We’re committed to improving our ecosystems, quality of life, and communities for the better.
Our passion and commitment to the integration of innovative science and engineering drive us to exceed on behalf of every client.
WP_Query Object ( [query] => Array ( [tag] => stormwater-management ) [query_vars] => Array ( [tag] => stormwater-management [error] => [m] => [p] => 0 [post_parent] => [subpost] => [subpost_id] => [attachment] => [attachment_id] => 0 [name] => [pagename] => [page_id] => 0 [second] => [minute] => [hour] => [day] => 0 [monthnum] => 0 [year] => 0 [w] => 0 [category_name] => [cat] => [tag_id] => 1048 [author] => [author_name] => [feed] => [tb] => [paged] => 1 [meta_key] => [meta_value] => [preview] => [s] => [sentence] => [title] => [fields] => all [menu_order] => [embed] => [category__in] => Array ( ) [category__not_in] => Array ( ) [category__and] => Array ( ) [post__in] => Array ( ) [post__not_in] => Array ( ) [post_name__in] => Array ( ) [tag__in] => Array ( ) [tag__not_in] => Array ( ) [tag__and] => Array ( ) [tag_slug__in] => Array ( [0] => stormwater-management ) [tag_slug__and] => Array ( ) [post_parent__in] => Array ( ) [post_parent__not_in] => Array ( ) [author__in] => Array ( ) [author__not_in] => Array ( ) [search_columns] => Array ( ) [ignore_sticky_posts] => [suppress_filters] => [cache_results] => 1 [update_post_term_cache] => 1 [update_menu_item_cache] => [lazy_load_term_meta] => 1 [update_post_meta_cache] => 1 [post_type] => [posts_per_page] => 10 [nopaging] => [comments_per_page] => 5 [no_found_rows] => [order] => DESC ) [tax_query] => WP_Tax_Query Object ( [queries] => Array ( [0] => Array ( [taxonomy] => post_tag [terms] => Array ( [0] => stormwater-management ) [field] => slug [operator] => IN [include_children] => 1 ) ) [relation] => AND [table_aliases:protected] => Array ( [0] => ph_term_relationships ) [queried_terms] => Array ( [post_tag] => Array ( [terms] => Array ( [0] => stormwater-management ) [field] => slug ) ) [primary_table] => ph_posts [primary_id_column] => ID ) [meta_query] => WP_Meta_Query Object ( [queries] => Array ( ) [relation] => [meta_table] => [meta_id_column] => [primary_table] => [primary_id_column] => [table_aliases:protected] => Array ( ) [clauses:protected] => Array ( ) [has_or_relation:protected] => ) [date_query] => [queried_object] => WP_Term Object ( [term_id] => 1048 [name] => stormwater management [slug] => stormwater-management [term_group] => 0 [term_taxonomy_id] => 1048 [taxonomy] => post_tag [description] => [parent] => 0 [count] => 101 [filter] => raw [term_order] => 0 ) [queried_object_id] => 1048 [request] => SELECT SQL_CALC_FOUND_ROWS ph_posts.ID FROM ph_posts LEFT JOIN ph_term_relationships ON (ph_posts.ID = ph_term_relationships.object_id) WHERE 1=1 AND ( ph_term_relationships.term_taxonomy_id IN (1048) ) AND ((ph_posts.post_type = 'post' AND (ph_posts.post_status = 'publish' OR ph_posts.post_status = 'acf-disabled'))) GROUP BY ph_posts.ID ORDER BY ph_posts.menu_order, ph_posts.post_date DESC LIMIT 0, 10 [posts] => Array ( [0] => WP_Post Object ( [ID] => 18586 [post_author] => 1 [post_date] => 2025-11-06 00:15:54 [post_date_gmt] => 2025-11-06 00:15:54 [post_content] => The New Jersey Department of Environmental Protection (NJDEP) recently announced $8 million in Water Quality Restoration Grants to support projects that reduce nonpoint source pollution, mitigate harmful algal blooms, restore riparian areas, and enhance watershed and climate resilience. Funded through Section 319(h) of the federal Clean Water Act and administered by the DEP's Watershed and Land Management Program, these grants were awarded to municipalities, nonprofit organizations, and academic institutions across the state. Princeton Hydro is proud to be a partner on five of the 17 funded projects. Our contributions vary by project and encompass activities such as engineering design, water quality assessment, watershed-based planning, and technical support for implementing stormwater and habitat restoration measures. Let's take a deeper look at these collaborative efforts: 1. The Watershed Institute – Watershed-Based Planning for Assunpink Creek The Watershed Institute received $205K in 319(h) grant funding to develop a watershed-based plan for the Assunpink Creek watershed, located within the Raritan River Basin. This watershed spans 11 municipalities across two counties, where varied landscapes and demographics share common challenges such as localized flooding, stormwater management, and water quality degradation, highlighting the need for a coordinated, watershed-wide, science-driven approach. The plan will evaluate pollution sources and identify large-scale restoration opportunities, including green infrastructure and riparian buffer restoration, to improve water quality and reduce flooding. It will also assess the cost, feasibility, and pollutant reduction potential of proposed measures to ensure practical implementation. Princeton Hydro supported the Institute in developing the grant proposal and planning framework, leveraging our expertise in watershed-based planning to prioritize nature-based solutions that address both water quality and climate resilience. This initiative represents a critical step toward regional collaboration, enabling upstream and downstream communities to work together on strategies that strengthen watershed health, protect public safety, and build long-term resilience. 2. Lake Hopatcong Commission – Watershed-Based Stormwater BMPs The Lake Hopatcong Commission (LHC) was awarded $366K to retrofit an existing stormwater detention basin between King Road and Mount Arlington Boulevard in Roxbury Township. This retrofit is part of a larger Watershed Implementation Plan that Princeton Hydro developed in collaboration with LHC, which prioritizes nutrient reduction and stormwater management strategies across the Lake Hopatcong watershed. Over the past several years, LHC has actively implemented multiple elements of this plan to address harmful algal blooms (HABs) and improve water quality. For this project, Princeton Hydro is providing engineering design and technical oversight to transform the existing basin into a green stormwater infrastructure system that slows, captures, and naturally treats runoff before it enters King Cove. The design incorporates native vegetation, invasive species management, and erosion control measures to stabilize soils and filter pollutants, reducing nutrient loading, which is one key driver of HABs. Public outreach and pre- and post-construction water quality monitoring will ensure performance tracking and measurable improvements. This basin retrofit represents a critical step in a coordinated, science-based approach to restoring ecological health and water quality in New Jersey’s largest lake. 3. Cozy Lake, Jefferson Township – Addressing Emerging Contaminants Jefferson Township received $350K in grant funding to develop an Emerging Contaminants Management Plan for Cozy Lake, focusing on cyanotoxins and HABs. Cozy Lake is a 28-acre waterbody within a 1,152-acre sub-watershed that includes both forested (60%) and developed (29%) land. The lake is fed by the Rockaway River at its northern end and a smaller southeastern inlet, with outflow through a dam on the western edge. The shoreline is primarily residential lawn with minimal emergent wetlands, and several inlets and rock-lined drainage ditches exhibit erosion and lack slope protection, contributing to sediment loading. Princeton Hydro provided early technical input to shape this innovative project with the creation of a comprehensive Jefferson Township Lake and Watershed Restoration and Protection Plan. As part of the plan, Princeton Hydro made recommendations for Cozy Lake, which included enhancing shoreline buffers with native vegetation and installing living shorelines at select properties to stabilize soils, filter stormwater and reduce nutrient loading, improve habitat quality, and enhance community access. These measures, combined with in-lake monitoring and proactive management strategies, will help mitigate HABs and protect ecological and public health. 4. Rockaway Township – Watershed-Based Green Infrastructure Rockaway Township received $399K in grant funding to implement elements of its Watershed Implementation Plan, focusing on green infrastructure stormwater management and nutrient reduction to improve water quality. The project will retrofit the municipal complex by converting a rock-lined drainage swale into a vegetated swale with a bioretention basin, designed to filter stormwater runoff and reduce nonpoint source pollutants entering Fox’s Pond and Fox Brook. Princeton Hydro played a key role in developing the Watershed Implementation Plan, which encompasses 11 private lakes within the Rockaway River watershed, prioritizing critical locations for intervention and designing cost-effective green infrastructure BMPs. This regional approach aligns with strategies recommended by NJDEP and the Highlands Council. The plan included a comprehensive watershed-based assessment to identify and quantify factors contributing to eutrophication, evaluate management measures, estimate costs, and establish an implementation schedule. Princeton Hydro authored the final report, which guided the Township in applying for the Section 319(h) grant and now informs the design and construction of green stormwater infrastructure that will deliver measurable water quality improvements while supporting ecological restoration goals. 5. Green Trust Alliance – Green Infrastructure and Community Engagement Green Trust Alliance (GTA), a nationally accredited land trust and public charity dedicated to accelerating large-scale conservation, received $1.39 million in NJDEP funding to implement green infrastructure improvements at Pinelands Regional High School in Tuckerton, New Jersey. This initiative targets the Tuckerton Creek watershed, which drains into Tuckerton Creek and ultimately flows into Barnegat Bay—a critical estuary spanning 33 municipalities in Ocean County and four in Monmouth County. The retrofit will transform the school’s stormwater detention basin into a multi-functional system that mimics natural hydrology, enhances flow control, and improves water quality locally and in the larger Barnegat Bay watershed. Working with GTA and GreenVest, Princeton Hydro is serving as the design engineer, applying nature-based engineering and ecological restoration techniques to intercept, evapotranspire, and infiltrate stormwater runoff at its source. In addition to its technical objectives, the effort includes a strong community engagement component and an educational platform for students. By bringing green infrastructure into the school environment, the initiative provides hands-on experience with water resources, stormwater management, and ecological engineering, help to build STEM skills while fostering a deeper connection to the surrounding landscape and an understanding of how natural systems work together to support environmental and community health. Princeton Hydro also assisted several of these partners in developing successful NJDEP Section 319(h) grant applications, providing technical documentation, conceptual designs, and pollutant load reduction estimates to strengthen the proposals. To date, the Murphy Administration has awarded more than $33M in Water Quality Restoration grants to improve the health of waterways in all corners of the state. Click here to read about all the 2025 grant funding recipients and their innovative projects. As NJDEP Environmental Protection Commissioner Shawn M. LaTourette noted in the department's press release, “Enhancing the ecological health of our lakes, rivers, streams and coastal waters has long been a priority of the Murphy Administration. The Department of Environmental Protection is pleased to award these grants that will help our partners advance a variety of strategies to improve the health of these waterways and enhance the quality of life in our communities.” We are proud to play a continued role in advancing that mission: helping communities implement practical, data-driven solutions that make a measurable difference for New Jersey’s waterways and the people who depend on them. Click here to learn more about our work to protect natural habitat and restore water quality throughout the New Jersey. [post_title] => NJDEP Awards $8M for Water Quality Restoration Projects [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => njdep-319h-grants-2025 [to_ping] => [pinged] => [post_modified] => 2025-11-07 01:20:58 [post_modified_gmt] => 2025-11-07 01:20:58 [post_content_filtered] => [post_parent] => 0 [guid] => https://princetonhydro.com/?p=18586 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [1] => WP_Post Object ( [ID] => 17900 [post_author] => 1 [post_date] => 2025-07-21 14:35:31 [post_date_gmt] => 2025-07-21 14:35:31 [post_content] => Welcome to the latest edition of our Client Spotlight blog series, which provides an inside look at our collaboration, teamwork, and accomplishments with one of our client partners. In this special edition, we’re shining the spotlight on the Town of Mina and Findley Lake Watershed Foundation (FLWF), two organizations working closely together to protect and preserve Findley Lake in Chautauqua County, New York. This charming 300-acre lake is a cherished focal point for recreation, tourism, and community pride, and safeguarding it is a shared responsibility. The Town of Mina and FLWF, a volunteer-led nonprofit, have built a strong partnership dedicated to maintaining the lake’s health and ensuring its long-term sustainability. We spoke with Rebecca Brumagin, Town of Mina Supervisor, and Ed Mulkearn, Board President of the FLWF. We kicked-off the conversation with a question for Rebecca: Q: Rebecca, can you provide an overview of the Town of Mina and the core values the Town prioritizes? A: [embed]https://youtu.be/DkloMSAMoyE[/embed] Rebecca continues: “As part of our 2024 Comprehensive Plan, the Town of Mina identified four core community values that guide our decision-making, with our top priority being Findley Lake! The lake is the heart of our community. Ensuring it remains clean, beautiful, and accessible for recreation and overall enjoyment is essential to our identity. That’s why we work so closely with FLWF. During the comprehensive planning process, FLWF developed a Lake Management Plan, which now guides our environmental efforts. Our second core value is economic development. Findley Lake is experiencing an exciting period of growth, with several initiatives underway, including a new warehouse distribution center, growing retail presence, and revitalization in the downtown area. It’s truly a renaissance moment for our community. Third, we’re deeply committed to preserving and enhancing our community character. We value our rural lifestyle and are working to improve it with expanded trails, new boardwalks, and safer, more accessible green spaces for all to enjoy. And, our fourth core value centers on strengthening local government, becoming more efficient, effective, and responsive to the needs of our residents. We want people to feel heard, supported, and engaged in the future of our town.” Q: Ed, can you tell us about the history of FLWF and how it evolved into the organization it is today? A: “FLWF was established in 2002, but our roots go back much further. Before that, our work was carried out by the Findley Lake Property Owners Association, which formed in the late 1940s after the lake was no longer needed as a power source for milling operations. At that time, the lake and dam were donated by Larry Schwartz to a group of local, stewardship-minded residents. That group did the best they could with limited resources and knowledge. But as science, lake management practices, and environmental awareness progressed, so did our approach. By transitioning to a 501(c)(3) nonprofit in 2002, we were able to access grant funding and expand our work significantly. Since then, we’ve purchased weed harvesters, partnered with Princeton Hydro for lake studies, and supported major infrastructure projects like the new sewer system currently in development to address septic-related pollution. We’ve also taken steps to reduce streambank erosion and manage phosphorus loading that affects lake oxygen levels. Our board is strong and diverse—we have dedicated members with the expertise needed to keep moving the organization and the lake forward. At our core, FLWF is committed to maintaining, enhancing, and improving the quality of Findley Lake and its watershed through science-based action and collaboration.” Q: Ed, what are the core values that guide FLWF, and which current projects highlight those values in action? A: [embed]https://youtu.be/l7ljPic09iE[/embed] Q: Rebecca, what are some of the initiatives the Town of Mina is leading to support ecological uplift, water quality improvements, and environmental stewardship? A: [embed]https://youtu.be/hTb0GMQirgE[/embed] Rebecca continues: “We’ve made significant strides in advancing the health of our local environment, thanks in part to support from the New York State Department of Environmental Conservation (DEC). We’ve completed three DEC-funded studies that are guiding our next steps. One study focused on culverts throughout the watershed with the goal of improving water flow and reducing flood risk. Every culvert was assessed to identify those that need repair or replacement. Another study analyzed stormwater runoff, identifying ten key inflow areas to Findley Lake where erosion and sedimentation pose potential threats. Each site was evaluated and prioritized, and we’ve since secured a DEC grant to address the highest-priority site. And, the third study explored in-lake nutrient control strategies, which laid the groundwork for our current partnership with Princeton Hydro on nutrient management efforts. Beyond lake-focused work, we’re also committed to enhancing community access to nature. We’ve received support from Chautauqua County for efforts that will benefit both the environment and quality of life for residents and visitors alike.” Q: Ed, reflecting on past collaborations, can you highlight a project or two that FLWF has worked on with Princeton Hydro? A: “We first partnered with Princeton Hydro a few years ago when our board recognized the need for expert guidance on lake management. While we have a strong, professional board, we lacked the specialized knowledge in lake ecology and water quality science to move forward confidently with major decisions. After researching several firms, we chose to bring Princeton Hydro on board to help us better understand nutrient dynamics in the lake. One of our key concerns was the persistent late-summer algae blooms, which we later learned were linked to phosphorus being released from the lake’s sediments. Princeton Hydro conducted an in-lake nutrient study that clearly explained this internal loading process and helped us chart a path forward. Building on that work, we’re now working with the Princeton Hydro team on a bathymetric and sediment analysis to guide our next step, which will be to install an aeration system to reduce phosphorus release and improve water quality. Princeton Hydro’s expertise has been instrumental in making complex science understandable and actionable, which has helped us take meaningful steps toward restoring the health of Findley Lake.” [gallery columns="2" link="none" size="full" ids="17908,17907"] Q: Rebecca, is there anything you'd like to add about the Town’s collaboration with Princeton Hydro? A: [embed]https://youtu.be/vtEIi23Ov98[/embed] Following Rebecca’s remarks, Ed adds: “I’d just like to echo what Rebecca said—the Princeton Hydro team we worked with this Spring was truly a pleasure to collaborate with. Their depth of knowledge was impressive, but just as important was their ability to communicate complex concepts in a way that was clear and easy for our board to understand. That kind of approachability made a big difference. It was a great experience working with them.” Q: Ed, for those interested in supporting FLWF’s mission, how can individuals get involved and contribute to your efforts? A: “We’re always grateful for donations, they fuel much of what we do. But beyond financial support, one of the most valuable ways people can contribute is by sharing their experiences and ideas. There are countless lakes and watershed organizations out there facing similar challenges, and many have come up with innovative, cost-effective solutions. We’re always eager to learn from others; whether it's a new technology, a successful restoration approach, or a creative funding strategy. Collaboration and information-sharing are incredibly powerful tools in watershed management. If you’ve worked on a similar issue or simply have ideas that could help, we’d love to hear from you. The more we connect and learn from each other, the better we can protect and improve Findley Lake for generations to come.” Following Ed’s comments, Rebecca adds: “One of the things that makes the Town of Mina so special is the strong culture of volunteerism. We’re fortunate to have many residents, often individuals who’ve had professional careers elsewhere, who bring their skills, energy, and passion to our community. Even though we’re a small town, we benefit from a wide network of nonprofit organizations and local initiatives. For example, the Findley Lake Nature Center is actively working on trail development, and there are many other opportunities for people to get involved in stewardship, whether it’s helping maintain green spaces, supporting water quality efforts, or sharing expertise on local projects. What’s especially unique about our community is how welcoming we are. Newcomers don’t have to wait decades to feel at home here—they’re embraced right away, and their ideas are valued. That openness has really enhanced our ability to protect Findley Lake and strengthen the town as a whole.” To close out the conversation, we asked Rebecca and Ed if there was anything else they’d like to share. In the video below, Ed reflects on the strong sense of community in the Town of Mina and the local support that fuels the ongoing efforts to protect and preserve Findley Lake: [embed]https://youtu.be/nrsMt1WMODw[/embed] After Ed’s remarks, Rebecca shares a few additional reflections: “One particularly meaningful designation we’ve received is from New York State, which has identified us as one of only two rural NORCs (Naturally Occurring Retirement Communities) out of 43 statewide. This designation recognizes our vibrant population of older adults and has allowed us to pursue new forms of support and services. We’re currently looking into developing a pocket neighborhood to help seniors remain in the community, where they continue to be active, involved, and deeply valued. And here’s a fun fact that speaks to the energy of Findley Lake: it serves as the practice site for the women’s rowing team from Mercyhurst University, who happen to be the reigning national champions. Pretty cool, right?” Yes, Rebecca, we think that’s very cool! [caption id="attachment_17902" align="alignnone" width="1482"] Photo from Chautauqua County Visitors Bureau[/caption] A heartfelt thank you to Rebecca and Ed for their partnership and for taking the time to speak with us to share their passion for protecting Findley Lake and strengthening the Town of Mina. Their leadership and collaboration exemplify the power of community-driven stewardship. To learn more about their work and how you can get involved, we encourage you to visit the Town of Mina’s website and FLWF at findleylakewf.org. Click here to read the previous edition of our Client Spotlight Series featuring Farmington River Watershed Association Executive Director Aimee Petras. [post_title] => Client Spotlight: The Town of Mina & Findley Lake Watershed Foundation [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => client-spotlight-the-town-of-mina-findley-lake-watershed-foundation [to_ping] => [pinged] => [post_modified] => 2025-07-22 15:14:49 [post_modified_gmt] => 2025-07-22 15:14:49 [post_content_filtered] => [post_parent] => 0 [guid] => https://princetonhydro.com/?p=17900 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [2] => WP_Post Object ( [ID] => 17748 [post_author] => 1 [post_date] => 2025-07-08 09:52:44 [post_date_gmt] => 2025-07-08 09:52:44 [post_content] => Invasive species can quickly establish themselves in habitats ranging from freshwater wetlands and riparian corridors to stormwater basins and tidal marshes, disrupting ecological balance and biodiversity, altering hydrology, and displacing native species. [gallery link="none" columns="4" size="medium" ids="17787,17788,7339,17789"] Addressing these impacts requires a thoughtful, site-specific approach. Our team at Princeton Hydro works to design and implement targeted strategies that promote long-term ecological function. These integrated efforts aid in native habitat recovery, enhance water quality, and support compliance with regulatory frameworks. Let’s take a closer look at how invasive species disrupt our ecosystems, why managing them is so important, and the cutting-edge tools and innovative techniques helping to eradicate invasives and restore balance to delicate ecosystems. Understanding the Impacts of Invasive Species Invasive species are organisms introduced outside their native range that proliferate in new environments, often to the detriment of local ecosystems and biodiversity. Although some introductions happen naturally, most are caused by human activity—through commercial shipping and transport, travel and outdoor recreation, or sometimes deliberate introduction. Once established, invasive species often outcompete native species by growing more aggressively, reproducing more rapidly, and exploiting resources more efficiently. These advantages are amplified by the absence of natural predators and environmental controls that would normally regulate their populations. This can lead to a cascade of ecological consequences:
The New Jersey Department of Environmental Protection (NJDEP) recently announced $8 million in Water Quality Restoration Grants to support projects that reduce nonpoint source pollution, mitigate harmful algal blooms, restore riparian areas, and enhance watershed and climate resilience. Funded through Section 319(h) of the federal Clean Water Act and administered by the DEP's Watershed and Land Management Program, these grants were awarded to municipalities, nonprofit organizations, and academic institutions across the state.
Princeton Hydro is proud to be a partner on five of the 17 funded projects. Our contributions vary by project and encompass activities such as engineering design, water quality assessment, watershed-based planning, and technical support for implementing stormwater and habitat restoration measures. Let's take a deeper look at these collaborative efforts:
The Watershed Institute received $205K in 319(h) grant funding to develop a watershed-based plan for the Assunpink Creek watershed, located within the Raritan River Basin. This watershed spans 11 municipalities across two counties, where varied landscapes and demographics share common challenges such as localized flooding, stormwater management, and water quality degradation, highlighting the need for a coordinated, watershed-wide, science-driven approach.
The plan will evaluate pollution sources and identify large-scale restoration opportunities, including green infrastructure and riparian buffer restoration, to improve water quality and reduce flooding. It will also assess the cost, feasibility, and pollutant reduction potential of proposed measures to ensure practical implementation. Princeton Hydro supported the Institute in developing the grant proposal and planning framework, leveraging our expertise in watershed-based planning to prioritize nature-based solutions that address both water quality and climate resilience. This initiative represents a critical step toward regional collaboration, enabling upstream and downstream communities to work together on strategies that strengthen watershed health, protect public safety, and build long-term resilience.
The Lake Hopatcong Commission (LHC) was awarded $366K to retrofit an existing stormwater detention basin between King Road and Mount Arlington Boulevard in Roxbury Township. This retrofit is part of a larger Watershed Implementation Plan that Princeton Hydro developed in collaboration with LHC, which prioritizes nutrient reduction and stormwater management strategies across the Lake Hopatcong watershed. Over the past several years, LHC has actively implemented multiple elements of this plan to address harmful algal blooms (HABs) and improve water quality.
For this project, Princeton Hydro is providing engineering design and technical oversight to transform the existing basin into a green stormwater infrastructure system that slows, captures, and naturally treats runoff before it enters King Cove. The design incorporates native vegetation, invasive species management, and erosion control measures to stabilize soils and filter pollutants, reducing nutrient loading, which is one key driver of HABs. Public outreach and pre- and post-construction water quality monitoring will ensure performance tracking and measurable improvements. This basin retrofit represents a critical step in a coordinated, science-based approach to restoring ecological health and water quality in New Jersey’s largest lake.
Jefferson Township received $350K in grant funding to develop an Emerging Contaminants Management Plan for Cozy Lake, focusing on cyanotoxins and HABs. Cozy Lake is a 28-acre waterbody within a 1,152-acre sub-watershed that includes both forested (60%) and developed (29%) land. The lake is fed by the Rockaway River at its northern end and a smaller southeastern inlet, with outflow through a dam on the western edge.
The shoreline is primarily residential lawn with minimal emergent wetlands, and several inlets and rock-lined drainage ditches exhibit erosion and lack slope protection, contributing to sediment loading. Princeton Hydro provided early technical input to shape this innovative project with the creation of a comprehensive Jefferson Township Lake and Watershed Restoration and Protection Plan. As part of the plan, Princeton Hydro made recommendations for Cozy Lake, which included enhancing shoreline buffers with native vegetation and installing living shorelines at select properties to stabilize soils, filter stormwater and reduce nutrient loading, improve habitat quality, and enhance community access. These measures, combined with in-lake monitoring and proactive management strategies, will help mitigate HABs and protect ecological and public health.
Rockaway Township received $399K in grant funding to implement elements of its Watershed Implementation Plan, focusing on green infrastructure stormwater management and nutrient reduction to improve water quality. The project will retrofit the municipal complex by converting a rock-lined drainage swale into a vegetated swale with a bioretention basin, designed to filter stormwater runoff and reduce nonpoint source pollutants entering Fox’s Pond and Fox Brook.
Princeton Hydro played a key role in developing the Watershed Implementation Plan, which encompasses 11 private lakes within the Rockaway River watershed, prioritizing critical locations for intervention and designing cost-effective green infrastructure BMPs. This regional approach aligns with strategies recommended by NJDEP and the Highlands Council. The plan included a comprehensive watershed-based assessment to identify and quantify factors contributing to eutrophication, evaluate management measures, estimate costs, and establish an implementation schedule. Princeton Hydro authored the final report, which guided the Township in applying for the Section 319(h) grant and now informs the design and construction of green stormwater infrastructure that will deliver measurable water quality improvements while supporting ecological restoration goals.
Green Trust Alliance (GTA), a nationally accredited land trust and public charity dedicated to accelerating large-scale conservation, received $1.39 million in NJDEP funding to implement green infrastructure improvements at Pinelands Regional High School in Tuckerton, New Jersey. This initiative targets the Tuckerton Creek watershed, which drains into Tuckerton Creek and ultimately flows into Barnegat Bay—a critical estuary spanning 33 municipalities in Ocean County and four in Monmouth County. The retrofit will transform the school’s stormwater detention basin into a multi-functional system that mimics natural hydrology, enhances flow control, and improves water quality locally and in the larger Barnegat Bay watershed.
Working with GTA and GreenVest, Princeton Hydro is serving as the design engineer, applying nature-based engineering and ecological restoration techniques to intercept, evapotranspire, and infiltrate stormwater runoff at its source. In addition to its technical objectives, the effort includes a strong community engagement component and an educational platform for students. By bringing green infrastructure into the school environment, the initiative provides hands-on experience with water resources, stormwater management, and ecological engineering, help to build STEM skills while fostering a deeper connection to the surrounding landscape and an understanding of how natural systems work together to support environmental and community health.
Princeton Hydro also assisted several of these partners in developing successful NJDEP Section 319(h) grant applications, providing technical documentation, conceptual designs, and pollutant load reduction estimates to strengthen the proposals.
To date, the Murphy Administration has awarded more than $33M in Water Quality Restoration grants to improve the health of waterways in all corners of the state. Click here to read about all the 2025 grant funding recipients and their innovative projects.
As NJDEP Environmental Protection Commissioner Shawn M. LaTourette noted in the department's press release, “Enhancing the ecological health of our lakes, rivers, streams and coastal waters has long been a priority of the Murphy Administration. The Department of Environmental Protection is pleased to award these grants that will help our partners advance a variety of strategies to improve the health of these waterways and enhance the quality of life in our communities.”
We are proud to play a continued role in advancing that mission: helping communities implement practical, data-driven solutions that make a measurable difference for New Jersey’s waterways and the people who depend on them. Click here to learn more about our work to protect natural habitat and restore water quality throughout the New Jersey.
Welcome to the latest edition of our Client Spotlight blog series, which provides an inside look at our collaboration, teamwork, and accomplishments with one of our client partners.
In this special edition, we’re shining the spotlight on the Town of Mina and Findley Lake Watershed Foundation (FLWF), two organizations working closely together to protect and preserve Findley Lake in Chautauqua County, New York. This charming 300-acre lake is a cherished focal point for recreation, tourism, and community pride, and safeguarding it is a shared responsibility. The Town of Mina and FLWF, a volunteer-led nonprofit, have built a strong partnership dedicated to maintaining the lake’s health and ensuring its long-term sustainability.
We kicked-off the conversation with a question for Rebecca:
Rebecca continues: “As part of our 2024 Comprehensive Plan, the Town of Mina identified four core community values that guide our decision-making, with our top priority being Findley Lake!
The lake is the heart of our community. Ensuring it remains clean, beautiful, and accessible for recreation and overall enjoyment is essential to our identity. That’s why we work so closely with FLWF. During the comprehensive planning process, FLWF developed a Lake Management Plan, which now guides our environmental efforts.
Our second core value is economic development. Findley Lake is experiencing an exciting period of growth, with several initiatives underway, including a new warehouse distribution center, growing retail presence, and revitalization in the downtown area. It’s truly a renaissance moment for our community.
Third, we’re deeply committed to preserving and enhancing our community character. We value our rural lifestyle and are working to improve it with expanded trails, new boardwalks, and safer, more accessible green spaces for all to enjoy. And, our fourth core value centers on strengthening local government, becoming more efficient, effective, and responsive to the needs of our residents. We want people to feel heard, supported, and engaged in the future of our town.”
“FLWF was established in 2002, but our roots go back much further. Before that, our work was carried out by the Findley Lake Property Owners Association, which formed in the late 1940s after the lake was no longer needed as a power source for milling operations.
At that time, the lake and dam were donated by Larry Schwartz to a group of local, stewardship-minded residents. That group did the best they could with limited resources and knowledge. But as science, lake management practices, and environmental awareness progressed, so did our approach.
By transitioning to a 501(c)(3) nonprofit in 2002, we were able to access grant funding and expand our work significantly. Since then, we’ve purchased weed harvesters, partnered with Princeton Hydro for lake studies, and supported major infrastructure projects like the new sewer system currently in development to address septic-related pollution.
We’ve also taken steps to reduce streambank erosion and manage phosphorus loading that affects lake oxygen levels. Our board is strong and diverse—we have dedicated members with the expertise needed to keep moving the organization and the lake forward. At our core, FLWF is committed to maintaining, enhancing, and improving the quality of Findley Lake and its watershed through science-based action and collaboration.”
Rebecca continues: “We’ve made significant strides in advancing the health of our local environment, thanks in part to support from the New York State Department of Environmental Conservation (DEC). We’ve completed three DEC-funded studies that are guiding our next steps.
One study focused on culverts throughout the watershed with the goal of improving water flow and reducing flood risk. Every culvert was assessed to identify those that need repair or replacement. Another study analyzed stormwater runoff, identifying ten key inflow areas to Findley Lake where erosion and sedimentation pose potential threats. Each site was evaluated and prioritized, and we’ve since secured a DEC grant to address the highest-priority site. And, the third study explored in-lake nutrient control strategies, which laid the groundwork for our current partnership with Princeton Hydro on nutrient management efforts.
Beyond lake-focused work, we’re also committed to enhancing community access to nature. We’ve received support from Chautauqua County for efforts that will benefit both the environment and quality of life for residents and visitors alike.”
“We first partnered with Princeton Hydro a few years ago when our board recognized the need for expert guidance on lake management. While we have a strong, professional board, we lacked the specialized knowledge in lake ecology and water quality science to move forward confidently with major decisions.
After researching several firms, we chose to bring Princeton Hydro on board to help us better understand nutrient dynamics in the lake. One of our key concerns was the persistent late-summer algae blooms, which we later learned were linked to phosphorus being released from the lake’s sediments.
Princeton Hydro conducted an in-lake nutrient study that clearly explained this internal loading process and helped us chart a path forward. Building on that work, we’re now working with the Princeton Hydro team on a bathymetric and sediment analysis to guide our next step, which will be to install an aeration system to reduce phosphorus release and improve water quality.
Princeton Hydro’s expertise has been instrumental in making complex science understandable and actionable, which has helped us take meaningful steps toward restoring the health of Findley Lake.”
Following Rebecca’s remarks, Ed adds: “I’d just like to echo what Rebecca said—the Princeton Hydro team we worked with this Spring was truly a pleasure to collaborate with. Their depth of knowledge was impressive, but just as important was their ability to communicate complex concepts in a way that was clear and easy for our board to understand. That kind of approachability made a big difference. It was a great experience working with them.”
“We’re always grateful for donations, they fuel much of what we do. But beyond financial support, one of the most valuable ways people can contribute is by sharing their experiences and ideas.
There are countless lakes and watershed organizations out there facing similar challenges, and many have come up with innovative, cost-effective solutions. We’re always eager to learn from others; whether it's a new technology, a successful restoration approach, or a creative funding strategy. Collaboration and information-sharing are incredibly powerful tools in watershed management. If you’ve worked on a similar issue or simply have ideas that could help, we’d love to hear from you. The more we connect and learn from each other, the better we can protect and improve Findley Lake for generations to come.”
Following Ed’s comments, Rebecca adds: “One of the things that makes the Town of Mina so special is the strong culture of volunteerism. We’re fortunate to have many residents, often individuals who’ve had professional careers elsewhere, who bring their skills, energy, and passion to our community.
Even though we’re a small town, we benefit from a wide network of nonprofit organizations and local initiatives. For example, the Findley Lake Nature Center is actively working on trail development, and there are many other opportunities for people to get involved in stewardship, whether it’s helping maintain green spaces, supporting water quality efforts, or sharing expertise on local projects.
What’s especially unique about our community is how welcoming we are. Newcomers don’t have to wait decades to feel at home here—they’re embraced right away, and their ideas are valued. That openness has really enhanced our ability to protect Findley Lake and strengthen the town as a whole.”
In the video below, Ed reflects on the strong sense of community in the Town of Mina and the local support that fuels the ongoing efforts to protect and preserve Findley Lake:
After Ed’s remarks, Rebecca shares a few additional reflections: “One particularly meaningful designation we’ve received is from New York State, which has identified us as one of only two rural NORCs (Naturally Occurring Retirement Communities) out of 43 statewide. This designation recognizes our vibrant population of older adults and has allowed us to pursue new forms of support and services. We’re currently looking into developing a pocket neighborhood to help seniors remain in the community, where they continue to be active, involved, and deeply valued.
And here’s a fun fact that speaks to the energy of Findley Lake: it serves as the practice site for the women’s rowing team from Mercyhurst University, who happen to be the reigning national champions. Pretty cool, right?”
Yes, Rebecca, we think that’s very cool!
A heartfelt thank you to Rebecca and Ed for their partnership and for taking the time to speak with us to share their passion for protecting Findley Lake and strengthening the Town of Mina. Their leadership and collaboration exemplify the power of community-driven stewardship.
To learn more about their work and how you can get involved, we encourage you to visit the Town of Mina’s website and FLWF at findleylakewf.org.
Click here to read the previous edition of our Client Spotlight Series featuring Farmington River Watershed Association Executive Director Aimee Petras.
Invasive species can quickly establish themselves in habitats ranging from freshwater wetlands and riparian corridors to stormwater basins and tidal marshes, disrupting ecological balance and biodiversity, altering hydrology, and displacing native species.
Addressing these impacts requires a thoughtful, site-specific approach. Our team at Princeton Hydro works to design and implement targeted strategies that promote long-term ecological function. These integrated efforts aid in native habitat recovery, enhance water quality, and support compliance with regulatory frameworks.
Let’s take a closer look at how invasive species disrupt our ecosystems, why managing them is so important, and the cutting-edge tools and innovative techniques helping to eradicate invasives and restore balance to delicate ecosystems.
Invasive species are organisms introduced outside their native range that proliferate in new environments, often to the detriment of local ecosystems and biodiversity. Although some introductions happen naturally, most are caused by human activity—through commercial shipping and transport, travel and outdoor recreation, or sometimes deliberate introduction. Once established, invasive species often outcompete native species by growing more aggressively, reproducing more rapidly, and exploiting resources more efficiently. These advantages are amplified by the absence of natural predators and environmental controls that would normally regulate their populations.
This can lead to a cascade of ecological consequences:
Take common reed (Phragmites australis), for example. This fast-growing plant has overtaken many wetlands, meadows, and shorelines, forming dense stands that outcompete native vegetation. These monocultures reduce food sources that native species rely on and block the movement of wildlife between critical habitats. According to the National Invasive Species Information Center (NISIC), Phragmites was most likely introduced during the 1800s in ballast material used on ships. It was initially established along the Atlantic coast and quickly spread across the continent.
Another example of an aggressive invasive species is Eurasian watermilfoil (Myriophyllum spicatum), a submerged perennial aquatic plant that grows in lakes and ponds. Native to Europe, Asia, and North Africa, it was discovered in the eastern U.S. in the early 1900s, likely introduced and spread through the movement of watercraft. It establishes itself very quickly, grows rapidly, and spreads easily, forming dense mats at the water’s surface.
Left unmanaged, aggressive invasives like Phragmites and Eurasian watermilfoil can severely impact the stability of critical environmental systems. Effective control strategies help restore balance, preserve biodiversity, and safeguard the services ecosystems provide to humans and wildlife alike.
At Princeton Hydro, we use a multifaceted approach to invasive species control, employing mechanical, herbicidal, and biological strategies depending on the specific site conditions and project goals. One of our most effective tools is the Marsh Master® 2MX-KC-FH, a fully amphibious machine built to operate with minimal environmental disruption.
Equipped with hydraulic rotary cutting blades, a rear mounted roller/chopper attachment, and a front vegetation plow, the Marsh Master® cuts through dense vegetation like Phragmites, then chops and rolls the stalks, effectively preparing the soil for native seed germination or plug installation, making it ideal for nature preserves, canal banks, and restoration sites. Its light footprint (less than one pound per square inch) means it can traverse sensitive areas without damaging the soil or root layer.
Take a look at the Marsh Master® in the field, tackling Phragmites in tough terrain:
When paired with herbicide treatments and long-term monitoring, this approach has proven very effective in eradicating invasives, restoring wetland biodiversity, improving water quality, and creating wildlife habitat. Each site is carefully analyzed and, when required for optimal non-native plant management, a site-specific USEPA and state-registered herbicide is chosen to control the target plants while preserving the desirable, native vegetation currently populating the site. Application techniques, which are also specific to each site, include machine broadcast spraying, backpack foliar spraying, hand-wiping, basal applications, herbicide injection lances, along with various other techniques.
In partnership with GreenVest and the U.S. Army Corps of Engineers Baltimore District, Princeton Hydro contributed to a tidal marsh restoration project along the Patapsco River in Baltimore, Maryland. This initiative is part of the broader “Reimagine Middle Branch” plan, a community-driven revitalization effort to restore natural habitat and improve public access along 11 miles of Patapsco River shoreline.
At the project site near Reed Bird Island, roughly five acres of marsh had been overtaken by dense stands of Phragmites. The goal was to restore hydrologic connections to the Patapsco River and convert the monoculture into a thriving mosaic of native marsh vegetation. Our team used the Marsh Master® to mow and manage the Phragmites, followed by mechanical grading and sediment redistribution to create high and low marsh zones. The restoration plan included planting 5+ acres with a combination of native species and incorporating habitat features like woody debris and unplanted cobblestone patches to facilitate fish passage.
This project demonstrates how targeted invasive species control can support large-scale ecosystem restoration, community-led initiatives, and watershed-wide environmental goals.
Princeton Hydro has worked alongside New Jersey’s Mercer County Park Commission for over a decade to restore and protect some of the region’s most ecologically valuable landscapes. From comprehensive planning to boots-on-the-ground restoration, our efforts have focused on mitigating the spread of invasive species and promoting long-term ecological resilience.
John A. Roebling Memorial Park, part of the Abbott Marshlands, an ecologically rich freshwater tidal ecosystem that contains valuable habitat for many rare species, experienced a significant amount of loss and degradation, partially due to the introduction of Phragmites. In areas where Phragmites had overtaken native wetland communities, our team developed and executed an invasive species management plan tailored to the park’s unique hydrology and habitat types. Seasonal mowing in the winter and early spring with the Marsh Master® and targeted herbicide applications helped suppress invasive growth and enabled the rebound of native species, including Wild rice (Zizania aquatica), a culturally and ecologically significant plant.
Building on that success, we contributed to the development and implementation of the Master Plan for the Miry Run Dam Site 21, a comprehensive roadmap for ecological restoration and public access. We are advancing that vision through mitigating invasive species (primarily Phragmites), leading lake dredging, and executing a variety of habitat uplift efforts. Click here to learn more about this award-winning restoration initiative.
In 2024, Mercer County retained Princeton Hydro under an on-call contract for invasive species management across its park system, enabling our team to respond rapidly to emerging threats and support the county’s ongoing commitment to long-term ecosystem health.
At the Lower Raritan Mitigation Site in central New Jersey, Princeton Hydro has led a multi-year invasive species control effort as part of a larger wetland and stream restoration initiative. Dominated by reed canary grass (Phalaris arundinacea) and Phragmites, the site had lost most (if not all) of its native biodiversity and ecological function.
Our team used a phased approach—mechanical mowing, herbicide treatment, and active planting of native species—to gradually suppress invasives and restore a healthy plant community. Monitoring data over several growing seasons has shown a significant decrease in invasive cover and a measurable increase in native diversity. Ongoing eradication of aggressive species and the promotion of native plant diversity are steadily guiding the site toward a resilient, self-sustaining ecosystem.
Owned and managed by The Nature Conservancy in New Jersey, the South Cape May Meadows Preserve is a 200-acre freshwater wetland and coastal habitat in southern New Jersey that serves as a critical refuge for migratory birds and other native wildlife. The preserve attracts over 90,000 visitors each year and is internationally recognized as a prime birdwatching destination.
Princeton Hydro is collaborating with The Nature Conservancy on a multi-faceted effort to both improve public access and restore the site’s ecological integrity. In 2023 and 2024, our team initiated the mechanical removal of dense stands of Phragmites using the Marsh Master® to suppress monocultures and promote native plant regeneration. Future phases may include targeted herbicide treatments and additional mechanical work.
In addition to the invasive species management component, this project collaboration has led to the construction of 2,675 feet of new elevated boardwalks, a 480-square-foot viewing platform, and enhancements to existing trails. Designing and installing these features across sensitive wetland terrain required a thoughtful, low-impact approach. The result is a more welcoming, species-rich, and resilient landscape that invites people into nature while actively protecting it.
Invasive vegetation doesn’t just affect wild landscapes, it also poses challenges for stormwater infrastructure. Many municipalities struggle with invasives overtaking stormwater basins, reducing their capacity and function, which can lead to violations of Municipal Separate Storm Sewer System (MS4) permits and municipality stormwater management regulatory requirements.
Princeton Hydro designs and implements comprehensive stormwater basin maintenance programs that include invasive species management. Removing Phragmites, broadleaf cattail (Typha latifolia), and other aggressive species from stormwater infrastructure helps to restore hydrologic flow and ensures the basins perform as designed. These maintenance programs also help maintain MS4 compliance, protect downstream water quality, and reduce flooding risks—while enhancing habitat value where possible.
The fight against invasive and aggressive non-native species is ongoing, and success requires a combination of science, strategy, and stewardship. Each effort implemented and every acre reclaimed is a step toward protecting the ecosystems we all depend on.
Nestled in Luzerne County, Pennsylvania, Harveys Lake spans 622 acres and is the largest natural lake by volume in the Commonwealth. Beyond its scenic beauty and popularity as a recreational destination, the lake plays a critical ecological role in the region.
Harveys Lake forms the headwaters of Harveys Creek, which flows into the Susquehanna River and ultimately the Chesapeake Bay. As such, it is part of the greater Susquehanna River Valley and contributes to the health of the Chesapeake Bay watershed. The lake and its outflow are designated High Quality – Cold-Water Fisheries, supporting sensitive aquatic life, providing vital cold-water habitat, and contributing to regional biodiversity.
Given its ecological significance and its connection to regional waterways, efforts to manage stormwater and reduce nutrient pollution in the Harveys Lake watershed are more than just local improvements, they are integral to protecting downstream water quality all the way to the Chesapeake Bay.
In 2022, building on decades of water quality initiatives, the Borough of Harveys Lake launched a forward-thinking pilot project to enhance stormwater treatment using innovative nutrient-filtering technologies. Supported by funding from the National Fish and Wildlife Foundation (NFWF) Chesapeake Bay Small Watershed Grant Program and designed and implemented in partnership with Princeton Hydro, this project explores the use of biochar and EutroSORB® filtration media to capture dissolved nutrients, an important step toward improving water quality and meeting regulatory goals.
This blog explores the local history of water management at Harveys Lake, the science behind this novel pilot approach, and the broader implications for watershed protection across the region.
Once a remote, wooded landscape, the Harveys Lake area was settled in the early 19th century and gradually developed into a hub for timbering and milling. By the late 1800s, the lake was regularly stocked with game fish, and with the arrival of the railroad in 1887, it quickly became a popular summer destination. The shoreline soon featured hotels, restaurants, and even an amusement park.
As the community flourished, the lake's natural systems began to show signs of strain. Like many waterbodies across the country, Harveys Lake faced growing water quality challenges driven by stormwater runoff, nutrient pollution, and a lack of formal environmental protections. By the 1960s, declining water clarity and seasonal algal blooms began to impact recreation, contributing to the lake’s gradual transition from a bustling public getaway to a primarily residential community.
A significant shift occurred following the passage of the U.S. Environmental Protection Agency’s Clean Water Act of 1972. Harveys Lake established a municipal sewer authority, and construction began on a utility line around the lake's perimeter to reduce point-source pollution. Still, algae blooms persisted throughout the 1980s, fueled by nonpoint sources such as stormwater runoff, lawn fertilizers, and waterfowl droppings.
In 1994, a Phase I Diagnostic Feasibility Study was conducted that formally identified Harveys Lake as impaired due to recurring algal blooms linked to elevated nutrient levels. Following this study, a Total Maximum Daily Load (TMDL) was established, and management efforts were initiated to meet long-term water quality goals.
Since 2003, the Harveys Lake watershed has undergone extensive stormwater management efforts, including the installation of numerous manufactured treatment devices (MTDs) to reduce pollutant loading. Most of these MTDs are nutrient separating baffle boxes (NSBBs), chosen due to the watershed’s steep slopes, dense residential development, and shallow bedrock. The first NSBB, pictured below, was installed at Hemlock Gardens:
In 2009, the Borough of Harvey’s Lake worked with Princeton Hydro to develop a Stormwater Implementation Plan that laid the foundation for future restoration efforts. Over the following years, the Borough of Harveys Lake, supported by state and regional grants, implemented 34 stormwater best management practices (BMPs) and installed four floating wetland islands throughout the watershed.
These projects were strategically designed to reduce nutrient loading, enhance water quality, and move the lake closer to achieving its TMDL targets. Click here to read more about these efforts.
While NSBB stormwater BMPs are highly effective at capturing sediments and associated pollutants, they are limited in their ability to remove dissolved nutrients, particularly nitrogen and phosphorus. This is evident in the Harveys Lake Watershed, where NSBBs remove approximately 70% of total suspended solids (such as sediment and plant debris), 35% of total phosphorus, and 0% of total nitrogen. To address this gap and improve overall nutrient removal efficiency, the Borough of Harveys Lake received funding from the NFWF Chesapeake Bay Small Watershed Grant Program to augment existing MTD stormwater BMPs using new filter technologies.
Partnered with Princeton Hydro for design, implementation, and technical support, the Borough launched a unique pilot project involving the installation of biochar and EutroSORB® (manufactured by SePRO Corporation) to evaluate the effectiveness of these two innovative materials in removing dissolved phosphorus and total nitrogen from stormwater runoff before it reaches Harveys Lake.
Biochar, a carbon-rich material derived from plant biomass, is valued for its high surface area and nutrient-adsorption capacity. EutroSORB® is a manufactured media specifically engineered to bind and retain dissolved phosphorus with demonstrated effectiveness in aquatic systems.
Filter socks filled with either biochar or EutroSORB® were installed at key stormwater outfalls and stream inlets that drain directly to the lake. At four NSBB sites, the socks were secured beneath manhole covers using a rope-and-carabiner system designed for easy, seasonal replacement. Each sock weighs approximately 50–60 pounds when saturated and was carefully positioned to avoid dislodgement or blockage of outlet pipes during high-flow events.
At the Hemlock Gardens site, which features a larger, multi-tray baffle box, twelve filter socks were installed across two horizontal trays to maximize contact time between stormwater and the filter media.
By integrating these innovative filter techniques into the existing BMP infrastructure, the Borough of Harveys Lake is taking a proactive, science-based approach to nutrient reduction and long-term water quality improvement.
Princeton Hydro implemented a comprehensive water quality monitoring program in the Harveys Lake watershed to assess the real-world performance of the biochar and EutroSORB® filtration systems under varying hydrologic conditions, with a particular focus on dissolved nutrients that contribute to eutrophication.
Six stormwater monitoring stations were established at locations where biochar or EutroSORB® were deployed within NSBBs or stream inlets. Each site included paired upstream (pre-treatment) and downstream (post-treatment) sampling points to capture the nutrient concentrations entering and exiting the filtration media.
Stormwater sampling was conducted during six separate rainfall events between March and April 2025. At each location, during storm flow conditions, discrete grab samples were collected via a portable polyethylene sampling pole and analyzed for key water quality parameters.
Beyond concentration-based comparisons, Princeton Hydro used empirical monitoring data to model pollutant loads upgradient and downgradient of the filtration media. These load estimates provide insights into pollutant removal effectiveness on a mass basis, with a focus on:
Emphasis was placed on SRP—the biologically available form of phosphorus most readily assimilated by algae and a key driver of harmful algal blooms and eutrophication. Because phosphorus is the target pollutant in Harveys Lake’s TMDL, SRP reduction serves as a critical indicator of the filtration media’s performance and its potential role in long-term water quality management strategies.
Overall, the study revealed variable but promising results across media types and installation locations:
These early findings suggest that both EutroSORB® and biochar hold promise as cost-effective tools for reducing soluble phosphorus in stormwater runoff. Additionally, observed differences in removal efficiency, based on installation context (NSBB vs. stream), filter media volume, and site-specific hydrologic conditions, underscore the importance of continued monitoring and system refinement.
As part of the project’s commitment to long-term sustainability and public education, a native pollinator garden was established near the Harveys Lake Department of Public Works garage, adjacent to the Little League fields.
After the final sampling in April 2025, the nutrient-saturated biochar and EutroSORB® socks were removed from the stormwater treatment systems. The spent biochar, having captured phosphorus and nitrogen from runoff, was repurposed as a soil amendment to enrich a 500-square-foot planting area. This repurposing effort served a dual purpose: demonstrating a closed-loop approach to managing excess nutrients while also creating a community-oriented space that supports local biodiversity.
The Harveys Lake Environmental Advisory Council volunteered to help plant the garden, installing 450 native plant plugs across nine species including Foxglove Beardtongue, Clustered Mountain Mint, Blue Wild Indigo, and Common Yarrow to attract pollinators such as butterflies, bees, and songbirds.
Designed by Princeton Hydro, the pollinator garden serves as both an ecological asset and an educational tool. Its prominent location next to the ballfields encourages community engagement, and an interpretive sign on-site helps visitors understand the garden’s purpose and its connection to local water quality initiatives. The sign features a QR code linking to an interactive ArcGIS StoryMap, developed by Princeton Hydro, which explores the broader context of the project. It draws connections between nutrient management efforts in Harveys Lake and similar challenges facing the entire Chesapeake Bay watershed, emphasizing how local actions contribute to regional water quality improvements. To support public outreach, the StoryMap was also shared on the Borough’s website, making this educational resource widely accessible to the community.
It is important to note that while this project illustrates a successful example of biochar reuse, all reuse applications must be assessed on a case-by-case basis. For example, biochar exposed to hazardous pollutants is not suitable for soil use. In this case, the biochar had only been used to absorb excess nutrients, making it appropriate for the garden setting.
Supported by the U.S. Environmental Protection Agency and the NFWF’s Chesapeake Bay Stewardship Fund, which promotes community-based conservation strategies to protect and restore Chesapeake Bay’s natural resources, this project was designed with scalability in mind. A core objective was to evaluate whether these filtration media could be more broadly implemented throughout the Chesapeake Bay watershed as a low-cost, community-integrated strategy for achieving water quality goals.
Through continued innovation and shared learning, small-scale efforts like this can drive large-scale impact, proving that effective water quality solutions don’t have to be costly or complex. The Harveys Lake model offers a replicable framework that communities across the region can adopt and adapt, empowering local action that contributes meaningfully to the restoration and resilience of Chesapeake Bay.
New Jersey Department of Environmental Protection (NJDEP) Commissioner Shawn M. LaTourette presented the City of Lambertville with the NJDEP "Our Water’s Worth It" award. The award ceremony, held at a stormwater infrastructure improvement project site behind the Lambertville Firehouse, celebrated the Lambertville's commitment to improving stormwater management, addressing flooding, protecting local waterbodies, increasing storm resilience, and mitigating the impacts of climate change.
In a press release announcing the award, Commissioner LaTourette said, “Modernization of stormwater management strategies and infrastructure is critical to mitigating flooding that is severely impacting communities across New Jersey. My DEP colleagues and I applaud Lambertville for paving the way for others to follow in managing stormwater more effectively.”
The "Our Water’s Worth It" campaign, launched by NJDEP earlier this year, aims to raise awareness about the importance of protecting New Jersey’s water resources. The campaign highlights municipalities, water systems, and others who go above and beyond in water resource management and infrastructure improvements. Lambertville’s forward-thinking approach to stormwater management, particularly in meeting permitting requirements ahead of schedule, earned the city this well-deserved recognition.
At Princeton Hydro, we are proud to support the City of Lambertville in its stormwater management initiatives. Our team has been working closely with Lambertville to design projects that not only mitigate flooding but also enhance the surrounding natural environment.
During the award ceremony, Senior Project Manager and Professional Engineer, Sean Walsh, PE, said: “We are honored to be here today alongside NJDEP and the City of Lambertville celebrating Lambertville's remarkable achievement in receiving the 'Our Water's Worth It' trophy. It's particularly meaningful that this recognition comes during Climate Week, underscoring the importance of local action in addressing global environmental challenges.”
Earlier this year, the Princeton Hydro team completed a comprehensive Stormwater Utility Feasibility Study, which provided critical insights into Lambertville’s current stormwater management capacity and forecasted future needs.
Among the ongoing projects, Princeton Hydro is evaluating solutions for capturing runoff and reducing flooding in Lambertville's Music Mountain area, a critical greenspace in the heart of the city. This steep, wooded hillside, home to popular nature trails, serves as a cherished spot for after-school exploration, dog walking, and outdoor recreation. Music Mountain also plays a critical role in the city’s stormwater management system, acting as a natural buffer to protect lower-lying areas from flash flooding caused by runoff from the residential neighborhoods above. However, storm sewer outfalls discharging into the hillside have created deep erosion gullies, and during heavy rain events, the runoff has flooded the Fire Department. In collaboration with the City and the Fire Department, Princeton Hydro is designing a comprehensive solution that includes both the installation of a piped stormwater system and enlarging the inlet at the base of the mountain to better capture surface water runoff.
Additionally, on the Closson Farm property, Princeton Hydro is designing a riparian restoration project to manage the effects of increasing storm intensity. Funded by the National Fish and Wildlife Foundation, this project will result in 4.6 acres of restored floodplain, 300 trees planted, creation of wildlife habitat, measurable sediment and nutrient reduction, reduced stormwater runoff, community engagement, and new walking paths for recreation.
“Together with Lambertville, we are taking essential steps to enhance the city’s infrastructure and safeguard the community against future flooding. Our partnership reflects a shared commitment to protecting the environment and promoting resilience,” said Princeton Hydro’s Director of Restoration & Resilience, Christiana Pollack, CFM, GISP.
By embracing innovative stormwater solutions, Lambertville is not only enhancing its infrastructure but also setting a benchmark for resilience and environmental stewardship across New Jersey. This recognition reflects the city’s commitment to proactive flood management and sustainability, serving as an inspiration for other communities.
Princeton Hydro is honored to partner with the City of Lambertville on these important efforts. We extend our heartfelt congratulations on this well-deserved recognition and are excited to continue our collaboration on future projects that will further strengthen the city's resilience and protect its vibrant neighborhoods.
To learn more about NJDEP’s "Our Water’s Worth It" campaign, watch the video below:
New Jersey’s water-related infrastructure is a complex system, constantly facing the challenges posed by stormwater runoff and working to properly manage it. Stormwater management isn’t just about handling rainfall; it’s a critical aspect of improving water quality and mitigating flood risks. In New Jersey, where urbanization and rainfall patterns intersect, managing stormwater is more than just a priority; it’s a necessity. To learn more about stormwater management solutions, check out our blog: "In the Eye of the Storm: Exploring A Stormwater Utility in New Jersey."
New Jersey’s water-related infrastructure is a complex system, constantly facing the challenges posed by stormwater runoff and working to properly manage it. Stormwater management isn’t just about handling rainfall; it’s a critical aspect of preserving water quality and mitigating flooding risks. In New Jersey, where urbanization and rainfall patterns intersect, managing stormwater is more than just a priority; it’s a necessity. Enter a stormwater utility— a dedicated fee to address these stormwater management challenges.
New Jersey’s stormwater infrastructure (storm drains, sewer piping, etc.) is aging and unable to effectively handle the amount of runoff that has been flowing through the region in recent years. This is causing increased nutrient runoff and flooding in communities throughout the state. With increasing global temperatures and the proliferation of intense storm systems, this trend is likely to continue.
To address these issues, in 2019, New Jersey enacted the Clean Stormwater & Flood Reduction Law that allows municipalities, counties, groups of municipalities, and sewage and improvement authorities to establish a stormwater utility.
For many local leaders, the process to establish a utility can be complex, often depending on a number of details like the scope of the work and size of the community. In 2021, Princeton Hydro teamed up with the New Jersey League of Conservation Voters, New Jersey Future, and Flood Defense New Jersey to host a webinar explaining the purpose of a stormwater utility; how a stormwater utility works; how to decide if a stormwater utility is the right fit for a particular community; and how municipalities or counties can implement one.
In 2022, New Jersey Department of Environmental Protection (NJDEP) announced the availability of Technical Assistance for Stormwater Utility Feasibility Studies, which supports municipalities in completing a stormwater utility feasibility study. Stormwater feasibility studies can help communities weigh the costs and benefits of having a stormwater utility to determine if it's right for them. Princeton Hydro is currently conducting a feasibility study for the City of Lambertville.
Jersey Water Works is a collaborative effort of many diverse organizations and individuals who embrace the common purpose of transforming New Jersey’s water infrastructure. They bring people together to find equitable solutions focused on: Clean water and waterways; healthier, safer neighborhoods; local jobs; flood and climate resilience; and economic growth. Jersey Water Works consists of many different committees run by volunteers, including the Stormwater Utilities Subcommittee, which is part of the Asset Management and Finance Committee.
The Jersey Waterworks Stormwater Utility Subcommittee launched the “Stormwater Utility Informational Forum” comprising five one-hour-long, town-hall-style education sessions. Each session featured expert panelists who explored various aspects of creating a stormwater utility and establishing a sustainable and dedicated funding mechanism to pay for a community’s stormwater management program.
Utility leaders, government stormwater managers, municipal and county representatives, elected officials, experts and stakeholders came together to discuss the topics of stormwater financial planning and funding options; New Jersey legislation and the utility development process; stormwater rate structures and credits; stormwater utility policies; and stakeholder engagement.
Key leaders in the Stormwater Utility subcommittee who organized the information forum include Dana Patterson Grear, Director of Marketing and Communications for Princeton Hydro (co-chair); Micah Shapiro of RES (co-chair); Prabha Kumar of Black & Veatch Management Consulting LLC; and Elizabeth Treadway of WSP. The forum presenters included Prabha Kumar, Elizabeth Treadway, Dana Patterson Grear, Dave Mason of CDM Smith; Lindsey Sigmund of New Jersey Future.
Prabha Kumar and Dana Patterson Grear led the final session of the forum, which was dedicated to Stakeholder Engagement. They shared their expert recommendations and real-world experience in fostering community involvement, navigating the complexities of stakeholder engagement, and developing inclusive public meetings and dialogues related to implementing a stormwater utility feasibility study.
The presentation emphasized the significance of prioritizing stakeholder engagement early on and maintaining consistent engagement throughout the entire stormwater utility feasibility process. Prabha and Dana also provided tons of easy-to-follow, actionable tips, including:
How to structure your stakeholder groups, including the creation of a project team, a project champion and internal steering committee;
Which local community groups, municipal entities, and other external stakeholders to include in the conversation and when to include them;
Key factors in planning public workshops, like how many workshops to host, should the workshops be virtual or in-person, and how to structure the agenda for the best results; and
How to create engaging graphics, solicit feedback and educate the target audience in ways that are inclusive, informative and tailored to the unique characteristics of the community.
"Creating a stormwater utility in your community can be challenging as it is a public policymaking process. Engaging stakeholders throughout the entire process and educating the public is not just a step; it's the cornerstone to success," said Dana. "It's about embracing a diversity of voices from day one, listening to concerns and ideas, and collaboratively shaping a solution that resonates with your communities' needs."
Watch the full presentation.
The Stormwater Utility Information Forum served as a platform for sharing expertise and fostering dialogue around supporting community efforts to properly manage stormwater and protect water quality. As the conversation continues, it's crucial to leverage these insights to drive meaningful change in stormwater management initiatives across New Jersey.
The sessions were held via Zoom and the recordings of the forum sessions made available on the Jersey Water Works website. The recorded sessions serve as invaluable resources for individuals, communities, and policymakers interested in delving deeper into stormwater management.
The journey towards sustainable stormwater management is ongoing. If you or your community are interested in furthering this cause or exploring a stormwater utility, don't hesitate to reach out. The Jersey Water Works Stormwater Utility Subcommittee and Princeton Hydro welcome all voices committed to creating a more resilient and equitable water infrastructure. For more information about the Stormwater Utility Subcommittee or to get involved, please contact info@jerseywaterworks.org. Also, please explore New Jersey Future's New Jersey Stormwater Utility Resource Center which is a treasure trove of resources on this topic!
Princeton Hydro is a leader in innovative, cost-effective, and environmentally sound stormwater management systems. The preparation of stormwater management plans and design of stormwater management systems for pollutant reduction is an integral part of our projects - learn more.
As we celebrate the start of 2024, the Princeton Hydro team is thrilled about the multitude of events on the horizon. We're proud to be sponsoring and participating in conferences, webinars, community gatherings, and symposiums. Our blog is the go-to hub for all the event dates, detailed information, and ways to get involved. Join us in making this winter season one to remember!
The Northeast Aquatic Plant Management Society (NEAPMS) is a diverse group of professionals dedicated to understanding the unique needs of aquatic plant management in the Northeast and communicating that knowledge to both the public and private sectors. The 25th Anniversary Meeting, being held at the Wentworth by the Sea in New Castle, New Hampshire, features workshops, technical presentations, poster sessions, networking events, and a banquet.
New Jersey Future, in partnership with Princeton Hydro, launched the New Jersey Stormwater Retrofit Best Management Practices Guide. This comprehensive resource stands as a pivotal tool to aid local and county governments, nonprofits, developers, and property owners in retrofitting stormwater infrastructure and integrating sustainable green infrastructure solutions. On January 23 at Noon, New Jersey Future and Princeton Hydro are hosting a free public webinar to review this new resource.
The 10th Delaware Wetlands Conference will be held on February 6-7th at the Chase Center, on the waterfront in Wilmington, DE. The conference genda usually includes subjects such as soil science, climate adaptation, and monitoring, as well as wetland restoration and creation projects. 400 attendees, 50 different presentations and poster displays, and 30 exhibitors and sponsor tables are expected.
Project Manager and Environmental Scientist Emily Bjorhus, PWS is presenting on "Converting a Pond into a Wetland Mosaic within Public Park," which explores the design and construction of the Lion’s Pride Park Ecological Restoration Project in Warrington, PA. The project converts a stagnant pond overrun with invasive species and water quality concerns into a diverse wetland complex that provides native wildlife habitat and reduces nonpoint source pollutants discharged to downstream waters.
Project Manager and Environmental Scientist Duncan Simpson, PWS is presenting on Cypress Branch Dam Removal.
Environmental Scientist Ivy Babson is presenting on "Third River Urban Park and Habitat Creation Project – Brownfield Turned Wetland Sanctuary."
Director of Regulatory Compliance and Wildlife Surveys, Michael Rehman, CERP, PWS is presenting on "Revisiting Successful Wetland Mitigation Projects — Is Five Years of Monitoring Sufficient?"
Bowman’s Hill Wildflower Preserve is hosting its 24th Annual Land Ethics Symposium on February 15 from 8am - 1pm. This year's "all virtual" symposium is specifically geared towards homeowners, landscape architects, designers, contractors, land planners and municipal officials. Participants will learn how to create ecologically sound and economically viable landscapes through the use of native plants and sustainable practices. Princeton Hydro has been a long-time sponsor of this special event.
Director of Marketing and Communications Dana Patterson Grear, along with team members from The Watershed Institute and New Jersey Future, is leading a session on community engagement. The panel will cover how officials/municipal staff can engage their communities on the MS4 permit requirements, implement a public education and outreach program, collaborate with Spanish-speaking populations, and encourage community participation in stormwater-related activities.
Senior Technical Director, Ecological Services, Dr. Fred Lubnow, will be joining a panel to discuss the valuable ecosystem services associated with watershed management, with a focus on watershed planning and nutrient management.
Pennsylvania Lake Management Society is hosting its 34th Annual Conference. This year's event, themed "Bringing it Back Home," will be held at the Wyndham Garden in State College, PA. Princeton Hydro is a proud sponsor of the conference, which offers a collection of professional presentations, workshops and panel discussions focused on topics like threats to our waters, new scientific discoveries, and homegrown solutions to improving water quality. Princeton Hydro Senior Technical Director of Ecological Services Dr. Fred Lubnow is presenting on "Assessing the Potential for Harmful Algal Blooms Over the Winter and Early Spring Seasons."
Get more info and register.
The Society of American Military Engineers (SAME) New Jersey and Philadelphia Posts in conjunction with Joint Base McGuire-Dix-Lakehurst (JBMDL) with be hosting a Regulatory Roundtable on Thursday, March 7, 2024. This event will be a day-long seminar in-person at Tommy B’s Community Center at JBMDL. The program will identify regulatory challenges, sustainability and alternative energy initiatives, procurement/contracting opportunities, and ongoing activities specifically at JBMDL. Princeton Hydro is a proud sponsor of the roundtable. And, Princeton Hydro's Director of Marketing and Communications Dana Patterson Grear, a co-organizer of the event, looks forward to seeing you there!
The New Jersey Coastal Resilience Collaborative and the New Jersey Department of Environmental Protection invite you to the 2024 New Jersey Coastal & Climate Resilience Conference. The two-day conference, held at Monmouth University in West Long Branch New Jersey, will focus on resilience projects in Monmouth County such as flood barriers, resilient building design, and natural shoreline restoration. Participants will have the opportunity to engage with New Jersey experts and leaders on the current state of coastal science and research, climate resilience and resilience planning, coastal management, ecological restoration, and other related topics. Princeton Hydro's Dana Patterson Grear will be presenting on "Communicating Climate Change: How to Build a Digital Communications Toolkit for Climate Action." We hope to see you there! Early bird registration rates are available until January 31.
Join the Sustainable Business Network of Greater Philadelphia for its day-long conference that convenes business-owners, professionals, and other interested parties that work in the green stormwater infrastructure field and other issues relating to water management, quality, equity, and climate resilience. The symposium will be held at the Science History Institute and will include special guests & speakers, technical and engaging sessions, breakfast and lunch, refreshments, and excellent opportunities for growing your networks. Princeton Hydro's Dana Patterson Grear and WSP's Elizabeth Treadway will be presenting on, "Stormwater Utility: A Mechanism for Funding Green Stormwater Infrastructure Projects in Your Community".
Presented by the Delaware Riverkeeper Network, the 2024 Watershed Congress, will take place at the Montgomery County Community College in Pottstown. This year includes an in-person program on March 23 along with several virtual sessions the week following. Attendees can select a full access ticket, in-person only ticket, or virtual only ticket. The in-person program will be presented in three parts: a Keynote Speaker, Breakout Sessions, and a Closing Plenary. Presentation topics include native plants, riparian buffers, civic engagement for environmental protection, and “Converting a Pond into a Wetland Mosaic within a Public Park,” led by Emily Bjorhus, PWS.
The Society of American Military Engineers (SAME) New Jersey Post will be hosting its annual day-long seminar in celebration of Earth Day on Friday, April 19, 2024. This New Jersey-focused event will be in-person at the Rutgers EcoComplex in Fieldsboro, New Jersey and have presentors from representation from local, state, and federal governments, NGOs, and academia.
New Jersey Section of American Water Resources Association (NJ-AWRA) hosted a free Stormwater webinar, which featured three presentations: Stormwater Regulatory Updates and Green Infrastructure Overview led by Brian Friedlich, P.E.; NJ Future Initiatives - MS4 Primer and Stormwater Retrofits Manual led by Lindsey Sigmund; and Green Infrastructure Case Study - Clawson Park led by Dr. Stephen J. Souza
Princeton Hydro was involved in the design and implementation of stormwater management upgrades to Clawson Park in Ringoes, NJ. Hundreds of native plants were installed in the park’s large stormwater basin and two of the park’s rain gardens were completely overhauled, removing invasive weeds and planting beneficial native species. To learn more about the project, click here.
As part of its Technical Friday webinar series, The Watershed Institute hosted a webinar to provide guidance on New Jersey's new stormwater ordinances, a summary of requirements, and recommendations for developing and implementing stronger ordinances. The webinar featured two expert speakers: Princeton Hydro Senior Technical Director of Engineering Dr. Clay Emerson, PE, CFM, and The Watershed Institute Policy Director Michael Pisauro, Esq.
The Watershed Institute hosted a webinar on Enhanced Stormwater Management Ordinances, which featured two expert speakers: Princeton Hydro Senior Technical Director of Engineering Dr. Clay Emerson, PE, CFM, and The Watershed Institute Policy Director Michael Pisauro, Esq. They provided guidance on NJDEP's new stormwater ordinances, a summary of requirements, and recommendations for developing and implementing stronger ordinances.
Co-sponsored by the American Littoral Society, Association of New Jersey Environmental Commissions, and Pinelands Preservation Alliance, the webinar was attended by officials, planning board members, municipal professionals (engineers and planners), attorneys and Environmental Commission members from all across the state.
In March 2020, NJ Department of Environmental Protection (NJDEP) published revisions to the New Jersey Stormwater Management Rule (N.J.A.C. 7:8), which states that, in order to meet stormwater management performance criteria set forth by NJDEP, New Jersey municipalities are required to update their stormwater control ordinances to incorporate green infrastructure. Check out our blog detailing the updated requirements.
NJDEP periodically updates the stormwater rules and provides municipalities with a deadline to incorporate the rule changes in order to stay in compliance. In July 2023, NJDEP published the Inland Flood Protection Rule, which requires municipalities to update their stormwater control ordinances to improve water quality. The Watershed Institute’s webinar, which was part of its “Technical Friday" webinar series, not only provided participants with a clear understanding of the recent rule updates and guidance on how to implement best practices, but also provided the opportunity for everyone to get their questions answered.
To view the full webinar, click below:
The Watershed Institute's next "Technical Friday" webinar, which is free to attend, will focus on "Stormwater Design: Myths and Misconceptions." One of the most complicated aspects of a new development application is designing the stormwater management infrastructure. It is also one of the most complex parts of reviewing applications before New Jersey’s land use boards. While stormwater management is a difficult and complex issue, it is vital to the health and wellbeing of New Jersey communities and residents. The state's 2023 Municipal Separate Storm Sewer System (MS4) permit puts front and center New Jersey's obligation to review the stormwater issues caused by land development. Better design submissions will assist in reaching this goal and may speed up the process of review and approval.
On December 8 from 10 am - 12 pm, join Gabriel Mahon, PE, Bureau Chief of the Bureau of NJPDES Stormwater permitting and Water Quality Management and Dr. Clay Emerson, PhD, PE, CFM from Princeton Hydro as they examine some of the common issues they uncover in stormwater management proposals and provide guidance on incorporating best practices and submitting designs that successfully address New Jersey's stormwater management goals.
The Watershed Institute, established in 1949, is a nonprofit organization located in Central New Jersey that promotes and advocates conservation and restoration of natural habitats, collects data on environmental conditions in its watersheds, and provides environmental education through numerous programs. To learn more about The Watershed Institute, click here.
At Princeton Hydro, we recognize the benefit of green infrastructure and we’ve been incorporating it into our engineering designs since before the term was regularly used in the stormwater lexicon. We are a leader in innovative, cost-effective, and environmentally sound stormwater management systems. The preparation of stormwater management plans and design of stormwater management systems for pollutant reduction is an integral part of our projects. Click here to read about an award-winning Green Infrastructure stormwater management & Floodplain Restoration project we completed on Blue Acres Property in Linden’s Tremley Point.
Exciting changes have unfolded at Kol Emet, a Reconstructionist Congregation in Yardley, Bucks County, Pennsylvania. The campus’ exterior lands have undergone a remarkable transformation, blossoming into an enchanting and peaceful place for community member gatherings, and a wildflower meadow.
Princeton Hydro partnered with Congregation Kol Emet to design and implement the synagogue's 10-acre campus transformation. The Princeton Hydro team provided green infrastructure engineering, landscape architecture, and construction services aimed at enhancing the usability and welcoming atmosphere of the synagogue, and creating a sustainable outdoor solution in the event of future pandemics, and a place to connect with the natural environment that surrounds the property. The design provides a net positive impact by reducing flooding in the community and improves water quality by augmenting stormwater management and biodiversity throughout the property.
"Our vision surpassed mere construction of a gathering space," said Geoffrey M. Goll P.E., President of Princeton Hydro, a congregant of Kol Emet, Executive Board Member, and point person for the project. "We wanted to create a harmonious union between the synagogue campus and the surrounding preserved woodlands, cultivating a serene haven where congregants can unite, celebrate, and worship, while also enhancing the ecological functionality and biodiversity of the landscape. This was a realization of the vision of the Founders of Kol Emet and the labor and financial support of many members of the Board, past and present, and a generous donation by a longtime supporter of the community. The outdoor sanctuary was named in honor and memory of a founding member and former President, Geri Shatz, who was a staunch supporter of the Jewish community and advocate for the mission of Kol Emet. She lived the ideals of community and contribution. I am proud of the extraordinary transformation that’s been achieved."
The Kol Emet Reconstructionist Congregation, is a 501(c)3 religious organization, founded in 1984. While a center of worship for its members, it is much more than that. Kol Emet is a community of people who care about improving the world around them through social action and environmental protection.
The sentiment of "Tikkun Olam" is embodied by Kol Emet and the committee that spearheaded the project, working directly with the Princeton Hydro team to bring the project goals to fruition. The modern interpretation of the Hebrew phrase “Tikkun Olam,” is “action intended to repair and improve the world.” The campus restoration project brings the concept of “Tikkun Olam” to life.
Princeton Hydro Landscape Architect Cory Speroff, PLA, ASLA, CBLP is the project’s lead designer. The project included landscape design and planting that incorporates native and sustainable trees and shrubs; significant upgrades to the existing stormwater management basin, including the conversion of low-flow channels, impervious surfaces, and turf-covered areas to native grassland and wildflower habitat; and the development of the “Geri Shatz Outdoor Contemplative Space."
Cory’s design inspiration for the Geri Shatz Outdoor Contemplative Space is modeled after the Hebrew term “etz chaim” or “Tree of Life.” In Judaism, the Tree of Life has a number of meanings, both literal and figurative. In the Kabbalah, the Tree of Life represents the connection between heaven and earth, wisdom and knowledge, and the interconnectedness of all living things. It is visually represented as a diagram that looks much like a tree with 10 nodes and 22 lines. Cory’s design for the community space uses strategically placed trees to mimic the Tree of Life and aims to promote community connection and a connection to the surrounding natural landscape.
The contemplative space consists of a bimah, seating to accommodate at least 80 people, and a beautiful array of native trees and flowering shrubs, including black gum, silver birch, and Virginia sweetspire.
Cory’s design for the land surrounding the contemplative space improves flood resilience; controls stormwater runoff volume and promotes groundwater recharge; boosts safety features of the campus; and enhances habitat for pollinators, native plants, and other important species. The wildflower meadow was seeded with a variety of native plants, including purple love grass, common milkweed, wild bergamot, and blue wild indigo.
“During the height of the COVID-19 pandemic, it felt like the only way to see our loved ones was to be outside, and during these backyard and front porch gatherings many people re-discovered their love for the outdoors,” said Cory. “In talking with the Committee, there was a desire to create an outdoor sanctuary where the congregation could gather and continue that re-discovery. I believe that through the careful consideration of symbolic elements and thoughtful design choices, we’ve created a space that can inspire introspection, connection, and a sense of harmony with both nature and faith.”
Funding for the project came from the Congregation Kol Emet’s “Our Heart. Our Home” capital campaign, a $750,000 campaign focused on upgrading four key aspects of the synagogue: social hall, HVAC upgrades, indoor sanctuary, outside school, and the new outdoor sanctuary. The outdoor sanctuary and ecological uplift to the 10-acre campus is a primary piece of the campaign and was made possible by the generous donations of several Kol Emet members.
Stan Shatz bestowed a bounteous donation in memory of Geri Shatz, which made possible the creation of the “Geri Shatz Outdoor Contemplative Space.”
The following families also contributed to the funding of the Geri Shatz Outdoor Contemplative Space: Laurel & Kevin Bloch, Barbara & Debra Fogel and Family, Jill & David Gordon, Annie & Ryan Kubanoff and Family, and Teddi & Josh Matisoff and Family.
The Princeton Hydro team is honored to have worked with Kol Emet on this important and inspirational project.
Congregation Kol Emet came together on Sunday, June 4, 2023 for a celebration and ribbon-cutting ceremony to mark the completion of the outdoor sanctuary project. Here are a few photos from the joyous event:
Princeton Hydro is an expert in engineering, ecological restoration, and landscape architecture, and we’ve been incorporating green stormwater infrastructure and nature-based solutions into our designs for decades. Click here to read about the landscape restoration and stormwater management project we designed and implemented in Thompson Park, a 675-acre recreation area in Middlesex County, New Jersey.
On June 6, 2023, New Jersey Governor Philip Murphy announced the Administration’s upcoming adoption of the Inland Flood Protection Rule to better protect New Jersey’s communities from worsening riverine flooding and stormwater runoff. The rulemaking was filed with the Office of Administrative Law and was adopted, effective on July 17, 2023, after publication in the New Jersey Register. A courtesy copy of the rule and additional information are available here.
The Inland Flood Protection Rule updates New Jersey’s existing flood hazard and stormwater regulations by replacing outdated precipitation estimates with modern data that account for observed and projected increases in rainfall. These changes will help reduce flooding from stormwater runoff and increase the resilience of new developments located in flood-prone inland areas. Upon adoption, New Jersey will become the first state to use predictive precipitation modeling to implement rules to inform and protect future development and redevelopment from the impacts of climate change.
“The Inland Flood Protection Rule will serve as a critical component of my Administration’s comprehensive strategy to bolster our state’s resilience amid the worsening impacts of climate change,” said Governor Murphy. “As a national model for climate adaptation and mitigation, we can no longer afford to depend on 20th-century data to meet 21st-century challenges. This rule’s formation and upcoming adoption testify to our commitment to rely on the most up-to-date science and robust stakeholder engagement to inform our most crucial policy decisions.”
The Inland Flood Protection Rule establishes design elevations that are reflective of New Jersey’s changing climate and more frequent and intense rainfall, replacing standards based on outdated data and past conditions. The updated standards will apply to certain new and substantially reconstructed developments in inland riverine areas that are subject to flooding, but they do not prohibit development in these flood hazard areas.
Under the two primary components of the rule:
The updated standards in the Inland Flood Protection Rule will apply to new or reconstructed developments and not to existing developments. Pending development applications before NJDEP that are administratively complete at the time of adoption are not affected by these changes. Existing provisions of the flood hazard and stormwater rules that provide flexibility from strict compliance based on unique site-specific conditions will remain in place, along with new provisions designed to ensure that infrastructure projects already in progress can continue to move forward.
The final rule also provides clarifications for the legacy provision of the Flood Hazard Area Control Act rules at N.J.A.C. 7:13-2.1 to address projects that were wholly located outside the prior flood hazard area, and which have already received local approval under the Municipal Land Use Law. As initially proposed, this exemption from the new flood elevations would have been limited to those projects that had begun construction before the new rules were adopted. In recognition of the often-significant investments made for projects that have reached the stage of receiving municipal approval, NJDEP is retaining the existing exemption for such projects.
“New Jersey’s communities are facing unprecedented threats from the devastating impacts of extreme rainfall events, which are expected to continue to intensify in their frequency and severity,” said Commissioner of Environmental Protection Shawn M. LaTourette. “The Inland Flood Protection Rule ensures that inland, riverine areas at significant risk are better defined and that new and reconstructed assets in these areas are designed and constructed to protect New Jersey’s assets, economy and, above all, our people from the catastrophic effects of worsening floods. My DEP colleagues and I are truly grateful for Governor Murphy’s vision and leadership and for the thoughtful feedback we have received from the public and leaders in labor, business, local government, academia, and advocacy in designing this rule as part of the New Jersey Protecting Against Climate Threats (NJ PACT) initiative.”
In connection with the proposed Inland Flood Protection Rule, to aid the public to gauge flood risk and provide a visual approximation of regulatory jurisdiction on specific parcels, NJDEP has launched a flood indicator tool. While the tool does not provide a definitive demonstration of regulatory jurisdiction or calculate actual risk, it can be useful in assisting property owners or prospective property owners on potential risk and, by referencing the 500-year flood extent, approximate NJDEP’s regulatory jurisdiction and flood risk. Equipped with this information, property owners may then decide to take additional steps to determine actual risk, which is dependent on site-specific conditions.
Your Full Name * Phone Number * Your Email * Organization Address Message *
By EmailBy Phone
Submit
Δ
Couldn’t find a match? Check back often as we post new positions throughout the year.