search
WP_Query Object
(
    [query] => Array
        (
            [page] => 
            [pagename] => blog
        )

    [query_vars] => Array
        (
            [page] => 0
            [pagename] => blog
            [error] => 
            [m] => 
            [p] => 0
            [post_parent] => 
            [subpost] => 
            [subpost_id] => 
            [attachment] => 
            [attachment_id] => 0
            [name] => 
            [page_id] => 0
            [second] => 
            [minute] => 
            [hour] => 
            [day] => 0
            [monthnum] => 0
            [year] => 0
            [w] => 0
            [category_name] => wetland-restoration
            [tag] => 
            [cat] => 43
            [tag_id] => 
            [author] => 
            [author_name] => 
            [feed] => 
            [tb] => 
            [paged] => 1
            [meta_key] => 
            [meta_value] => 
            [preview] => 
            [s] => 
            [sentence] => 
            [title] => 
            [fields] => 
            [menu_order] => 
            [embed] => 
            [category__in] => Array
                (
                    [0] => 43
                )

            [category__not_in] => Array
                (
                )

            [category__and] => Array
                (
                )

            [post__in] => Array
                (
                )

            [post__not_in] => Array
                (
                )

            [post_name__in] => Array
                (
                )

            [tag__in] => Array
                (
                )

            [tag__not_in] => Array
                (
                )

            [tag__and] => Array
                (
                )

            [tag_slug__in] => Array
                (
                )

            [tag_slug__and] => Array
                (
                )

            [post_parent__in] => Array
                (
                )

            [post_parent__not_in] => Array
                (
                )

            [author__in] => Array
                (
                )

            [author__not_in] => Array
                (
                )

            [search_columns] => Array
                (
                )

            [posts_per_page] => 11
            [ignore_sticky_posts] => 
            [suppress_filters] => 
            [cache_results] => 1
            [update_post_term_cache] => 1
            [update_menu_item_cache] => 
            [lazy_load_term_meta] => 1
            [update_post_meta_cache] => 1
            [post_type] => 
            [nopaging] => 
            [comments_per_page] => 5
            [no_found_rows] => 
            [order] => DESC
        )

    [tax_query] => WP_Tax_Query Object
        (
            [queries] => Array
                (
                    [0] => Array
                        (
                            [taxonomy] => category
                            [terms] => Array
                                (
                                    [0] => 43
                                )

                            [field] => term_id
                            [operator] => IN
                            [include_children] => 
                        )

                )

            [relation] => AND
            [table_aliases:protected] => Array
                (
                    [0] => ph_term_relationships
                )

            [queried_terms] => Array
                (
                    [category] => Array
                        (
                            [terms] => Array
                                (
                                    [0] => 43
                                )

                            [field] => term_id
                        )

                )

            [primary_table] => ph_posts
            [primary_id_column] => ID
        )

    [meta_query] => WP_Meta_Query Object
        (
            [queries] => Array
                (
                )

            [relation] => 
            [meta_table] => 
            [meta_id_column] => 
            [primary_table] => 
            [primary_id_column] => 
            [table_aliases:protected] => Array
                (
                )

            [clauses:protected] => Array
                (
                )

            [has_or_relation:protected] => 
        )

    [date_query] => 
    [queried_object] => WP_Post Object
        (
            [ID] => 6
            [post_author] => 1
            [post_date] => 2021-01-18 12:51:43
            [post_date_gmt] => 2021-01-18 12:51:43
            [post_content] => 
            [post_title] => Blog
            [post_excerpt] => 
            [post_status] => publish
            [comment_status] => closed
            [ping_status] => closed
            [post_password] => 
            [post_name] => blog
            [to_ping] => 
            [pinged] => 
            [post_modified] => 2021-01-18 12:51:43
            [post_modified_gmt] => 2021-01-18 12:51:43
            [post_content_filtered] => 
            [post_parent] => 0
            [guid] => https://princetonhydro.com/?page_id=6
            [menu_order] => 0
            [post_type] => page
            [post_mime_type] => 
            [comment_count] => 0
            [filter] => raw
        )

    [queried_object_id] => 6
    [request] => 
					SELECT SQL_CALC_FOUND_ROWS  ph_posts.ID
					FROM ph_posts  LEFT JOIN ph_term_relationships ON (ph_posts.ID = ph_term_relationships.object_id)
					WHERE 1=1  AND ( 
  ph_term_relationships.term_taxonomy_id IN (43)
) AND ((ph_posts.post_type = 'post' AND (ph_posts.post_status = 'publish' OR ph_posts.post_status = 'acf-disabled')))
					GROUP BY ph_posts.ID
					ORDER BY ph_posts.menu_order, ph_posts.post_date DESC
					LIMIT 0, 11
				
    [posts] => Array
        (
            [0] => WP_Post Object
                (
                    [ID] => 14482
                    [post_author] => 1
                    [post_date] => 2024-02-19 14:53:47
                    [post_date_gmt] => 2024-02-19 14:53:47
                    [post_content] => 

In Warrington Township, Pennsylvania, an innovative ecological uplift initiative is underway at Lion's Pride Park. This project aims to transform a stagnant pond, overrun with invasive species and plagued by water quality issues, into a thriving wetland mosaic. This endeavor, a collaborative effort between Warrington Township, Princeton Hydro, and other stakeholders, promises to not only revitalize the natural environment but also enhance community access and education within the park.

[caption id="attachment_14494" align="aligncenter" width="802"] Historical photo of Lion's Pride Park pond in Warrington Township, PA.[/caption]

Restoration Overview and Community Impact

Spanning 47 acres, Lion's Pride Park serves as a green oasis within the Township, offering a range of recreational and educational opportunities for visitors of all ages and abilities.

The pond within the park was in urgent need of restoration - heavy storm events caused the pond to overflow, which created flooding conditions in the park. The local native biodiversity was being threatened by nusiance and invasive species like water chestnut (Trapa natans). The photos below were taken in April 2020.

[gallery link="none" columns="2" size="medium" ids="14485,14486"]  

Princeton Hydro began in 2020 with site investigation and field surveys, including:

  1. Bathymetric assessment to map water depth and accumulated unconsolidated sediment in the pond
  2. Sediment sampling to facilitate options for the potential reuse of the sediment on site and the selection of native vegetation for the various habitats being created
  3. Wetland delineation to identify existing wetland boundaries within and adjacent to the project site and discern the extent of jurisdictional impacts related to the proposed activities.

The most substantial component for the restoration project was the conversion of the existing pond to an emergent wetland complex to provide habitat for a wide variety of native species. Using the completed existing conditions reports and surveys, Princeton Hydro prepared the conceptual design plan that informed the entire restoration process.

Princeton Hydro Regulatory Compliance & Wildlife Surveys Project Manager Emily Bjorhus, PWS spearheaded the regulatory program for the project, navigating approvals from the Pennsylvania Department of Environmental Protection (PADEP), the U.S. Army Corps of Engineers (USACE), and the Bucks County Conservation District. The permitting process laid the groundwork for the smooth implementation of this design-build restoration project.

[gallery link="none" columns="2" size="medium" ids="14253,14244"] [caption id="attachment_14493" align="aligncenter" width="1227"] October 2023[/caption]  

The restoration work encompassed various stages, from earthwork and vegetation planting to the installation of ADA-compliant pathways and informational signage. Some of the key project elements, include:

Channel stabilization: Stabilizing the channels within the park, addressing erosion issues, enhancing water flow dynamics, and promoting the establishment of diverse aquatic habitats.

Berm construction: Installing berms to enhance wetland habitat and promote natural floodplain connectivity, contributing to the resilience of the ecosystem to flooding events.

Native vegetation planting: Reintroducing native wetland and riparian plant species to enhance biodiversity and create habitat corridors for wildlife within the park. Planting is expected to take place in the Spring.

Interpretive signage installation: Placing educational signage throughout the park to inform visitors about the ecological significance of the restoration project and the importance of wetland conservation.

Boardwalk installation: Constructing a 6-foot-wide ADA-compliant boardwalk that spanned approximately 230 linear feet, providing visitors with accessible pathways to explore the restored wetland areas.

[gallery columns="2" link="none" size="medium" ids="14491,14490,14492,14487"]

Through these strategic interventions, the Lion's Pride Park Ecological Restoration Project aims to not only rejuvenate the ecological integrity of landscape but also enrich the recreational and educational experiences of the community. The project, which is slated for 100% completion this Spring, will totally transform the landscape into a diverse wetland complex that fosters native wildlife habitat, mitigates water quality concerns, reduces nonpoint source pollutants discharged to downstream waters, and provides accessible pathways and observation platforms so all community members may enjoy and learn from this restored aquatic setting.

The reclaimed wetland provides additional bird and pollinator habitat and offer visitors a diverse ecosystem to learn from within the park. By fostering a deeper connection to nature and promoting environmental stewardship, this project exemplifies the transformative power of ecological restoration in creating vibrant, sustainable communities.


Upcoming Presentation

[caption id="attachment_13487" align="alignleft" width="247"] Emily out field performing a wetland delineation.[/caption]

On March 23, at the 2024 Watershed Congress hosted by the Delaware Riverkeeper Network, Emily will be presenting about the Lion's Pride Park Ecological Restoration Project. Her presentation will offer insights into the regulatory approval and permitting process, takes a deeper dive into the restoration strategies, and showcases the ecological significance of the project. Click here to learn more about the 2024 Watershed Congress.

Emily, a certified Professional Wetland Scientist, is a Project Manager that specializes in environmental regulatory compliance, ecological services and wildlife surveys. She leads federal, state and local environmental permitting processes, NEPA compliance and documentation, Endangered Species Act Section 7 consultations, and Clean Water Act Section 404(b)1 analyses.


The Lion's Pride Park Ecological Restoration Project exemplifies a holistic approach to environmental conservation, community engagement, and public recreation. By repurposing a neglected pond into a vibrant wetland mosaic, this initiative embodies the principles of ecological resilience and inclusive urban planning, and celebrates the transformative potential of ecological uplift projects in fostering healthier, more vibrant communities.

Please stay tuned to our blog for more project updates once planting is completed this Spring. Click here to read more about Princeton Hydro’s robust natural resource management and restoration services.

[post_title] => Restoring Balance: Converting a Pond into a Wetland Mosaic at Lion’s Pride Park [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => restoring-balance-converting-a-pond-into-a-wetland-mosaic-at-lions-pride-park [to_ping] => [pinged] => [post_modified] => 2024-02-20 12:32:40 [post_modified_gmt] => 2024-02-20 12:32:40 [post_content_filtered] => [post_parent] => 0 [guid] => https://princetonhydro.com/?p=14482 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [1] => WP_Post Object ( [ID] => 14044 [post_author] => 1 [post_date] => 2023-12-04 01:07:37 [post_date_gmt] => 2023-12-04 01:07:37 [post_content] =>

Mark Gallagher, Vice President of Princeton Hydro, has been appointed to the Friends of Abbott Marshland Advisory Board.


About the Friends of Abbott Marshland

The Abbott Marshlands is composed of 3,000 acres of wetlands and uplands located on the western edge of central New Jersey in Mercer County. It is the northernmost freshwater tidal marsh on the Delaware River and contains valuable habitat for many rare species like River Otter, American Eel, Bald Eagle, and various species of wading birds.

[caption id="attachment_14051" align="aligncenter" width="743"] Aerial drone imagery taken in late summer of 2019 above Roebling Park in Abbott Marshlands.[/caption]  

Unfortunately, this ecosystem has faced challenges partially due to the invasion of the aggressive Common Reed (Phragmites australis), causing substantial habitat loss and degradation. In response to these challenges, the Friends for the Abbott Marshlands have dedicated themselves to enhancing appreciation and protection of this precious ecosystem. Their mission focuses on engaging and inspiring a diverse community to experience the unique nature and history of the Abbott Marshlands. Their priorities involve expanding community involvement, advancing educational programs through the Tulpehaking Nature Center, enhancing organizational capacity, and working in cooperative stewardship efforts.

Since its inception, the Friends for the Abbott Marshlands have played a pivotal role in advocating for the preservation and stewardship of the marshlands. They've organized various educational programs, symposia, nature walks, and juried photography shows to raise awareness and encourage stewardship of this unique ecosystem. The Friends for the Abbott Marshlands Advisory Board meets periodically to advise on program design and execution, fundraising, and engagement in any and all activities related to the preservation of the Abbott Marshlands.

The area is named "Abbott Marshlands" in recognition of the important archaeological legacy of the marsh and of Charles Conrad Abbott, a 19th and early 20th century archaeologist and naturalist, who lived on the bluffs near the marsh and who wrote extensively about it.


Princeton Hydro's Work at Abbott Marshlands

Recognizing the urgent need to restore the Abbott Marshlands, Mercer County contracted Princeton Hydro to spearhead a multi-year, multi-phased restoration initiative. The project aimed at reducing and controlling the invasive Phragmites australis while increasing the presence of native marsh vegetation.

Princeton Hydro conducted a Floristic Quality Assessment to identify invasive areas and to establish a baseline for the restoration efforts. The team also performed hydrologic monitoring to understand tidal stage elevations. From 2018-2019, herbicide treatments were consistently conducted to combat the invasive phragmites. In the winter of 2019-2020, 46 acres of phragmites was cut and rolled with our Marsh Master using a modified steel roller attachment. The phragmites was then removed by raking, which in turn exposed the marsh plain’s substrate and seedbank to promote germination of the native marsh vegetation. Extensive areas of wild rice, mud plantain, broad leaved cattail, water purslane, pickerelweed, and arrow arum colonized the areas formerly overtaken by phragmites within the first growing season after the marsh plain was exposed. The project also includes the creation of 500 linear feet of living shoreline, a freshwater mussel bed, and a sustainable boat launch.

[gallery link="none" columns="4" ids="14049,7137,14058,14055"] [caption id="attachment_14053" align="aligncenter" width="749"] Drone imagery from Winter 2020 after herbicide treatment and rolling and cutting of Phragmites at Roebling Park.[/caption]

This comprehensive and collaborative restoration effort not only targets invasive species but also focused on enhancing biodiversity; improving recreational opportunities such as kayaking and bird watching; enhancing the overall visitor experience at John A. Roebling Memorial Park, which is part of Abbott Marshlands; and creating opportunities for community engagement and appreciation of this natural treasure.


Learn More

Click here to learn how you can get involved with supporting and participating in initiatives aimed at protecting and cherishing the Marshlands for generations to come. To take a deeper dive into Princeton Hydro's work at Abbott Marshlands, click here.

A founding partner of Princeton Hydro, Mark is a pioneer in the field of restoration ecology, and helped get the conservation science movement off the ground in the 1980s. He holds a Bachelor of Science in Biology from Moravian College and Master of Science in Plant Ecology from Rutgers University. For more than two decades, Mark has overseen wetland and terrestrial ecology projects at Princeton Hydro, including many complex restoration projects that require unique solutions.

Mark, along with Princeton Hydro team members Dana Patterson and Michael Rehman, CERP, PWS and representatives from Mercer County and Friends of the Abbott Marshlands, led a educational course and field exploration of the Abbott Marshlands as part of the New Jersey Department of Environmental Protection (NJDEP) annual Youth Inclusion Initiative. Learn more here.

      [post_title] => Mark Gallagher Appointed to Friends of Abbott Marshland Advisory Board [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => mark-gallagher-appointed-to-friends-of-abbott-marshland-advisory-board [to_ping] => [pinged] => [post_modified] => 2024-01-18 03:26:50 [post_modified_gmt] => 2024-01-18 03:26:50 [post_content_filtered] => [post_parent] => 0 [guid] => https://princetonhydro.com/?p=14044 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [2] => WP_Post Object ( [ID] => 13535 [post_author] => 1 [post_date] => 2023-08-25 15:21:48 [post_date_gmt] => 2023-08-25 15:21:48 [post_content] =>

The New Jersey Department of Environmental Protection (NJDEP) has launched its third annual Youth Inclusion Initiative. The program hopes to enrich young participants, who may not have the opportunity to explore open spaces in their community, with hands-on environmental field experience under the tutelage of NJDEP professionals and mentors.

This year’s youth consists of 47 participants from ages 16-20 that hail from five different community-based organizations. These partners include Neighborhood Improvement Association (Trenton), Rutgers-Camden, Groundwork Elizabeth, Ironbound Community Corporation (Newark), and The Work Group (Camden).

[caption id="attachment_13546" align="aligncenter" width="1230"] The youth program participants gather together with their certificates for a final group photo.[/caption]  

Over the course of this six week program, the youth participated in a curriculum that showcased career pathways in the water resources and natural resources management fields. Participants learned through classroom instruction and by receiving some in-field experience across sectors regulated by NJDEP such as touring an air monitoring station, visiting a trout hatchery, conducting stream assessments, and practicing proper tool and equipment recognition at a state park. After their time with the initiative is through, they will have nurtured the skills to pursue these job opportunities and develop a deeper appreciation for our environment.

Princeton Hydro representatives Mark Gallagher, Dana Patterson, and Michael Rehman, CERP, PWS led one of the mentorships. This is the second year NJDEP’s Division of Land Resource Protection Mitigation Unit invited Princeton Hydro to teach a portion of the program. The goal in participating was to educate the youth about the importance of restoring native landscapes and explore the job responsibilities of environmental scientists, water resource engineers, geologists, ecologists, pesticide applicators, and regulatory compliance specialists, while building upon and cultivating  fascination with nature.


The Abbott Marshlands in Trenton, New Jersey

The program kicked off with a presentation in Mercer County Park Commission’s Tulpehaking Nature Center located in John A. Roebling Park. After learning about the history of the site from representatives from Mercer County and Friends of the Abbott Marshlands, Princeton Hydro discussed opportunities for careers in conservation and gave a brief overview of the restoration efforts in the park to eradicate the invasive Common Reed (Phragmites australis). Prior to heading out to explore the Abbott Marshlands, the northernmost freshwater tidal wetlands on the Delaware River, the Princeton Hydro team went through a health and safety briefing, a very important part of our job, to make sure everyone was aware of the potential risks and exposures.

[gallery link="none" ids="13543,13540,13552"]

Princeton Hydro team members and NJDEP’s Environmental Specialist Jessica Klein led the participants through the park. Right away, the first group witnessed one of nature’s marvels when they spotted a Northern Red-bellied Cooter (Pseudemys rubriventris) laying her eggs along the side of the main road. Participants learned of the marshland and surrounding upland’s rich cultural significance. On their trek through this natural oasis, they followed in the footsteps of the Lenape, a tribe of Native Americans who regularly visited and eventually settled in the area at least 13,000 years ago. These early nomadic people relied on the land for food, fuel, and other readily available resources until they were displaced due to European settlement along the Delaware River. Learn more about the Abbott Marshland cultural history here.

Eventually, the group made it to the area of the restoration site. Here, the students gained a better understanding of the harsh effects that invasive species have on an ecosystem. The 3000-acre freshwater tidal marsh provides habitat to many rare and endangered species, but it has experienced a significant amount of degradation due to monoculture of the invasive Common Reed. In order to improve the area’s biodiversity and elevate visitors’ recreational experience, Princeton Hydro implemented a restoration plan that aimed to eradicate the aggressive non-native plants within a 40-acre stretch of the marsh and enable native plants like Wild Rice (Zizania aquatica) to flourish. Learn more about this project.

NJDEP Commissioner Shawn LaTourette surprised the Rutgers-Camden group with his joyful presence. After giving a zealous speech to the class, he accompanied them on their journey to the marshland.

[caption id="attachment_11299" align="aligncenter" width="1230"] NJDEP Commissioner Shawn LaTourette joins the class.[/caption]  

Overall, participants had fun learning how to use a field guide to identify invasive species found within the area. They were taught how to differentiate them with native flora like sensitive fern, poison ivy, and wild rice. With a wide survey of the marshland, the youth were taught about wetland delineation and got a peek into the process of using a hand auger and a Munsell Soil Color Book to identify wetland soils. Utilizing binoculars, the last group was lucky to spot a Northern Harrier, an uncommon visitor for the marshland, soaring circles in the sky in search of prey. The rare sighting led to the successful end of the final tour.

[gallery link="none" ids="13538,13541,13545,13590,13592,13595,13596,13597,13594"]
The NJDEP Youth Inclusion Initiative began on July 6 and culminated on August 16 with a graduation and NJDEP Career Day where students had the opportunity to meet and discuss career options with various organizations who tabled at the event, including Princeton Hydro. To learn more about the NJDEP education program, click here. If you’re interested in learning more about Princeton Hydro’s ecological restoration services, click here. [post_title] => Another Successful Year Mentoring Participants from NJDEP's Youth Inclusion Initiative [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => njdep-youth-inclusion-initiative-2023 [to_ping] => [pinged] => [post_modified] => 2023-08-28 19:50:30 [post_modified_gmt] => 2023-08-28 19:50:30 [post_content_filtered] => [post_parent] => 0 [guid] => https://princetonhydro.com/?p=13535 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [3] => WP_Post Object ( [ID] => 13468 [post_author] => 1 [post_date] => 2023-08-18 06:00:22 [post_date_gmt] => 2023-08-18 06:00:22 [post_content] =>

A wetland is a unique ecosystem that is permanently or seasonally saturated by water, including swamps, marshes, bogs, vernal pools, and similar areas. They provide water quality improvement, flood protection, shoreline erosion control, food for humans and animals, and critical habitat for thousands of species of aquatic and terrestrial plants, aquatic organisms, and wildlife.

[gallery link="none" ids="14309,13487,13472"]

Princeton Hydro is regionally recognized for its capabilities in the restoration of freshwater and saltwater wetland ecosystems. Our ecologists also regularly conduct wetland delineations. A wetland delineation, a requirement of most permitting efforts, is the field work conducted to determine the boundary between the upper limit of a wetland and the lower limit of an upland thus identifying the approximate extent and location of wetlands on a requested site.

For this edition of our “A Day in the Life” blog series, we join Environmental Scientist Ivy Babson and Regulatory Compliance & Wildlife Surveys Project Manager Emily Bjorhus, PWS out in the field for a wetland delineation.


To Delineate a Wetland We Must First Define It

Most commonly, wetlands are delineated based on the Routine Onsite Determination Method set forth in the Federal Manual Identifying and Delineating Jurisdictional Wetlands (FICWD 1989) with supplemental information provided by the applicable United States Army Corps of Engineers’ (USACE) regional supplement manual.

USACE’s “three-parameter” approach defines an area as a wetland if it exhibits, under normal circumstances, all the following characteristics:

  1. The land supports a dominance of hydrophytic vegetation;
  2. The substrate is hydric soil; and
  3. The soil/substrate is at least periodically saturated or inundated during a portion of the growing season.

Step 1: Prepare for Delineation Day

Ivy and Emily begin by coordinating with the client to ensure they’ve been granted site access approval.

They then perform a comprehensive desktop analysis of the project site, identifying existing features like wetlands, open waters (streams, lakes), and potential hydric soils. This involves utilizing resources like USFWS's National Wetland Inventory Mapper, the U.S. Geological Survey's SSURGO Soils Survey, and, for New Jersey-based delineations, NJDEP's GeoWeb. The desktop review also allows Ivy and Emily to assemble the proper safety gear and create a Model Health & Safety Plan (HASP). A HASP must always be prepared before the field work begins.

Then, the field-day packing begins; the following items are a requirement for any wetland delineation:
  1. Field notebook and writing utensils
  2. Soil auger (for examining soil profiles)
  3. Munsell soil color chart book (for assessing soil types)
  4. High-vis flagging and pin flags
  5. Hi-vis surveyors or wetland delineator’s vest
  6. Muck boots or waders (depending on the type of environment and existing features)
  7. Field map, usually an up-to-date aerial, showing the boundaries of the site
  8. Sunscreen and bug spray (ticks are a common occurrence)
  9. Plenty of water and food - wetland delineations can be quite strenuous, especially in the summer
  10. Appropriate clothing - wetland delineations can be conducted year-round
 

Step 2: Set the Game Plan & Review HASP

It's always important to make a plan for the project. If we are delineating a large property, it might take several days to traverse, and each day, the weather might be different. So planning ahead, but also being prepared for unexpected changes, will make the day go that much smoother. And, as part of the HASP, we must identify important points of contact and know where the closest hospital is in case of a serious emergency.  So, reviewing this information and planning ahead prior to heading into the field is a very important step in the process.


Step 3: Perform the Three-Parameter Wetland Delineation

While wetland delineations can be conducted any time of the year, they are best conducted during the “growing season” when soil temperatures are above the biologic zero and vegetation is easily identifiable by leaves, inflorescence, or other unique identifying characteristics that would otherwise be difficult to identify during the winter months.

Ivy and Emily begin by locating known (mapped) wetland or waterbody features and writing a list of all plants observed on-site. They maintain the plant list throughout the day.

If, during the desktop review, they find a mapped wetland or stream, they walk there first to determine if wetlands are actually present. Even if a wetland is mapped on a database, it may not actually exist for various reasons. On the flip side, even if a site is not mapped as containing wetlands, the site could very well contain them. As such, the wetland delineation determines exactly what is on-site and supplements the desktop review.

As mentioned above, a wetland delineation considers three determining factors: 1) vegetation, 2) soils, and 3) hydrology. While on site, Ivy and Emily must identify hydrophytic vegetation, take soil borings, and look for wetland hydrology to identify whether a wetland is present or not.

Parameter 1: Vegetation

Wetlands are dominated by hydrophytes which are plants that can grow in water or on a substrate that is at least periodically deficient in oxygen because of excessive water content and depleted soil oxygen levels.

The USACE and NJDEP definition of hydrophytes is based on the USFWS classification system. In general, any plant species that is found growing in wetlands more than 50% of the time is considered a hydrophyte. These plants include those classified by the USFWS as “facultative," “facultative wetland," or “obligate."

As a wetland delineator, it is important to possess strong plant identification skills and an eye for recognizing various ecological plant communities, which are groups of plants that share a common environment and environmental requirements. They are often defined by dominant plant species.

Once Ivy and Emily identify the hydrophytic plant community, they determine what type of ecological community they are in (e.g., freshwater forested wetland, estuarine scrub-shrub wetland, or freshwater tidal emergent marsh). Today, they are in a freshwater forested wetland, which means Ivy and Emily must now assess each stratum of the forested wetland by writing down the species and associated percent species cover.

[gallery link="none" ids="13448,13450,14314"]

To accurately describe the vegetation at each sampling point, we collect data on each horizontal strata or layer. Vegetative strata for which dominants are determined include (1) tree (> 5.0 inches diameter at breast height (DBH) and 20 feet or taller); (2) sapling (0.4 to <5.0 inches DBH and <20 feet tall); (3) shrub (usually 3 to 20 feet tall including multi-stemmed, bushy shrubs); (4) woody vine; and (5) herb (herbaceous plants including graminoids, forbs, ferns, fern allies, herbaceous vines, and tree seedlings). They repeat this process for each representative wetland.

Next, Ivy and Emily look for the upland plant community that is directly upslope of the wetland and make note of the proximity to the wetland, repeating the same vegetation documentation process.

Parameter 2: Soils

Ivy and Emily must determine whether the soils within the hydrophytic plant community are hydric. Hydric soils are defined as soils that are saturated, flooded, or ponded long enough during the growing season to develop anaerobic conditions in the upper part. Hydric soil indicators are features in the soil that predominantly form by biogeochemical processes in a saturated and anaerobic environment and result in the accumulation of loss of iron, manganese, sulfur, or carbon compounds.

Emily uses a soil auger to collect a sample of the first 6 - 12 inches of soil where the most significant parts of a hydric soil would be occurring.

 

Once Ivy and Emily identify that the soil is indeed hydric, Ivy uses her Munsell soil color book to determine the value of the soil and each hydric soil indicator.

[gallery link="none" columns="2" ids="13489,13485"]

They also document additional characteristics of each soil layer: Is it loam, silty loam, sand, sandy loam, silt, muck, clay, clayey loam, etc.? What is the percentage of rocks, plant roots, or other organic matter in each layer? What is the percentage of redoximorphic features of each layer and are they faint or prominent?

Each layer of the soil profile, which is typically documented to a depth of at least 18 inches, is sectioned out and thoroughly described.

Parameter 3: Hydrology

The identification of positive indicators of wetland hydrology includes direct observation of indicator groups, such as the observation of surface water or saturated soils, evidence of recent inundation, evidence of current or recent soil saturation, and evidence from other site conditions or data. Each group contains several indicators, which are classified into categories known as “primary” or “secondary” indicators.

To positively identify the area as being a wetland, at least one primary wetland indicator (from any group) or at least two secondary wetland indicators (from any group) must be present.

Additionally, for an area to be designated as a wetland, the area must have the presence of water for a week or more during the growing season. Areas with wetland hydrology characteristics are those where the presence of water has an overriding influence on characteristics of vegetation and soils due to anaerobic and reducing conditions, respectively.

[caption id="attachment_13488" align="aligncenter" width="483"] This red maple developed morphologic adaptations in the form of buttressed roots.[/caption]  

Today, Emily and Ivy observe a depression (secondary) along with a few inches of standing water (primary), water-stained leaves (primary), frogs hopping around (primary), and moss trim lines on the tree trunks (secondary). All signs point to a forested wetland; however, there is more to consider.

Ivy and Emily’s soil boring assessment showed that the soils within the top 12 inches of the soil surface were saturated (primary) and bright orange streaks were visible along the plant roots, which they documented as oxidized rhizospheres along living roots (primary). Because they identified more than one primary and two secondary wetland indicators, they can confidently delineate the wetland.


Step 4: Delineate Between the Wetland and Upland

Now that Ivy and Emily established that a wetland is present, they must find the boundary of the upland. They are now looking for the absence of hydrophytic vegetation, hydric soils, and positive indicators of wetland hydrology as well as the dominance of upland ecological plant communities. The same analysis and documentation process they completed for the wetland area is also required for the upland area.

Once they locate the boundary, they flag the wetland line, labeling the flagging with the wetland nomenclature and either hanging it or pinning it into the ground.

While the description sounds relatively simple, finding the boundary between a wetland and upland can be tricky and time consuming. For example, there may be some hydrophytic vegetation growing within an upland and there may be one secondary positive indicator of wetland hydrology, but hydric soils are missing. To positively classify an area as a wetland, a slam dunk on all three parameters is required.

[caption id="attachment_13513" align="aligncenter" width="639"] Marked up image indicating the upland, wetland, and stream. The red line marks the boundary between a wetland and an upland. The blue line marks the boundary between a stream and the wetlands on either side of the stream’s banks.[/caption]

Step 5: Delineate Waterbodies

Ivy and Emily must also delineate waterbodies concurrent with wetlands. Waterbodies may include, but are not limited to, streams, rivers, lakes, and ponds. To delineate a waterbody, they hang labeled flagging along the waterbody’s top of bank or its ordinary high water mark. Throughout this process, they take pictures to document the existing waterbody conditions.

[gallery link="none" ids="13457,13460,13455"]

Step 6: Post-Delineation Wrap-up

Once the wetland delineation is complete, Ivy and Emily draw out a field sketch that depicts the approximate extent and location of the wetland and waterbody boundaries with their respective nomenclature.

Depending on the project scope, the field sketch is either submitted to a Professional Licensed Surveyor who will then visit the site to survey each wetland and waterbody flag, or Ivy and Emily will return to the site to survey each flag with a survey-grade GPS. Once the survey is complete, Ivy and Emily will conduct a final review of the plans to ensure accuracy.

If requested, they will also prepare a wetland delineation report, which outlines the delineation method, findings, results, and thorough description of each wetland and its soils, hydrology, and vegetation.

“Wetland delineations aren’t for the faint of heart,” said Ivy. “At the end of the day, you might emerge from a dense stand of Phragmites garnering strange looks from passersby with muck smeared on your face, sticks and leaves poking out of your hair, a belly full of mosquitos that you might have accidentally swallowed, and fingernails stuffed with dirt. However, there isn’t any other type of field that I would rather be in. As a wetland delineator, I can access environments that most people would steer clear of and, as a result, I get to see things that I wouldn’t get to see anywhere else. I get to improve my plant identification skills and expand my knowledge of how wetlands function as an ecosystem.”

[caption id="attachment_13478" align="aligncenter" width="566"] Ivy standing in a tidal marsh at Spring Creek North in Brooklyn and Queens, New York. "This wetland delineation is one of my favorite delineating experiences yet. And, I'm looking forward to many more to come!"[/caption]
A big thanks to Ivy and Emily for taking us out in the field for a wetland delineation!

Emily Bjorhus is a Project Manager that specializes in environmental regulatory compliance, ecological services and wildlife surveys. She leads federal, state and local environmental permitting processes, NEPA compliance and documentation, Endangered Species Act Section 7 consultations, and Clean Water Act Section 404(b)1 analyses. Mrs. Bjorhus is a certified Professional Wetland Scientist.

   

As an Environmental Scientist, Ivy Babson regularly conducts wetland delineations and monitoring, flora/fauna surveys, water quality sampling, fishery surveys, permitting, and regulatory compliance for a series of projects. She earned her Wetland Delineation Certification from Rutgers University. Ivy graduated from the University of Vermont in 2019 with a B.S. in Environmental Science with a concentration in Ecological Design, and minor in Geospatial Technologies.

  To read more about our wetland restoration work, go here: http://bit.ly/PHwetland. If you enjoyed this blog, check out another one from our “A Day in the Life” series, and stay tuned for more. [post_title] => A Day in the Life: Performing a Wetland Delineation [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => a-day-in-the-life-performing-a-wetland-delineation [to_ping] => [pinged] => [post_modified] => 2024-01-18 04:23:08 [post_modified_gmt] => 2024-01-18 04:23:08 [post_content_filtered] => [post_parent] => 0 [guid] => https://princetonhydro.com/?p=13468 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [4] => WP_Post Object ( [ID] => 12253 [post_author] => 1 [post_date] => 2023-02-01 19:20:28 [post_date_gmt] => 2023-02-01 19:20:28 [post_content] =>

The latest issue of Wetland Science & Practice Magazine, a quarterly e-publication published by the Society of Wetland Scientists, features an article written by Princeton Hydro Engineer Dr. Roy Messaros, PE, PWS, CFM.

In his article, Roy takes readers on a tour of Great Meadows National Wildlife Refuge wetland complex and provides an in-depth look at the extraordinary diversity of protected plant and animal species that can be found there. The article, titled, "Great Meadows National Wildlife Refuge, Massachusetts, USA: A Wetland of Distinction," also contains beautiful full-color images of the landscape and wildlife within it.

Great Meadows is one of more than 560 refuges in the U.S. Fish and Wildlife Service's National Wildlife Refuge System. The system is a network of lands and waters managed specifically for the protection of wildlife and wildlife habitat and represents the most comprehensive wildlife resource management program in the world.

The Great Meadows National Wildlife Refuge is a river wetlands conservation area, divided into two major parcels, stretching from the towns of Billerica, Massachusetts to Wayland, Massachusetts, along the Concord and Sudbury Rivers. Approximately 85% of the refuge's 3,600 acres is comprised of freshwater wetlands. According to the FWS, Great Meadows is considered an excellet place for birding, and “noted ornithologists consider this unit to be one of the best inland birding areas in the state.” This site has a wildlife observational tower, observational platform and direct access to the Concord River.

Roy's article, as well as the entire January 2023 issue of Wetland Science & Practice Magazine, is available to members of the Society of Wetland Scientists, which is an international, professional nonprofit organization devoted to promoting understanding, conservation, protection, restoration, science-based management, and sustainability of wetlands. Society membership is open to anyone with an interest in wetlands. To learn more, click here.

    [post_title] => Wetland Science & Practice Magazine Features Princeton Hydro Engineer [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => princeton-hydro-featured-in-wetland-science-practice-magazine [to_ping] => [pinged] => [post_modified] => 2023-02-27 14:08:41 [post_modified_gmt] => 2023-02-27 14:08:41 [post_content_filtered] => [post_parent] => 0 [guid] => https://princetonhydro.com/?p=12253 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [5] => WP_Post Object ( [ID] => 11995 [post_author] => 1 [post_date] => 2022-12-29 04:39:58 [post_date_gmt] => 2022-12-29 04:39:58 [post_content] =>

The Former New Jersey Pulverizing Tract, located in Ocean County, is fundamentally a degraded landscape created by nearly a century of sand and gravel extraction.

[gallery columns="2" link="none" ids="14358,11998"]

Despite the site’s disturbance history, the 782-acre area has abundant natural character and enormous ecological and recreational potential. In 2016, using funds from the Natural Lands Trust, Ocean County purchased the sand and gravel quarry with the goal of restoring the land to incorporate ecological improvements, extending public trails access to (and through) the site, and establishing a long-term landscape design lending itself to sustainable, cost-effective stewardship as a key Natural Lands Trust preserve.

With so much ecological restoration potential it was difficult to know exactly where to start. For several years, staff representing Ocean County Department of Planning and Ocean County Department of Parks & Recreation considered a variety of restoration alternatives. Then in 2021, the County hired Princeton Hydro and Strauss & Associates/Planners to develop a comprehensive Conservation Management Plan to help guide Ocean County’s decision-making process and prioritize restoration efforts.


Developing the Plan

Before a strategic conservation plan could be developed for the site, the team needed to have a deep understanding of the history, characteristics, and existing conditions of the land. A review of the title, survey, and legal encumbrances was performed as a measure of planning due diligence. Princeton Hydro also conducted a water quality assessment; hydrologic monitoring; pollutant loading and hydrology modeling; fishery survey; detailed geology analysis and soil sampling; wetland delineation; and flora and fauna inventory.

The team found that, with the exception of a forest perimeter buffer, nearly all land within the site was degraded from nine decades of continuous sand and gravel extraction. The mined land was lowered substantially in base elevation, resulting in a bowl-like landscape of exposed and compacted soils, a sterile 42-acre lake, mining roads, ATV tracks, steep slopes, ruts, and soil piles.

These findings inform the plan’s ecological design recommendations, and confirm the site’s fundamental resilience, restoration potential, public access opportunities, and scientific and interpretative value. With the initial testing and analysis complete, the team could develop an informed and comprehensive plan that balances active and passive efforts to transition the Pulverizing site from a sand pit to a unique Natural Lands Trust preserve.


Focusing & Structuring Conservation Efforts

For the Princeton Hydro team, the approach to the project was not just focused on developing a management plan for a depleted mining site, but to truly believe in the land’s restoration potential and imagine a thriving multi-purpose park within a restored landscape.

The team developed a Conservation Management Plan that presents a composite view for land restoration as a mosaic of open water, wetland, emergent meadow, grassland, and forest linked by miles of new recreational trails, and is derivative of two overarching goals: First, provide ecological uplift; and second, provide an extensive system of passive recreational public access.

In the plan, the site’s public access system combines 8.1 miles of pedestrian paths and multi-use bicycle trails that connect with the County’s Barnegat Branch Trail, an existing 15.6-mile regional facility that runs for 1.4 miles through the Pulverizing site’s eastern reach. The plan also contains a unique 3-mile water trail that connects existing dead-end mining channels through a series of excavated shallow cuts. The water trail unlocks a range of paddling routes that offer kayakers and canoeists unequaled access to restored and protected ponds, wetlands, fishing and picnicking coves, and terrestrial zones, including birding meadows and oak-pine forests.

Ecologically speaking, the plan’s design recommendations complement ongoing natural processes while working to correct and naturalize significant impairments. The ecological uplift activities presented in the plan focus on restoring the land’s wetlands, streams, and topography that were lost to excavation, and strengthening the native plant community to help increase biodiversity and increase natural floodplain and stormwater management function.


The Conservation Management Plan was driven by the following six objectives:

1. PRESERVE WHAT IS BENEFICIAL.

Protect the best examples of existing upland and wetland plant communities. The site contains a range of productive native plants representative of the New Jersey pinelands and Barnegat Bay Watershed. The plan identifies and extends protection to these localized communities.

2. CREATE AND REPLACE WHAT IS DAMAGED.

Rebuild native plant communities through the introduction of wetland littoral zones and benched terrestrial habitat. Decades of mineral extraction and misuse have resulted in denuded, desert-like zones. The plan draws on pineland ecological analogs to reestablish native plant communities.

3. RE-ESTABLISH HYDROLOGIC CONNECTIONS.

Restore the site’s hydrologic connections to both pinelands and Barnegat Bay areas. The plan contains a range of treatments to restore and expand wetlands and open water, reconnect the native fishery, and diversify aquatic and terrestrial habitat.

4. BUILD AN INTERCONNECTED TRAIL SYSTEM.

The plan establishes a hierarchy of pedestrian and bike trails enabling public access to all corners of the site and connecting the site to the Barnegat Branch Trail. As a premier Natural Lands Trust preserve the restored Pulverizing site will attract bicyclists from trail towns including Toms River, Beachwood, Bayville, Forked River, Waretown, Barnegat and beyond.

5. EXPAND WATER TRAILS FOR KAYAK AND CANOE ACCESS.

Surface water connections will be enhanced by excavating a series of waterways and emergent wetland habitat. The plan links the existing radiating lagoon fingers to one-another and to the 42-acre lake. The new connections will improve circumferential paddling routes, backcountry destinations, habitat protection and management.

6. INCREASE ECOLOGICAL UPLIFT THROUGH COST-EFFECTIVE CONSTRUCTION.

The plan recognizes that – ecologically speaking – nearly everything required for long-term success is already on-site, including hydrology, native plant communities, and seed stock. There is limited need for imported material, fertilization, or complex engineering. Although the site is significantly degraded, the plan incorporates a substantial amount of habitat preservation and limits most earthmoving activities to the area around the main lake.

[caption id="attachment_14355" align="alignnone" width="1280"] Denuded ATV washboard area trying to become an emergent wetland, East of the Barnegat Branch Trail at the former NJ Pulverizing Tract[/caption]

Moving Forward & Implementing the Plan

The effort to transition the former NJ Pulverizing Tract from a modified mining pit to a Natural Lands Trust preserve is multi-faceted. This conceptual plan estimates a 5- to 7-year timeline and suggests using a phased approach for preliminary and final design, permitting, and construction that capitalizes on existing hydrology, creates, and restores damaged habitat areas, and lays the foundation for the land and water trail system. Ocean County has not formally endorsed the Conservation Management Plan and next steps will dependent on available funding and prioritization by the County. The following steps are proposed:

1. A thorough review of Comprehensive Management Plan by Commissioners and key departments; 2. Completion of special design area studies with additional key department review; 3. Preparation of phased development plan, integration with Barnegat Branch Trail construction; 4. Scheduling of permit pre-application meetings with NJDEP; 5. Completion of a topographical survey, site plans, preliminary engineering, and utility coordination; 6. Development of cost estimates and material requirements for construction; 7. Review and adoption of financial plans for construction phases; 8. Preparation of final engineering plans and bid specifications for construction; 9. Issuance of regulatory permits for phased work; and 10. Publication of bid, award, and issuance of contractor Notice to Proceed for construction.

 

The former NJ Pulverizing Tract offers exciting opportunities to apply adaptive and restorative design in furtherance of ecological and public access objectives among the incredibly diverse 782-acres. Restoration, preservation, and stabilization of the mine landscape will provide a diverse and continuously changing experience to visitors of all ages and interests. As a jewel in the necklace of the Natural Land Trust system, the site shall enrich the natural resource base, provide a mind-changing visitor experience, and reinforce the prescience of forward-thinking officials at Ocean County who embarked on, and advanced, the objective of acquiring and restoring an abandoned sand and gravel quarry. Princeton Hydro is proud be a part of this unique site’s transformation.

[gallery link="none" ids="14350,14352,12003"]
  Please stay tuned to our blog for project updates. And, to read about another ecological restoration project Princeton Hydro is working on in the John Heinz National Wildlife Refuge at Tinicum in Philadelphia, click below: [visual-link-preview encoded="eyJ0eXBlIjoiaW50ZXJuYWwiLCJwb3N0IjoxMTU1NCwicG9zdF9sYWJlbCI6IkFydGljbGUgMTE1NTQgLSBFY29sb2dpY2FsIFJlc3RvcmF0aW9uIGluIEpvaG4gSGVpbnogTmF0aW9uYWwgV2lsZGxpZmUgUmVmdWdlIiwidXJsIjoiIiwiaW1hZ2VfaWQiOjAsImltYWdlX3VybCI6IiIsInRpdGxlIjoiRWNvbG9naWNhbCBSZXN0b3JhdGlvbiBpbiBKb2huIEhlaW56IE5hdGlvbmFsIFdpbGRsaWZlIFJlZnVnZSIsInN1bW1hcnkiOiJFY29sb2dpY2FsIHJlc3RvcmF0aW9uIHdvcmsgaXMgdW5kZXJ3YXkgaW4gdGhlIEpvaG4gSGVpbnogTmF0aW9uYWwgV2lsZGxpZmUgUmVmdWdlIGF0IFRpbmljdW0gaW4gUGhpbGFkZWxwaGlhLCBQZW5uc3lsdmFuaWEsIHdoaWNoIGlzIGNlbGVicmF0ZWQgYXMgQW1lcmljYSYjODIxNztzIEZpcnN0IFVyYmFuIFJlZnVnZS4gRnJpZW5kcyBvZiBIZWlueiBSZWZ1Z2UgaGlyZWQgUHJpbmNldG9uIEh5ZHJvIGFuZCB0ZWFtbWF0ZXMgRW52aXJvc2NhcGVzIGFuZCBNZXJlc3RvbmUgQ29uc3VsdGFudHPCoHRvIHByb3ZpZGUgZW5naW5lZXJpbmcgZGVzaWduLCBlbnZpcm9ubWVudGFsIGNvbXBsaWFuY2UsIGVuZ2luZWVyaW5nIG92ZXJzaWdodCwgYW5kIGNvbnN0cnVjdGlvbiBpbXBsZW1lbnRhdGlvbiB0byBlbmhhbmNlIGFuZCByZXN0b3JlIGFxdWF0aWMsIHdldGxhbmQsIGFuZC4uLiIsInRlbXBsYXRlIjoic2ltcGxlIn0="] [post_title] => Transforming a Mining Site into a Natural Lands Trust Preserve & Public Park [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => former-new-jersey-pulverizing-tract-restoration [to_ping] => [pinged] => [post_modified] => 2024-01-19 01:06:57 [post_modified_gmt] => 2024-01-19 01:06:57 [post_content_filtered] => [post_parent] => 0 [guid] => https://princetonhydro.com/?p=11995 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [6] => WP_Post Object ( [ID] => 11554 [post_author] => 1 [post_date] => 2022-10-29 16:06:00 [post_date_gmt] => 2022-10-29 16:06:00 [post_content] =>

Ecological restoration work is underway in the John Heinz National Wildlife Refuge at Tinicum in Philadelphia, Pennsylvania, which is celebrated as America's First Urban Refuge. Friends of Heinz Refuge hired Princeton Hydro and teammates Enviroscapes and Merestone Consultants to provide engineering design, environmental compliance, engineering oversight, and construction implementation to enhance and restore aquatic, wetland, and riparian habitats and adjacent uplands within the Turkey Foot area of the Refuge.

About the Refuge

The Turkey Foot project area is an approximately 7.5-acre site within the greater 1,200-acre John Heinz National Wildlife Refuge, which is located within the City of Philadelphia and neighboring Tinicum Township in Philadelphia and Delaware Counties, about one-half mile north of Philadelphia International Airport.

The Refuge protects approximately 200 acres of the last remaining freshwater tidal marsh in Pennsylvania and represents an important migratory stopover along the Atlantic Flyway, a major north-south flyway for migratory birds in North America. It also provides protected breeding habitat for State-listed threatened and endangered species, as well as many neotropical migrants, such as the American Bittern, Least Bittern, Black-crowned Night-heron, King Rail, Great Egret, Yellow-crowned Night-heron, and Sedge Wren.

[caption id="attachment_11775" align="aligncenter" width="732"] Photo of a Least Bittern taken in the Refuge by Princeton Hydro Vice President Mark Gallagher[/caption]  

The Refuge was established for the purposes of preserving, restoring, and developing the natural area known as Tinicum Marsh, as well as to provide an environmental education center for its visitors. The Refuge contains a variety of ecosystems unique in Pennsylvania and the Philadelphia metropolitan area, including tidal and non-tidal freshwater marshes, freshwater tidal creeks, open impoundment waters, coastal plain forests, and early successional grasslands. Although many of the Refuge’s ecosystems have been degraded, damaged, or, in some cases, destroyed as a result of numerous historic impacts dating back to the mid-17th century, many of these impacted ecosystems have the potential to be restored or enhanced through various management and restoration efforts.

 

Turkey Foot Ecological Restoration Project

The Turkey Foot project area is an example of one of the historically impacted ecosystems at the Refuge with tremendous opportunity for ecological restoration. The Friends of Heinz Refuge and the project team are working to restore and enhance the aquatic habitats, wetlands, riparian buffers, and adjacent uplands within the project area.

The approach for the restoration project focuses on creating approximately four acres of contiguous wetland habitat bordered by a functional riparian buffer. The design includes the creation of three habitat zones: intertidal marsh, high marsh, and upland grassland.

[caption id="attachment_11774" align="aligncenter" width="1072"] Illustration of the Turkey Foot Conceptual Design identifying the three proposed habitat areas and the project area.
Conceptual Design created by Princeton Hydro.[/caption]  

Incorporating the three elements into the landscape will help to establish foraging, breeding, and nesting habitat for critical wildlife species, including Eastern Black Rail, a threatened species listed under the Endangered Species Act of 1973.

The project work also includes a robust invasive species management plan, aimed at removing close to 100% of the invasive species, supported by an adaptive management monitoring program that will guide the development of the restored site towards the ultimate goal of establishing a diverse and productive coastal ecosystem within the Turkey Foot project area.

The upland slopes of the high marsh were seeded earlier this year, which will help to establish a grassland dominated by native warm season grasses. Native shrubs and flowering plants were also installed, including little bluestem, switchgrass, Virginia wild rye, asters, goldenrods, and bergamot. And, coastal panic grass was seeded, which is another Pennsylvania-listed endangered species, and, once grown-in, will provide suitable stopover foraging and cover for migratory land birds and pollinators.

The team also completed site grading to increase tidal flushing within the Turkey Foot’s two ponds, create intertidal and high marsh wetlands, prevent stagnant water and nutrient accumulation in bottom sediments, and reduce the reestablishment of invasive species. The bottom of the existing ponds were raised to elevations that support the establishment of intertidal marsh. The pond banks were then regraded to create the appropriate elevations for freshwater intertidal marsh and high marsh. Additionally, the tidally influenced connection points between the two ponds and the linear channel were enlarged.

Refuge Manager Lamar Gore recently visited the Turkey Foot project site and interviewed Deputy Refuge Manager, Mariana Bergerson, and Princeton Hydro Director of Restoration and Resilience, Christiana Pollack, about the progress made thus far and what's to come. Watch now:

 

Upcoming Restoration Activities

In Spring of 2023, the team will install a wide variety of native wetland plant species plugs and continue its work to restore the riparian buffer habitats within the Turkey Foot project area. The high marsh will be planted with a mix of native coastal plain wetland species, including fine-stemmed emergent plants, primarily rushes and grasses, with high stem densities and dense canopy cover, using species such as chairmaker's bulrush, river bulrush, blue flag, and rice cutgrass. The installation of river bulrush, a Pennsylvania-listed rare species, will provide beneficial wildlife habitat and serve to expand the range of this species in Pennsylvania. Additionally, restoring the high marsh will create the foundation for establishing Black Rail habitat and giving the threatened species protection from predators and opportunities to glean insects and other invertebrates from the ground and water.

The restoration and enhancement of riparian buffer habitats will reduce sedimentation and lower pond temperatures, improving water quality for native fish and invertebrates. Riparian buffers also filter nutrients in runoff and deter eutrophication of the ponds, and provide high quality food sources for native and migratory species, unlike the invasive species which provide low nutrient value foods.

[gallery link="none" ids="11773,11772,11770"]  

Please stay tuned to our blog for more project updates once the plantings have been completed in the Spring, as well as before and after photos once the plants are established. To read more about Princeton Hydro's robust natural resource management and restoration services, click here.

[post_title] => Ecological Restoration in John Heinz National Wildlife Refuge [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => ecological-restoration-in-john-heinz-national-wildlife-refuge [to_ping] => [pinged] => [post_modified] => 2022-11-01 15:35:56 [post_modified_gmt] => 2022-11-01 15:35:56 [post_content_filtered] => [post_parent] => 0 [guid] => https://princetonhydro.com/?p=11554 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [7] => WP_Post Object ( [ID] => 11506 [post_author] => 1 [post_date] => 2022-09-27 19:04:51 [post_date_gmt] => 2022-09-27 19:04:51 [post_content] =>

The Lion’s Gate Park and Urban Wetland Floodplain Creation Project has been chosen as a winner of the New Jersey Future “Smart Growth Awards” for 2022. The project transformed a densely developed, flood-prone, industrial site into a thriving public active recreation park with 4.2 acres of wetlands.

As stated in the New Jersey Future award announcement, “The park is representative of smart growth values, with walkable trails in the middle of a residential area, a regenerated protected wetland which helps to mitigate flooding from storms like Hurricane Ida, and mixed-use opportunities for recreation. The dual roles of Lion Gate Park as both a source of resilience and recreation demonstrate a model of land use and planning that values the accessibility of public spaces while acknowledging and addressing the urgent need to adapt to the growing impacts of climate change in New Jersey.”

The restoration project site is located in Bloomfield Township and includes 1,360 feet along the east bank of the Third River and 3,040 feet along the banks of the Spring Brook. These waterways are freshwater tributaries of the Passaic River and share a history of flooding above the site’s 100-year floodplain. The Third River, like many urban streams, tends to be the victim of excessive volume and is subjected to erosion and chronic, uncontrolled flooding.

By removing a little over four acres of upland historic fill in this density developed area and restoring the natural floodplain connection, we significantly improved the land’s ecological value; enhanced the aquatic and wildlife habitat; increased flood storage capacity for urban stormwater runoff; replaced invasive plant species with thriving native wetland and riparian plant communities; and provided outdoor recreation accessibility to Bloomfield Township.

  [gallery columns="2" link="none" ids="4704,9172"]  

The Lion Gate Park project is the culmination of nearly two decades of collaborative work. The primary project team includes the Township of Bloomfield, NY/NJ Baykeeper, Bloomfield Third River Association, CME Associates, PPD Design, GK+A Architects, Enviroscapes, Strauss and Associates/Planners, and Princeton Hydro. The project recieved $1.76 million in funding from the New Jersey Freshwater Wetlands Mitigation Council and another several million dollars from NJDEP’s Office of Natural Resource Restoration.

Princeton Hydro served as the ecological engineer to Bloomfield Township. Our scientists and engineers assisted in obtaining grants, collected background ecological data through field sampling and surveying, created a water budget, completed all necessary permitting, designed both the conceptual and final restoration plans, and conducted construction oversight throughout the project. Enviroscapes and Princeton Hydro are currently monitoring the site on behalf of the Township.

  [gallery link="none" columns="2" ids="4710,9319"]  

“Local residents are already benefiting from this floodplain creation project. During Tropical Storm Ida, the area held significant flood waters,” said Mark Gallagher, Vice President of Princeton Hydro. “This restoration project really exemplifies how a diverse group of public and private entities can work together to prioritize urban and underserved areas to mitigate flooding and create new open space. We’re honored to be recognized by NJ Future and selected as a winner of this important award.”

  [gallery link="none" columns="2" ids="9318,9294"]  

Since 2002, New Jersey Future has honored smart planning and redevelopment in New Jersey through its "Smart Growth Awards." The projects and plans chosen each year represent some of the best examples of sustainable growth and redevelopment in the state. For a complete list of 2022 Award Winners, click here. For more info on New Jersey Future, click here.

To learn more about the Bloomfield restoration project and see drone images of it all coming together, click below: [visual-link-preview encoded="eyJ0eXBlIjoiaW50ZXJuYWwiLCJwb3N0Ijo1ODU5LCJwb3N0X2xhYmVsIjoiQXJ0aWNsZSA1ODU5IC0gQmxvb21maWVsZDogUmVzdG9yYXRpb24gRWZmb3J0cyBUcmFuc2Zvcm1pbmcgSW5kdXN0cmlhbCBTaXRlIEludG8gVGhyaXZpbmcgUHVibGljIFBhcmsiLCJ1cmwiOiIiLCJpbWFnZV9pZCI6MCwiaW1hZ2VfdXJsIjoiIiwidGl0bGUiOiJCbG9vbWZpZWxkOiBSZXN0b3JhdGlvbiBFZmZvcnRzIFRyYW5zZm9ybWluZyBJbmR1c3RyaWFsIFNpdGUgSW50byBUaHJpdmluZyBQdWJsaWMgUGFyayIsInN1bW1hcnkiOiJBIGRlbnNlbHkgZGV2ZWxvcGVkLCBmbG9vZC1wcm9uZSwgZm9ybWVyIGluZHVzdHJpYWwgc2l0ZSBpbiBCbG9vbWZpZWxkLCBOZXcgSmVyc2V5IGlzIGJlaW5nIHRyYW5zZm9ybWVkIGludG8gYSB0aHJpdmluZyBwdWJsaWMgcGFyayBhbmQgNC4yIGFjcmVzIG9mIHdldGxhbmRzLiBUaGlzIGlzIHRoYW5rcyB0byB0aGUgVGhpcmQgUml2ZXIgRmxvb2RwbGFpbiBXZXRsYW5kIEVuaGFuY2VtZW50IFByb2plY3QsIHdoaWNoIGJyb2tlIGdyb3VuZCBpbiBNYXJjaCBvZiAyMDE5LiBUaGUgcHJvamVjdCB3aWxsIHJlc3RvcmUgdmFsdWFibGUgZWNvbG9naWNhbCBmdW5jdGlvbnMgYW5kIG5hdHVyYWwgZmxvb2RwbGFpbiBjb25uZWN0aW9uLCBlbmhhbmNlIGFxdWF0aWMuLi4iLCJ0ZW1wbGF0ZSI6InNpbXBsZSJ9"] [post_title] => Bloomfield's Lion’s Gate Park Restoration Wins 2022 Smart Growth Award [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => lion-gate-park-wins-smart-growth-award [to_ping] => [pinged] => [post_modified] => 2022-11-07 16:41:26 [post_modified_gmt] => 2022-11-07 16:41:26 [post_content_filtered] => [post_parent] => 0 [guid] => https://princetonhydro.com/?p=11506 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [8] => WP_Post Object ( [ID] => 11289 [post_author] => 1 [post_date] => 2022-08-26 19:06:38 [post_date_gmt] => 2022-08-26 19:06:38 [post_content] =>

The New Jersey Department of Environmental Protection (NJDEP) launched a Youth Inclusion Initiative to help the State of New Jersey develop the next generation of environmental protection, conservation and stewardship leaders while also providing an avenue for young adults from open space-constrained communities to engage with nature as they provide valuable stewardship services to the public through jobs at NJDEP. 

This year, the youth inclusion program is partnering with Groundwork Elizabeth, Rutgers University Camden, and Newark’s Ironbound Community Corporation to create a workforce development curriculum for people ages 17 to 24. Groundwork Elizabeth sent 12 participants to this year’s program, and Rutgers Camden and the Ironbound Community Corporation each sent 10.

[caption id="attachment_11299" align="aligncenter" width="771"] Photo by NJDEP[/caption]

The curriculum provides career education in the environmental protection field and helps the young participants develop the skills necessary to pursue those career paths in New Jersey. Participants learn through classroom instruction and by working across sectors regulated by the NJDEP, including water resources, air quality, energy and sustainability, public lands management, and wildlife. 

Susan Lockwood of NJDEP’s Division of Land Resource Protection’s Mitigation Unit reached out to Princeton Hydro to showcase ecosystem restoration and mitigation efforts across the state as well as discuss the variety of career roles that make these projects possible. Our portion of the curriculum entailed each group of students visiting two sites to learn about the benefits of restoring a landscape with native vegetation. Our discussion explored different fields of work related to urban environmental restoration and water resource protection and the job responsibilities of environmental scientists, water resource engineers, geologists, ecologists, pesticide applicators, and regulatory compliance specialists. 

The Abbott Marshlands in Trenton, New Jersey

[gallery link="none" ids="11287,11288,11281"]

After a quick stop at NJDEP’s office in Trenton to learn about NJ invasive species, all three groups popped over to the Tulpehaking Nature Center in Mercer County’s John A. Roebling Park to see the restoration site in the Abbott Marshlands. The 3,000-acre Abbott Marshlands is the northernmost freshwater tidal marsh on the Delaware River and contains valuable habitat for many rare species like River Otter, American Eel, Bald Eagle, and various species of wading birds. Unfortunately, the area has experienced a significant amount of loss and degradation, partially due to the introduction of the invasive Common Reed (Phragmites australis). For Mercer County Park Commission, Princeton Hydro implemented a restoration plan to remove Common Reed and expose the native seed bank in 40-acres of the marsh to increase biodiversity, improve recreational opportunities, and enhance visitor experience. Students learned how to tell the difference between the invasive Common Reed vs. native Wild Rice (Zizania palustris L.). They utilized tools of the trade like field guides and binoculars to identify flora and fauna in the marsh. Learn more about this project.


Mullica River Wetland Mitigation Site in Evesham, New Jersey

[gallery link="none" ids="11343,11342,11282"]

After visiting the Roebling site, students from Camden traveled down to Evesham Township in Burlington County to visit the Mullica River Wetland Mitigation Site. For this project, Princeton Hydro worked with GreenVest, LLC to restore a highly degraded 34-acre parcel of land which was previously used for cranberry cultivation. Through the implementation of restoration activities focused on removing the site’s agricultural infrastructure, Princeton Hydro and GreenVest were able to restore a natural wetland system on the site and over 1,600 linear feet of stream, providing forested, scrub-shrub, and emergent wetlands, forested uplands, headwater stream and riparian buffer, and critical wildlife habitat. The project also significantly uplifted threatened and endangered species habitats including Timber Rattlesnake.

Susan Lockwood of NJDEP, Owen McEnroe of GreenVest, and Dana Patterson of Princeton Hydro, lead the group of 10 students. They learned the difference between restoration and mitigation and got to experience the remoteness of Pinelands habitat. Walking through the site, we shared how the dam and dike removal helped to restore the river back to its natural free-flowing state and the numerous resulting environmental benefits.The site was chosen for the Camden students in order to demonstrate that successful mitigation and restoration projects happen throughout the State and not far from urban centers like Camden. Learn more about this project.


3. Third River Floodplain Wetland Enhancement Project in Bloomfield, New Jersey

[gallery link="none" ids="11344,11279,11277"]

After visiting the Roebling site, students from Newark and Elizabeth trekked up to Essex County to visit an urban wetland creation project now known as Lion Gate Park. The once densely developed, abandoned Scientific Glass Factory in Bloomfield Township was transformed into a thriving public park with 4.2 acres of wetlands. Students heard the story of how this project came to be; decades of advocacy and litigation by community members and environmental nonprofits to stop redevelopment of the site into 148 townhomes. Bloomfield Township eventually secured the property to preserve as open space through a range of grants from NJDEP. Serving as the ecological engineer to Bloomfield Township, Princeton Hydro designed, permitted, and oversaw construction for the restoration project and is currently monitoring the site. The restoration work brought back to the land valuable ecological functions and natural floodplain connection, enhanced aquatic and wildlife habitat, and increased flood storage capacity for urban stormwater runoff. Learn more about this project.


 

The NJDEP Youth Inclusion Initiative began on July 5 with a week of orientation classes, and continued through August with classroom and in-field learning. The initiative culminates on August 26 with a graduation and NJDEP Career Day, during which students will have the opportunity to meet with and discuss career options with various organizations tabling at the event, including Princeton Hydro.

Click here to learn more about the NJDEP education program. If you’re interested in learning more about Princeton Hydro’s ecological restoration services, click here.

[post_title] => Students from NJDEP's Youth Inclusion Initiative Tour Restored Landscapes with Princeton Hydro [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => njdep-youth-inclusion-initiative [to_ping] => [pinged] => [post_modified] => 2022-08-26 19:13:55 [post_modified_gmt] => 2022-08-26 19:13:55 [post_content_filtered] => [post_parent] => 0 [guid] => https://princetonhydro.com/?p=11289 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [9] => WP_Post Object ( [ID] => 8966 [post_author] => 1 [post_date] => 2021-08-06 21:32:24 [post_date_gmt] => 2021-08-06 21:32:24 [post_content] =>

Bloomfield Township held a ribbon cutting ceremony to commemorate the completion of a remarkable environmental restoration project and welcome the public to enjoy the new Lion Gate Park! 

The Lion Gate Park project is the culmination of nearly two decades of work. The once densely developed, flood-prone, former industrial site was transformed into a thriving public active recreation park and 4.2 acres of wetlands.

2020
2021

The restoration work brought back to the land valuable ecological functions and natural floodplain connection, enhanced aquatic and wildlife habitat, and increased flood storage capacity for urban stormwater runoff.

“Our ability to open this park is a testament to the hard work and advocacy of so many people in our community," said Bloomfield Township Mayor Venezia.

Princeton Hydro served as the ecological engineer to Bloomfield Township for this important urban wetland creation project. Our scientists and engineers assisted in obtaining grants, collected background ecological data through field sampling and surveying, created a water budget, completed all necessary permitting, designed both the conceptual and final restoration plans, and conducted construction oversight throughout the project.

2020
2021

“We are so honored to work with Bloomfield Township on this urban restoration project. By removing a little over four acres of upland historic fill in this densely developed area and converting it to a functioning floodplain wetland, we've enhanced the ecological and flood storage value and provided outdoor recreation accessibility to the community of Bloomfield,” said Mark Gallagher, Vice President of Princeton Hydro

2020
2021

Enjoy the gallery of photos from the event below.

To learn more about the project and see drone images of it all coming together, click below: 

[post_title] => Bloomfield's Lion Gate Park is Now Open to the Public [post_excerpt] => In Bloomfield, New Jersey, along the Third River and Spring Brook, two freshwater tributaries of the Passaic River, a disturbed industrial site was transformed into a active recreation park and 4.2 acres of wetlands, restoring the natural floodplain connection, enhancing aquatic habitat, and increasing flood storage capacity for urban stormwater runoff. [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => bloomfields-lion-gate-park-is-now-open-to-the-public [to_ping] => [pinged] => [post_modified] => 2021-11-10 17:46:33 [post_modified_gmt] => 2021-11-10 17:46:33 [post_content_filtered] => [post_parent] => 0 [guid] => https://princetonhydro.com/?p=8966 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [10] => WP_Post Object ( [ID] => 7485 [post_author] => 1 [post_date] => 2021-02-12 17:53:19 [post_date_gmt] => 2021-02-12 17:53:19 [post_content] =>  

Over 40 years ago, Mercer County purchased 279 acres of flood-prone land along Miry Run as part of a restoration and flood mitigation initiative. Mercer County’s Master Plan, approved in 2020, goes above and beyond the original vision, proposing considerable improvements to the area, including 34 acres of reforestation, 64 acres of new meadows, 19 acres of vernal pools, and 7.9 miles of walking trails. Mercer County Park Commission contracted Princeton Hydro and Simone Collins Landscape Architecture to develop the plan.

Today, we are thrilled to announce that the Miry Run Ponds Master Plan was awarded the 2021 Landscape Architectural Chapter Award from the New Jersey Chapter American Society of Landscape Architects (NJASLA).

Each year, the NJASLA Professional Awards honor the best in landscape architecture in the region. Only one Chapter Award is given annually for exceptional performance in any category, as determined by a unanimous vote of the jury members. This year’s jury was composed of distinguished members from the Oregon ASLA Chapter. There were 19 total projects entered into the 2021 competition.

“The Park Commission is honored to have a project recognized by the NJASLA and we look forward to acting on our plan in the years ahead,” said Park Commission Executive Director Aaron T. Watson. When Mercer County acquired the property in 1978, the original plan was to create a recreation area and flood control site. In order to mitigate local flooding, the County Park Commission developed a dam, which created a 55-acre tree-lined lake. The rest of the property comprises undeveloped uplands, wetlands, woodlands, and open space with limited-use recreation areas primarily only used by immediate neighbors. With 55 acres of lake space, however, Mercer County saw huge potential for what the park could provide and set out on a mission to create a Master Plan for the area with three primary regional goals:
  • Provide passive recreation to complement other County activities;
  • Preserve and enhance the habitat, water quality, and natural systems that currently exist onsite; and
  • Provide linkage to adjacent trails and parks.

The gap between the current condition and the huge potential pushed the Mercer County Park Commission to contract Princeton Hydro and Simone Collins Landscape Architecture in 2018 to assess the land area and propose a concept plan to enhance the area and create recreational lake activities.

Beginning in December 2018 and throughout the course of 2019, the project team implemented the necessary measures to fully assess the status of the expansive property. Applying expertise in science-based assessment and evaluations, our aquatic ecologists and environmental scientists performed:

These evaluations were conducted in order to better understand the existing site and area conditions, to assist in the development of the site plan, and for future incorporation into Mercer County’s Draft Master Plan.

In addition, our project team facilitated focus groups with local municipalities, residents, interest groups, and County stakeholders to seek their input and to report the site evaluation findings. In partnership with Mercer County, the team led many public community meetings that served as a platform for discussion about the project and conceptual site designs. The meetings helped to inform the process through collaboration and determine how best to manage the site moving forward in order to meet the needs of the community and future generations.

In November of 2019, a draft master plan was released, followed by a 60-day public comment period. The commission hosted a series of public meetings to solicit input for potential improvements to the park. Having reviewed and considered all comments, the Park Commission’s Steering Committee and team of expert consultants were able to finalize the plan, which focused on environmental stewardship and education paired with passive land and water-based activities.

“With input from the public, our consultants helped us create a vision for the park that will improve water quality in the lake and make it more accessible to Mercer County residents,” said Aaron T. Watson.

The Master Plan was then presented to the Park Commission for review and approved in 2020.

The improvement plans comprises:

  • Several types of trails and boardwalks that total approximately 7 miles, including a tree canopy walk-through over an area of vernal pools.
  • Parking lots and driveways
  • Small restrooms and pavilions
  • A group camping area that would accommodate about 30-40 campers
  • A nature-based playground and an ADA inclusive playground
  • Kayak launch and water trail
  • Fishing access areas
  • Protected swimming area for a limited number of swimmers each day
  • A native plant arboretum and horticultural garden

Of the total Miry Run Ponds land area, only 17 acres, or approximately 7.4 percent of the site, would be disturbed for trails, parking and other park visitor facilities. The site’s valuable natural features will be augmented through the establishment of 34 acres of new forest and 64 acres of native meadow.

The Master Plan serves as a long-term vision for improvements to the property and will be implemented over multiple phases. The construction of major park improvements is projected for 2022-2023.

To view the Final Master Plan, visit the Park Commission’s website. To learn more about the NJASLA and see a complete list of 2021 award winners, go here.

[post_title] => Miry Run Ponds Master Plan Wins 2021 Landscape Architectural Chapter Award [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => miry-run-ponds-master-plan-wins-2021-landscape-architectural-chapter-award [to_ping] => [pinged] => [post_modified] => 2021-04-19 18:11:21 [post_modified_gmt] => 2021-04-19 18:11:21 [post_content_filtered] => [post_parent] => 0 [guid] => https://princetonhydro.com/?p=7485 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) ) [post_count] => 11 [current_post] => -1 [before_loop] => 1 [in_the_loop] => [post] => WP_Post Object ( [ID] => 14482 [post_author] => 1 [post_date] => 2024-02-19 14:53:47 [post_date_gmt] => 2024-02-19 14:53:47 [post_content] =>

In Warrington Township, Pennsylvania, an innovative ecological uplift initiative is underway at Lion's Pride Park. This project aims to transform a stagnant pond, overrun with invasive species and plagued by water quality issues, into a thriving wetland mosaic. This endeavor, a collaborative effort between Warrington Township, Princeton Hydro, and other stakeholders, promises to not only revitalize the natural environment but also enhance community access and education within the park.

[caption id="attachment_14494" align="aligncenter" width="802"] Historical photo of Lion's Pride Park pond in Warrington Township, PA.[/caption]

Restoration Overview and Community Impact

Spanning 47 acres, Lion's Pride Park serves as a green oasis within the Township, offering a range of recreational and educational opportunities for visitors of all ages and abilities.

The pond within the park was in urgent need of restoration - heavy storm events caused the pond to overflow, which created flooding conditions in the park. The local native biodiversity was being threatened by nusiance and invasive species like water chestnut (Trapa natans). The photos below were taken in April 2020.

[gallery link="none" columns="2" size="medium" ids="14485,14486"]  

Princeton Hydro began in 2020 with site investigation and field surveys, including:

  1. Bathymetric assessment to map water depth and accumulated unconsolidated sediment in the pond
  2. Sediment sampling to facilitate options for the potential reuse of the sediment on site and the selection of native vegetation for the various habitats being created
  3. Wetland delineation to identify existing wetland boundaries within and adjacent to the project site and discern the extent of jurisdictional impacts related to the proposed activities.

The most substantial component for the restoration project was the conversion of the existing pond to an emergent wetland complex to provide habitat for a wide variety of native species. Using the completed existing conditions reports and surveys, Princeton Hydro prepared the conceptual design plan that informed the entire restoration process.

Princeton Hydro Regulatory Compliance & Wildlife Surveys Project Manager Emily Bjorhus, PWS spearheaded the regulatory program for the project, navigating approvals from the Pennsylvania Department of Environmental Protection (PADEP), the U.S. Army Corps of Engineers (USACE), and the Bucks County Conservation District. The permitting process laid the groundwork for the smooth implementation of this design-build restoration project.

[gallery link="none" columns="2" size="medium" ids="14253,14244"] [caption id="attachment_14493" align="aligncenter" width="1227"] October 2023[/caption]  

The restoration work encompassed various stages, from earthwork and vegetation planting to the installation of ADA-compliant pathways and informational signage. Some of the key project elements, include:

Channel stabilization: Stabilizing the channels within the park, addressing erosion issues, enhancing water flow dynamics, and promoting the establishment of diverse aquatic habitats.

Berm construction: Installing berms to enhance wetland habitat and promote natural floodplain connectivity, contributing to the resilience of the ecosystem to flooding events.

Native vegetation planting: Reintroducing native wetland and riparian plant species to enhance biodiversity and create habitat corridors for wildlife within the park. Planting is expected to take place in the Spring.

Interpretive signage installation: Placing educational signage throughout the park to inform visitors about the ecological significance of the restoration project and the importance of wetland conservation.

Boardwalk installation: Constructing a 6-foot-wide ADA-compliant boardwalk that spanned approximately 230 linear feet, providing visitors with accessible pathways to explore the restored wetland areas.

[gallery columns="2" link="none" size="medium" ids="14491,14490,14492,14487"]

Through these strategic interventions, the Lion's Pride Park Ecological Restoration Project aims to not only rejuvenate the ecological integrity of landscape but also enrich the recreational and educational experiences of the community. The project, which is slated for 100% completion this Spring, will totally transform the landscape into a diverse wetland complex that fosters native wildlife habitat, mitigates water quality concerns, reduces nonpoint source pollutants discharged to downstream waters, and provides accessible pathways and observation platforms so all community members may enjoy and learn from this restored aquatic setting.

The reclaimed wetland provides additional bird and pollinator habitat and offer visitors a diverse ecosystem to learn from within the park. By fostering a deeper connection to nature and promoting environmental stewardship, this project exemplifies the transformative power of ecological restoration in creating vibrant, sustainable communities.


Upcoming Presentation

[caption id="attachment_13487" align="alignleft" width="247"] Emily out field performing a wetland delineation.[/caption]

On March 23, at the 2024 Watershed Congress hosted by the Delaware Riverkeeper Network, Emily will be presenting about the Lion's Pride Park Ecological Restoration Project. Her presentation will offer insights into the regulatory approval and permitting process, takes a deeper dive into the restoration strategies, and showcases the ecological significance of the project. Click here to learn more about the 2024 Watershed Congress.

Emily, a certified Professional Wetland Scientist, is a Project Manager that specializes in environmental regulatory compliance, ecological services and wildlife surveys. She leads federal, state and local environmental permitting processes, NEPA compliance and documentation, Endangered Species Act Section 7 consultations, and Clean Water Act Section 404(b)1 analyses.


The Lion's Pride Park Ecological Restoration Project exemplifies a holistic approach to environmental conservation, community engagement, and public recreation. By repurposing a neglected pond into a vibrant wetland mosaic, this initiative embodies the principles of ecological resilience and inclusive urban planning, and celebrates the transformative potential of ecological uplift projects in fostering healthier, more vibrant communities.

Please stay tuned to our blog for more project updates once planting is completed this Spring. Click here to read more about Princeton Hydro’s robust natural resource management and restoration services.

[post_title] => Restoring Balance: Converting a Pond into a Wetland Mosaic at Lion’s Pride Park [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => restoring-balance-converting-a-pond-into-a-wetland-mosaic-at-lions-pride-park [to_ping] => [pinged] => [post_modified] => 2024-02-20 12:32:40 [post_modified_gmt] => 2024-02-20 12:32:40 [post_content_filtered] => [post_parent] => 0 [guid] => https://princetonhydro.com/?p=14482 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [comment_count] => 0 [current_comment] => -1 [found_posts] => 29 [max_num_pages] => 3 [max_num_comment_pages] => 0 [is_single] => [is_preview] => [is_page] => [is_archive] => [is_date] => [is_year] => [is_month] => [is_day] => [is_time] => [is_author] => [is_category] => [is_tag] => [is_tax] => [is_search] => [is_feed] => [is_comment_feed] => [is_trackback] => [is_home] => 1 [is_privacy_policy] => [is_404] => [is_embed] => [is_paged] => [is_admin] => [is_attachment] => [is_singular] => [is_robots] => [is_favicon] => [is_posts_page] => 1 [is_post_type_archive] => [query_vars_hash:WP_Query:private] => 248693ff0b73ee0490b8c3cd6f31f896 [query_vars_changed:WP_Query:private] => 1 [thumbnails_cached] => [allow_query_attachment_by_filename:protected] => [stopwords:WP_Query:private] => [compat_fields:WP_Query:private] => Array ( [0] => query_vars_hash [1] => query_vars_changed ) [compat_methods:WP_Query:private] => Array ( [0] => init_query_flags [1] => parse_tax_query ) )

Blog

archive
 
Topics
Select Topics
Posted on February 19, 2024

Restoring Balance: Converting a Pond into a Wetland Mosaic at Lion’s Pride Park

Popular Topics

Company News

Engineering

Environmental Action

Environmental Services

Flood Mitigation

Invasive Species Management

Lake and Pond Management

Natural Resource Management

Stormwater Management

Stream Restoration