade of ecological consequences:
Take common reed (Phragmites australis), for example. This fast-growing plant has overtaken many wetlands, meadows, and shorelines, forming dense stands that outcompete native vegetation. These monocultures reduce food sources that native species rely on and block the movement of wildlife between critical habitats. According to the National Invasive Species Information Center (NISIC), Phragmites was most likely introduced during the 1800s in ballast material used on ships. It was initially established along the Atlantic coast and quickly spread across the continent.
Another example of an aggressive invasive species is Eurasian watermilfoil (Myriophyllum spicatum), a submerged perennial aquatic plant that grows in lakes and ponds. Native to Europe, Asia, and North Africa, it was discovered in the eastern U.S. in the early 1900s, likely introduced and spread through the movement of watercraft. It establishes itself very quickly, grows rapidly, and spreads easily, forming dense mats at the water’s surface.
Left unmanaged, aggressive invasives like Phragmites and Eurasian watermilfoil can severely impact the stability of critical environmental systems. Effective control strategies help restore balance, preserve biodiversity, and safeguard the services ecosystems provide to humans and wildlife alike.
Control efforts are also driven by:
From early detection and rapid response to long-term monitoring and management, invasive species control requires collaboration, planning, and the right set of tools.
At Princeton Hydro, we use a multifaceted approach to invasive species control, employing mechanical, herbicidal, and biological strategies depending on the specific site conditions and project goals. One of our most effective tools is the Marsh Master® 2MX-KC-FH, a fully amphibious machine built to operate with minimal environmental disruption.
Equipped with hydraulic rotary cutting blades, a rear mounted roller/chopper attachment, and a front vegetation plow, the Marsh Master® cuts through dense vegetation like Phragmites, then chops and rolls the stalks, effectively preparing the soil for native seed germination or plug installation, making it ideal for nature preserves, canal banks, and restoration sites. Its light footprint (less than one pound per square inch) means it can traverse sensitive areas without damaging the soil or root layer.
By using the Marsh Master®, we’re able to:
Take a look at the Marsh Master® in the field, tackling Phragmites in tough terrain:
When paired with herbicide treatments and long-term monitoring, this approach has proven very effective in eradicating invasives, restoring wetland biodiversity, improving water quality, and creating wildlife habitat. Each site is carefully analyzed and, when required for optimal non-native plant management, a site-specific USEPA and state-registered herbicide is chosen to control the target plants while preserving the desirable, native vegetation currently populating the site. Application techniques, which are also specific to each site, include machine broadcast spraying, backpack foliar spraying, hand-wiping, basal applications, herbicide injection lances, along with various other techniques.
In partnership with GreenVest and the U.S. Army Corps of Engineers Baltimore District, Princeton Hydro contributed to a tidal marsh restoration project along the Patapsco River in Baltimore, Maryland. This initiative is part of the broader “Reimagine Middle Branch” plan, a community-driven revitalization effort to restore natural habitat and improve public access along 11 miles of Patapsco River shoreline.
At the project site near Reed Bird Island, roughly five acres of marsh had been overtaken by dense stands of Phragmites. The goal was to restore hydrologic connections to the Patapsco River and convert the monoculture into a thriving mosaic of native marsh vegetation. Our team used the Marsh Master® to mow and manage the Phragmites, followed by mechanical grading and sediment redistribution to create high and low marsh zones. The restoration plan included planting 5+ acres with a combination of native species and incorporating habitat features like woody debris and unplanted cobblestone patches to facilitate fish passage.
This project demonstrates how targeted invasive species control can support large-scale ecosystem restoration, community-led initiatives, and watershed-wide environmental goals.
Princeton Hydro has worked alongside New Jersey’s Mercer County Park Commission for over a decade to restore and protect some of the region’s most ecologically valuable landscapes. From comprehensive planning to boots-on-the-ground restoration, our efforts have focused on mitigating the spread of invasive species and promoting long-term ecological resilience.
John A. Roebling Memorial Park, part of the Abbott Marshlands, an ecologically rich freshwater tidal ecosystem that contains valuable habitat for many rare species, experienced a significant amount of loss and degradation, partially due to the introduction of Phragmites. In areas where Phragmites had overtaken native wetland communities, our team developed and executed an invasive species management plan tailored to the park’s unique hydrology and habitat types. Seasonal mowing in the winter and early spring with the Marsh Master® and targeted herbicide applications helped suppress invasive growth and enabled the rebound of native species, including Wild rice (Zizania aquatica), a culturally and ecologically significant plant.
Building on that success, we contributed to the development and implementation of the Master Plan for the Miry Run Dam Site 21, a comprehensive roadmap for ecological restoration and public access. We are advancing that vision through mitigating invasive species (primarily Phragmites), leading lake dredging, and executing a variety of habitat uplift efforts. Click here to learn more about this award-winning restoration initiative.
In 2024, Mercer County retained Princeton Hydro under an on-call contract for invasive species management across its park system, enabling our team to respond rapidly to emerging threats and support the county’s ongoing commitment to long-term ecosystem health.
At the Lower Raritan Mitigation Site in central New Jersey, Princeton Hydro has led a multi-year invasive species control effort as part of a larger wetland and stream restoration initiative. Dominated by reed canary grass (Phalaris arundinacea) and Phragmites, the site had lost most (if not all) of its native biodiversity and ecological function.
Our team used a phased approach—mechanical mowing, herbicide treatment, and active planting of native species—to gradually suppress invasives and restore a healthy plant community. Monitoring data over several growing seasons has shown a significant decrease in invasive cover and a measurable increase in native diversity. Ongoing eradication of aggressive species and the promotion of native plant diversity are steadily guiding the site toward a resilient, self-sustaining ecosystem.
Owned and managed by The Nature Conservancy in New Jersey, the South Cape May Meadows Preserve is a 200-acre freshwater wetland and coastal habitat in southern New Jersey that serves as a critical refuge for migratory birds and other native wildlife. The preserve attracts over 90,000 visitors each year and is internationally recognized as a prime birdwatching destination.
Princeton Hydro is collaborating with The Nature Conservancy on a multi-faceted effort to both improve public access and restore the site’s ecological integrity. In 2023 and 2024, our team initiated the mechanical removal of dense stands of Phragmites using the Marsh Master® to suppress monocultures and promote native plant regeneration. Future phases may include targeted herbicide treatments and additional mechanical work.
In addition to the invasive species management component, this project collaboration has led to the construction of 2,675 feet of new elevated boardwalks, a 480-square-foot viewing platform, and enhancements to existing trails. Designing and installing these features across sensitive wetland terrain required a thoughtful, low-impact approach. The result is a more welcoming, species-rich, and resilient landscape that invites people into nature while actively protecting it.
Invasive vegetation doesn’t just affect wild landscapes, it also poses challenges for stormwater infrastructure. Many municipalities struggle with invasives overtaking stormwater basins, reducing their capacity and function, which can lead to violations of Municipal Separate Storm Sewer System (MS4) permits and municipality stormwater management regulatory requirements.
Princeton Hydro designs and implements comprehensive stormwater basin maintenance programs that include invasive species management. Removing Phragmites, broadleaf cattail (Typha latifolia), and other aggressive species from stormwater infrastructure helps to restore hydrologic flow and ensures the basins perform as designed. These maintenance programs also help maintain MS4 compliance, protect downstream water quality, and reduce flooding risks—while enhancing habitat value where possible.
The fight against invasive and aggressive non-native species is ongoing, and success requires a combination of science, strategy, and stewardship. Each effort implemented and every acre reclaimed is a step toward protecting the ecosystems we all depend on.
add comment
Δ
Your Full Name * Phone Number * Your Email * Organization Address Message *
By EmailBy Phone
Submit
Couldn’t find a match? Check back often as we post new positions throughout the year.