search
WP_Query Object
(
    [query] => Array
        (
            [s] => lake
            [page] => 
            [pagename] => blog
            [post_type] => post
        )

    [query_vars] => Array
        (
            [s] => lake
            [page] => 0
            [pagename] => blog
            [post_type] => post
            [error] => 
            [m] => 
            [p] => 0
            [post_parent] => 
            [subpost] => 
            [subpost_id] => 
            [attachment] => 
            [attachment_id] => 0
            [name] => 
            [page_id] => 0
            [second] => 
            [minute] => 
            [hour] => 
            [day] => 0
            [monthnum] => 0
            [year] => 0
            [w] => 0
            [category_name] => 
            [tag] => 
            [cat] => 
            [tag_id] => 
            [author] => 
            [author_name] => 
            [feed] => 
            [tb] => 
            [paged] => 1
            [meta_key] => 
            [meta_value] => 
            [preview] => 
            [sentence] => 
            [title] => 
            [fields] => 
            [menu_order] => 
            [embed] => 
            [category__in] => Array
                (
                )

            [category__not_in] => Array
                (
                )

            [category__and] => Array
                (
                )

            [post__in] => Array
                (
                )

            [post__not_in] => Array
                (
                )

            [post_name__in] => Array
                (
                )

            [tag__in] => Array
                (
                )

            [tag__not_in] => Array
                (
                )

            [tag__and] => Array
                (
                )

            [tag_slug__in] => Array
                (
                )

            [tag_slug__and] => Array
                (
                )

            [post_parent__in] => Array
                (
                )

            [post_parent__not_in] => Array
                (
                )

            [author__in] => Array
                (
                )

            [author__not_in] => Array
                (
                )

            [search_columns] => Array
                (
                )

            [posts_per_page] => 11
            [ignore_sticky_posts] => 
            [suppress_filters] => 
            [cache_results] => 1
            [update_post_term_cache] => 1
            [update_menu_item_cache] => 
            [lazy_load_term_meta] => 1
            [update_post_meta_cache] => 1
            [nopaging] => 
            [comments_per_page] => 5
            [no_found_rows] => 
            [search_terms_count] => 1
            [search_terms] => Array
                (
                    [0] => lake
                )

            [search_orderby_title] => Array
                (
                    [0] => ph_posts.post_title LIKE '{f2ce15b940a40072f2b8e9acef8fdc16eaf06542366e7c2c943cd06badbd5207}lake{f2ce15b940a40072f2b8e9acef8fdc16eaf06542366e7c2c943cd06badbd5207}'
                )

            [order] => DESC
        )

    [tax_query] => WP_Tax_Query Object
        (
            [queries] => Array
                (
                )

            [relation] => AND
            [table_aliases:protected] => Array
                (
                )

            [queried_terms] => Array
                (
                )

            [primary_table] => ph_posts
            [primary_id_column] => ID
        )

    [meta_query] => WP_Meta_Query Object
        (
            [queries] => Array
                (
                )

            [relation] => 
            [meta_table] => 
            [meta_id_column] => 
            [primary_table] => 
            [primary_id_column] => 
            [table_aliases:protected] => Array
                (
                )

            [clauses:protected] => Array
                (
                )

            [has_or_relation:protected] => 
        )

    [date_query] => 
    [queried_object] => WP_Post Object
        (
            [ID] => 6
            [post_author] => 1
            [post_date] => 2021-01-18 12:51:43
            [post_date_gmt] => 2021-01-18 12:51:43
            [post_content] => 
            [post_title] => Blog
            [post_excerpt] => 
            [post_status] => publish
            [comment_status] => closed
            [ping_status] => closed
            [post_password] => 
            [post_name] => blog
            [to_ping] => 
            [pinged] => 
            [post_modified] => 2021-01-18 12:51:43
            [post_modified_gmt] => 2021-01-18 12:51:43
            [post_content_filtered] => 
            [post_parent] => 0
            [guid] => https://princetonhydro.com/?page_id=6
            [menu_order] => 0
            [post_type] => page
            [post_mime_type] => 
            [comment_count] => 0
            [filter] => raw
        )

    [queried_object_id] => 6
    [request] => 
					SELECT SQL_CALC_FOUND_ROWS  ph_posts.ID
					FROM ph_posts 
					WHERE 1=1  AND (((ph_posts.post_title LIKE '{f2ce15b940a40072f2b8e9acef8fdc16eaf06542366e7c2c943cd06badbd5207}lake{f2ce15b940a40072f2b8e9acef8fdc16eaf06542366e7c2c943cd06badbd5207}') OR (ph_posts.post_excerpt LIKE '{f2ce15b940a40072f2b8e9acef8fdc16eaf06542366e7c2c943cd06badbd5207}lake{f2ce15b940a40072f2b8e9acef8fdc16eaf06542366e7c2c943cd06badbd5207}') OR (ph_posts.post_content LIKE '{f2ce15b940a40072f2b8e9acef8fdc16eaf06542366e7c2c943cd06badbd5207}lake{f2ce15b940a40072f2b8e9acef8fdc16eaf06542366e7c2c943cd06badbd5207}')))  AND (ph_posts.post_password = '')  AND ((ph_posts.post_type = 'post' AND (ph_posts.post_status = 'publish' OR ph_posts.post_status = 'acf-disabled')))
					
					ORDER BY ph_posts.menu_order, ph_posts.post_title LIKE '{f2ce15b940a40072f2b8e9acef8fdc16eaf06542366e7c2c943cd06badbd5207}lake{f2ce15b940a40072f2b8e9acef8fdc16eaf06542366e7c2c943cd06badbd5207}' DESC, ph_posts.post_date DESC
					LIMIT 0, 11
				
    [posts] => Array
        (
            [0] => WP_Post Object
                (
                    [ID] => 12877
                    [post_author] => 1
                    [post_date] => 2023-07-01 05:00:41
                    [post_date_gmt] => 2023-07-01 05:00:41
                    [post_content] => 

July is Lakes Appreciation Month! This national initiative was started in 1998 by the North American Lake Management Society (NALMS) with the goal of illuminating the value and importance of lakes and reservoirs, and encouraging people to take action in appreciating and protecting our precious water resources.

We’ve put together five tips to help you celebrate:

1. Embrace your Lake.

"Aeration System" by Chris Mikolajczyk, Photo Contest Submission  

Discover, Capture, and Share the Joy of Lakes Appreciation! Whether you're a birding enthusiast, a photography pro, a boating lover, a paddle-boarding champ, or someone who enjoys leisurely strolls, it's time get lakeside to enjoy your favorite activities. Stay in the loop with your local lake association's calendar and discover fun community events. If you're in the Berks County, Pennsylvania area, join PALMS on July 14 at Blue Marsh Lake for their community sunset paddle and float event. Capture your lake love and spread the joy - share your adventure photos on social media using #LakesAppreciation and inspire others to embrace lake appreciation too! Whatever fun adventure you choose, always remember to respect our natural landscape and treat it with care. Click here for a few tips to help you enjoy your Lakes Appreciation Month outings responsibly and sustainably. 


2. Take the Family BINGO Challenge.

Bingo Card designed by NALMS to celebrate Lakes Appreciation Month

To encourage everyone in the family to get outside together and enjoy the lakes that surround them, NALMS is  created a family BINGO Challenge game. The BINGO board features a variety of activities, like "Have a picnic at your favorite lake," "Go wildlife or bird watching," and "Pick up trash around your favorite lake." As you complete each activity,  you mark the square with an X. Once you complete all activities in a row or diagonally, you get “BINGO." Fill the card completely for maximum lake appreciation! This simple game is designed to stir creativity, curiosity and action, and is intended to act as  a reminder for us all to pause and appreciate something we often take for granted. Play it, share it, and enjoy!


3. Support Your Local Lake Association.

[gallery link="none" ids="12891,9124,8942"]

In celebration of Lakes Appreciation Month, lake associations nationwide are hosting family-fun events, volunteer opportunities and community gatherings. On July 14, Pennsylvania Lake Management Society invites you to join them at Blue Marsh Lake for a community sunset paddle/float. On July 20 at the Stone Water lakefront restaurant, Lake Hopatcong Foundation is hosting its 11th Anniversary Gala & Auction, which aims to bring together community members who are passionate about Lake Hopatcong, to have fun and raise funds critically needed to protect the environment and enhance the experience on and around Lake Hopatcong. Organize a community trash pick-up day at a nearby lake or get in touch with your local lake association to find out how you can get involved.


4. Join the National Secchi Dip-In.

The “Secchi Dip-In” is an annual citizen science event where lake-goers and associations across North America use a simple Secchi disk to monitor the transparency or turbidity of their local waterway. Created and managed by NALMS, volunteers have been submitting information during the annual Dip-In since 1994. NALMS invites you to join this international effort to track changes in water quality! Get all the Dip-In details here. And, for detailed instructions for how to use a Secchi disk, check out our tutorial.


5. Monitor Your Lake & Report HABs.

[gallery link="none" ids="11570,11578,11568"]

In addition to the Secchi Dip-In, you can support your favorite lake by identifying and reporting harmful algal blooms (HABs) and invasive species. And, the bloomWatch App is a great educational resource and tracking tool! By using the app on your smartphone, you can contribute to a nationwide community science program dedicated to tracking and documenting the occurrence of potential HABs. Click here for a brief video on how to use the bloomWatch app. And, for more information about HABs, click here to view a presentation given by Dr. Fred Lubnow at the NALMS 42nd Annual International Symposium.


Click here to learn about NALMS and get more ideas on how to celebrate your local lakes.

Princeton Hydro provides a broad range of award-winning lake management services. Click here to read about our work to reduce HABs and increase biodiversity in Lake Latonka, a 260-acre man-made freshwater lake in Mercer County, Pennsylvania.

[post_title] => July is #LakesAppreciation Month: 5 Tips to Help You Celebrate [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => lakes-appreciation-2023 [to_ping] => [pinged] => [post_modified] => 2024-01-18 02:49:13 [post_modified_gmt] => 2024-01-18 02:49:13 [post_content_filtered] => [post_parent] => 0 [guid] => https://princetonhydro.com/?p=12877 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [1] => WP_Post Object ( [ID] => 12609 [post_author] => 1 [post_date] => 2023-04-22 17:22:00 [post_date_gmt] => 2023-04-22 17:22:00 [post_content] =>

This article, written by Princeton Hydro team members, was recently published in the ANJEC Report, a quarterly magazine published by the Association of New Jersey Environmental Commissions.

Our lakes in New Jersey are an invaluable resource for clean drinking water, outdoor recreation, and agriculture and provide habitat for aquatic flora and fauna. Home to about 1,700 lakes, the “Garden State” is also the most densely populated state. Excess nutrients from fertilizers, roadway pollutants, overdevelopment, and failing septic systems can end up in our lakes and impair water quality. Larger rain events can also cause erosion and instability of streams, adding to the influx of more excess nutrients to our lakes and ponds. Changes in hydrology, water chemistry, biology, and/or physical properties in these complex ecosystems can have cascading consequences that can alter water quality and the surrounding ecosystem. For example, excess nutrients can fuel algal and plant growth in lakes and lead to issues like harmful algal blooms (HABs) or fish kills.

In order to ensure that we protect the overall health of our local waterbodies, it’s important that we look beyond just the lake itself. Implementing holistic watershed-based planning is a critical step in managing stormwater runoff, preventing the spread of HABs, and maintaining water quality. A watershed management plan defines and addresses existing or future water quality problems from both point sources and nonpoint sources of pollutants*. This approach addresses all the beneficial uses of a waterbody, the criteria needed to protect the use, and the strategies required to restore water quality or prevent degradation. When developing a watershed plan, we review all the tools in the toolbox and recommend a variety of best management practices to prevent nutrients from entering lakes or streams. Options include short- and long-term solutions such as green stormwater infrastructure, stream bank stabilization, and stormwater basin retrofits.

To reduce nutrient availability in lakes, one innovative tool in our toolbox is floating wetland islands (FWIs). FWIs are a low-cost, effective green infrastructure solution that are designed to mimic natural wetlands in a sustainable, efficient, and powerful way. They improve water quality by assimilating and removing excess nutrients; provide valuable ecological habitat for a variety of beneficial species; help mitigate wave and wind erosion impacts; provide an aesthetic element; and add significant biodiversity enhancement within open freshwater environments. FWIs are also highly effective in a range of waterbodies from big to small, from deep to shallow.

[caption id="attachment_4363" align="aligncenter" width="631"]This illustration, created by Staff Scientist Ivy Babson, conveys the functionality of a Floating Wetland Island This illustration, sketched by Princeton Hydro Staff Scientist Ivy Babson, conveys the functionality of a floating wetland island.[/caption]  

Typically, FWIs consist of a constructed floating mat, usually composed of woven, recycled plastic material, with vegetation planted directly into the material. The islands are then launched into the lake and anchored in place, and, once established, require very little maintenance.

It estimated that one 250-square-foot FWI has a surface area equal to approximately one acre of natural wetland. These floating ecosystems can remove approximately 10 pounds of phosphorus each year. To put that into perspective, one pound of phosphorus can produce 1,100 pounds of algae each year, so each 250-square-feet of FWI can potentially mitigate up to 11,000 pounds of algae.

In addition to removing phosphorus that can feed nuisance aquatic plant growth and algae, FWIs also provide excellent refuge habitat for beneficial forage fish and can provide protection from shoreline erosion.

Let's take a look at some examples of FWIs in action:

Lake Hopatcong

[gallery columns="2" link="none" ids="11071,10666"]  

Princeton Hydro has been working with Lake Hopatcong, New Jersey’s largest Lake, for 30+ years, restoring the lake, managing the watershed, reducing pollutant loading, and addressing invasive aquatic plants and nuisance algal blooms. Back in 2012, Lake Hopatcong became the first public lake in New Jersey to install FWIs. In the summer of 2022, nine more FWIs were installed in the lake with help from staff and volunteers from the Lake Hopatcong Foundation, Lake Hopatcong Commission, and Princeton Hydro. The lake’s Landing Channel and Ashley Cove were chosen for the installations because they are both fairly shallow and prone to weed growth. The installation of these floating wetland islands is part of a series of water quality initiatives on Lake Hopatcong funded by a NJDEP Harmful Algal Bloom Grant and 319(h) Grant awarded to Lake Hopatcong Commission and Lake Hopatcong Foundation.


Greenwood Lake

floating wetland island installation on greenwood lake in new jersey

Princeton Hydro partnered with the Greenwood Lake Commission (GWLC) on a FWI installation in Belcher's Creek, the main tributary of Greenwood Lake. The lake, a 1,920-acre waterbody located in both New Jersey and New York, is a highly valued ecological, economical, and recreational resource. The lake also serves as a headwater supply of potable water that flows to the Monksville Reservoir and eventually into the Wanaque Reservoir, where it supplies over 3 million people with drinking water.

The goal of the FWI Installation was to help decrease total phosphorus loading, improve water quality, and create important habitat for beneficial aquatic, insect, bird, and wildlife species. The project was partially funded by the NJDEP Water Quality Restoration Grants for Nonpoint Source Pollution Program under Section 319(h) of the federal Clean Water Act. GWLC was awarded one of NJDEP’s matching grants, which provided $2 in funding for every $1 invested by the grant applicant.


Harveys Lake

Volunteers install native plants in one of the FWIs installed in Harveys Lake. Photo by: Mark Moran, The Citizen’s Voice.

Measuring 630+ acres, Harveys Lake is the largest natural lake (by volume) in Pennsylvania and is one of the most heavily used lakes in the area. It is classified as a high quality - cold water fishery habitat (HQ-CWF) and is designated for protection under the classification. Since 2002, The Borough of Harveys Lake and Harveys Lake Environmental Advisory Council has worked with Princeton Hydro on a variety of lake management efforts focused around maintaining high water quality conditions, strengthening stream banks and shorelines, and managing stormwater runoff. Five floating wetland islands were installed in Harveys Lake to assimilate and reduce nutrients already in the lake. The islands were placed in areas with high concentrations of nutrients, placed 50 feet from the shoreline and tethered in place with steel cables and anchored. The FWIs were funded by PADEP.


Wesley Lake and Sunset Lake

Working with the Deal Lake Commission (DLC), Princeton Hydro designed and installed 12 floating wetland islands at two lakes in Asbury Park, NJ. In order to complete the installation of the floating wetland islands, our team worked with the DLC to train and assist over 30 volunteers to plant plugs in the islands and launch them into the two lakes. Our experts helped disseminate knowledge to the volunteers, not only about how to install the floating wetland islands, but how they scientifically worked to remove excess nutrients from the water. With assistance from Princeton Hydro, DLC acquired the 12 floating islands – six for Wesley Lake and six for Sunset Lake – through a Clean Water Act Section 319(h) grant awarded by NJDEP.


In addition to the direct environmental benefits of FWIs, the planting events themselves, which usually involve individuals from the local lake communities, have long-lasting positive impacts. When community members come together to help plant FWIs, it gives them a deepened sense of ownership and strengthens their connection to the lake. This, in turn, encourages continued stewardship of the watershed and creates a broader awareness of how human behaviors impact the lake and its water quality. And, real water quality improvements begin at the watershed level with how people treat their land.

For more information on watershed planning or installing FWI in your community, click here to contact us. To learn more about ANJEC, go here.

- *U.S. Environmental Protection Agency. 2008. Handbook for Developing Watershed Plans to Restore and Protect Our Waters.

[post_title] => Floating Wetland Islands: An Effective, Affordable, and Sustainable Lake Management Tool [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => floating-wetland-islands-anjec-2023 [to_ping] => [pinged] => [post_modified] => 2023-08-14 10:41:41 [post_modified_gmt] => 2023-08-14 10:41:41 [post_content_filtered] => [post_parent] => 0 [guid] => https://princetonhydro.com/?p=12609 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [2] => WP_Post Object ( [ID] => 12419 [post_author] => 1 [post_date] => 2023-03-17 18:44:47 [post_date_gmt] => 2023-03-17 18:44:47 [post_content] => [caption id="attachment_12423" align="aligncenter" width="901"] Harveys Lake, Luzerne County, PA in February 2023 (Photo by Jason Miller)[/caption]   By Dr. Fred Lubnow, Senior Technical Director of Ecological Services

The Winter of 2022 – 2023 is turning out to be a mild one, at least in the Mid-Atlantic region of the United States. Anecdotally, there has been no measurable amount of snowfall in 2023 as of early March. In northeastern Pennsylvania, January and February 2023 mean monthly temperatures were 9.6 and 7.5 degrees warmer relative to their long-term respective average values. In northern New Jersey, January and February 2023 mean monthly temperatures were 11.9 and 5.6 degrees warmer relative to their respective long-term average values (Northeast Regional Climate Center CLIMOD database).

[caption id="attachment_12421" align="alignleft" width="239"] Lake Hopatcong, Sussex – Morris Counties, NJ (Photo by Donna Macalle-Holly, Lake Hopatcong Foundation)[/caption]

This has had a profound impact on lake ecosystems. For example, in early 2023, both Harveys Lake (Luzerne County, PA) and Lake Hopatcong (Morris and Sussex Counties, NJ) have had no lake-wide ice cover. While measurable amounts of both snowfall and ice cover are still possible in the remaining weeks of March, it highly unlikely that such conditions would persist for weeks. Such ice-free conditions on our lakes, ponds and reservoirs will certainly have a profound impact on these ecosystems as we move into the 2023 growing season.

Algae May Grow Earlier in the Season

Undoubtably, current conditions are at a minimum partially attributed to climate change and will have a direct impact on the upcoming 2023 growing season. In the absence of ice, and more importantly snow-cover over the ice, aquatic plants and algae can begin to grow earlier in the season. Some plants, such as the invasive species curly-leaved pondweed (Potamogeton crispus), prefer cooler temperatures and tend to attain their highest densities in the spring and early summer. However, under such ice-free conditions, we have seen curly-leaved pondweed growing along the bottom of New Jersey lakes as early as February. This can result in more nuisance plant densities earlier in the year.

While most cyanobacteria, the group of algae known to have the potential to produce cyanotoxins, tend to attain their maximum growth and biomass over the hot summer months, there are several genera that are more tolerant of cool temperatures. For example, one filamentous genus, Aphanizomenon, is one of the first cyanobacteria to appear in the plankton in the spring. Indeed, over the last few years Aphanizomenon has been appearing earlier in the year and at higher densities in many of the lakes monitored and managed by Princeton Hydro. Another cyanobacteria known to bloom in cooler waters is Coelosphaerium. Coupled with slightly warmer temperatures over the late winter and early spring, cyanobacteria blooms could become more common and larger in magnitude, earlier in the year. Such blooms are frequently called Harmful Algal Blooms (HABs).

Many cyanobacteria produce resting spores called akinetes during conditions of environmental stress, such as colder temperatures and desiccation. These akinetes settle to the bottom and are re-activated as water temperatures increase. Warmer late winter and early spring temperatures, particular over the sediments, could mean more akinetes actively growing into vegetative cells earlier in the growing season.

Milder Winters Could Lead to New Invasive Species

[caption id="attachment_12439" align="alignright" width="476"] At a lake in Somerset County on March 7, 2023, Spirogyra (a green mat algae that prefers cold waters) is present and curly-leaved pondweed is already growing and well established. Photo by Princeton Hydro.[/caption]

Last year (2022), was the first time that the cyanobacteria Cylindrospermopsis was identified in Lake Hopatcong. In fact, this genus was the most abundant cyanobacteria in Lake Hopatcong during our July and August sampling events, but was no longer found by the early October sampling event. The Cylindrospermopsis found in Lake Hopatcong may be an invasive species that historically has been found in tropic and subtropic waterbodies. However, over the years, this cyanobacterium has been found in temperate waterbodies. Milder and warmer winters may mean more invasive species such as Cylindrospermopsis appearing in Mid-Atlantic waterbodies.

What Should You Do?

In the absence of ice and snow-cover to put the sediments in the dark and prevent photosynthesis, coupled with warmer temperatures in the late winter and early spring, may lead to more aquatic plant and algal growth earlier in the year. So what should be done about this?

1. Sample Early: March or April

First, we recommend initiating sampling earlier in the year, sometime in March or April; do not wait until May to begin sampling. Second, in addition to sampling the surface waters, sampling should also be conducted in near-shore areas, immediately above sediments and at the sediment-water interface. Samples should be examined under the microscope for the presence of akinetes and/or inactive colonies of cyanobacteria. Third, near-shore areas should also be surveyed for the presence of submerged, aquatic plants, in particular invasive species such as curly-leaved pondweed or hydrilla.

2. Encourage Residents to Reduce Nutrients Entering the Waterway

Finally, while most climate models indicate that HABs will more than likely increase in warmer conditions, the magnitude of this response will be strongly dependent on the availability of nutrients, in particular phosphorus. While phosphorus will drive the growth of cyanobacteria, the availability of external sources of nitrogen can increase the probability of a HAB producing cyanotoxins such as microcystins, which is a nitrogen “heavy” molecule.

Thus, if colonies of cyanobacteria or akinetes are found in the sediments over the spring, the lake community and stakeholders should be informed and efforts should be implemented to reduce the availability of nutrients such as using non-phosphorus fertilizers, picking up pet wastes, goose management, routine pump-outs of septic systems once every three years, where possible stabilize exposed soil by planting native vegetation and consider the use of green infrastructure such as rain gardens. By letting the community know that cyanobacteria may be lurking on the sediments over the spring season, it may mobilize efforts to implement both in-lake and watershed measures to minimize the potential development of HABs.


Princeton Hydro provides pond and lake management and monitoring services to hundreds of waterbodies in the Northeast.  If you would like to learn more about our services for your community, please send us a message through our website.

Dr. Fred Lubnow, Princeton Hydro's Senior Technical Director, Ecological Services, is an expert in aquatic and watershed management, restoration ecology, community and ecosystem ecology, and the use of benthic macroinvertebrate and fish in-stream bioassessment protocols. Dr. Lubnow has managed hundreds of lake projects and provides technical expertise for a variety of lake and watershed restoration projects.

His experience in lake and reservoir restoration includes the design and implementation of dredging, aeration, chemical control of nuisance species, nutrient inactivation (i.e. alum) and biomanipulation. His experience in watershed restoration includes the design and implementation of structural Best Management Practices (BMPs), the development of Total Maximum Daily Load (TMDL) pollutant budgets, and the design, implementation and analysis of watershed-based monitoring programs.

[post_title] => Mild Winter in Mid-Atlantic Raises Concerns For Lakes [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => guest-blog-by-dr-fred-lubnow [to_ping] => [pinged] => [post_modified] => 2023-03-17 18:44:47 [post_modified_gmt] => 2023-03-17 18:44:47 [post_content_filtered] => [post_parent] => 0 [guid] => https://princetonhydro.com/?p=12419 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [3] => WP_Post Object ( [ID] => 12199 [post_author] => 1 [post_date] => 2023-01-25 18:13:19 [post_date_gmt] => 2023-01-25 18:13:19 [post_content] =>

We are pleased to announce that the Lake Hopatcong Foundation (LHF) received the prestigious New Jersey Governor's Environmental Excellence Award in the Environmental Education category for its innovative floating classroom program.

The LHF's floating classroom - a custom-built 40-foot education vessel, named ‘Study Hull’ - gives students an interactive, hands-on education experience to explore Lake Hopatcong, learn about freshwater ecology, and discuss how to protect the watershed.

During its maiden voyage field trip, which was held on May 21 2018, fourth-graders from Nixon Elementary and Kennedy Elementary schools utilized the boat’s laboratory instruments to study water hydrology, temperatures, plankton, and dissolved oxygen levels.Princeton Hydro helped the LHF design a teaching curriculum on water quality, and members of our team trained the LHF staff and volunteers on the curriculum and demonstrated various water quality monitoring techniques that could be conducted with the students.

The floating classroom is equipped with laboratory instruments on which the students can study water hydrology, temperatures, plankton, and dissolved oxygen levels. Course instructors assist students in performing tests and experiments designed to help them learn about the general health of the lake. They also discuss the impacts that stormwater runoff and nonpoint source pollutants have on the lake, and how they can protect the lake’s water quality and be good stewards of the water.

The Governor’s Environmental Excellence Awards are given each year to individuals and organizations that demonstrate commitment and leadership on a variety of environmental issues, including environmental justice, climate change, sustainability, education, and protection of natural resources. The Governor's Award is a testament to the hard work and dedication of the LHF and the educators who run the floating classroom. It is also a testament to the value of experiential learning and the importance of connecting young people to the natural world.

Chris L. Mikolajczyk, CLM, demonstrates to floating classroom participants how to use a Secchi Disks to determine the depth to which light is able to penetrate the water’s surface.“It’s really important to get kids interested in science at an early age and teach them about their surrounding environment – where their drinking water comes from, how it could possibly get polluted, the impacts that pollution then has on the lake’s ecosystem, and what steps can be made to protect the lake’s water quality," said Princeton Hydro Senior Aquatic Ecologist Chris L. Mikolajczyk, CLM, one of the team members responsible for developing the floating classroom curriculum. "We are proud to partner with the Lake Hopatcong Foundation and extend to them our sincerest congratulations on receiving the Governor's Environmental Excellence Award for their innovative and unique floating classroom initiative. Well deserved!”

The 23rd Annual Governor’s Environmental Excellence Awards were announced virtually by the Commissioner of Environmental Protection Shawn M. LaTourette. The video recording is available on DEP’s YouTube channel.

[embed]https://www.youtube.com/watch?time_continue=2&v=yayIyRj9r3w&embeds_euri=https%3A%2F%2Fdep.nj.gov%2F&source_ve_path=MzY4NDIsMjg2NjI&feature=emb_logo[/embed]

Lake Hopatcong, New Jersey's largest lake, has one of the longest, continuous, long-term ecological databases in New Jersey; almost 30 years of consistently collected water quality data. The data is crucial in assessing the overall health of the lake and proactively guiding its management, identifying and addressing emerging threats, documenting project success, and confirming compliance with New Jersey State Water Quality standards.

The LHF works to foster a vibrant and healthy Lake Hopatcong and its surrounding community through a variety of programs and initiatives in the areas of environment, education, community and historical preservation, public safety, recreation, and arts and culture. The LHF and Princeton Hydro are longtime partners with history dating back to 1983. Princeton Hydro’s recent work for Lake Hopatcong includes the implementation of green infrastructure stormwater management measures, installation of floating wetland islands to improve water quality, and invasive aquatic plant species management programs, community educational training, and surveys. To learn more about LHF, check out our Client Spotlight blog:

[visual-link-preview encoded="eyJ0eXBlIjoiaW50ZXJuYWwiLCJwb3N0Ijo1Mjg0LCJwb3N0X2xhYmVsIjoiQXJ0aWNsZSA1Mjg0IC0gQ2xpZW50IFNwb3RsaWdodDogTGFrZSBIb3BhdGNvbmcgRm91bmRhdGlvbiIsInVybCI6IiIsImltYWdlX2lkIjowLCJpbWFnZV91cmwiOiIiLCJ0aXRsZSI6IkNsaWVudCBTcG90bGlnaHQ6IExha2UgSG9wYXRjb25nIEZvdW5kYXRpb24iLCJzdW1tYXJ5IjoiVGhpcyBtb250aCB3ZSBhcmUgbGF1bmNoaW5nIHRoZSBmaXJzdCBibG9nIGluIG91ciBDbGllbnQgU3BvdGxpZ2h0IEJsb2cgU2VyaWVzISBFYWNoIHNwb3RsaWdodCB3aWxsIGZlYXR1cmUgb25lIG9mIG91ciBpbXBvcnRhbnQgY2xpZW50IHJlbGF0aW9uc2hpcHMgaW4gb3JkZXIgdG8gZ2l2ZSB5b3UgYW4gaW5zaWRlIGxvb2sgYXQgb3VyIGNvbGxhYm9yYXRpb24uIFdlIHByaWRlIG91cnNlbHZlcyBvbiBmb3JtaW5nIHN0cm9uZyB0aWVzIHdpdGggb3JnYW5pemF0aW9ucyB0aGF0IHNoYXJlIG91ciB2YWx1ZXMgb2YgY3JlYXRpbmcgYSBiZXR0ZXIgZnV0dXJlIGZvciBwZW9wbGUuLi4iLCJ0ZW1wbGF0ZSI6InNpbXBsZSJ9"] [post_title] => Lake Hopatcong Foundation's Floating Classroom Receives New Jersey Governor's Environmental Excellence Award [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => lake-hopatcong-foundations-floating-classroom-receives-new-jersey-governors-environmental-excellence-award [to_ping] => [pinged] => [post_modified] => 2023-01-25 19:50:39 [post_modified_gmt] => 2023-01-25 19:50:39 [post_content_filtered] => [post_parent] => 0 [guid] => https://princetonhydro.com/?p=12199 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [4] => WP_Post Object ( [ID] => 11974 [post_author] => 1 [post_date] => 2022-12-07 22:02:40 [post_date_gmt] => 2022-12-07 22:02:40 [post_content] =>

The North American Lake Management Society (NALMS) held its 42nd Annual International Symposium from November 14–17 in Minneapolis, Minnesota. Water resource professionals, researchers, students and practitioners came together to share ideas and learn about managing and protecting lakes and their watersheds.

[gallery link="none" columns="4" ids="14363,11947,11948,14362"]

This year’s conference, which was titled, “Leveraging Experience to Manage Diverse Lakes, Landscapes, and People,” featured an exhibitor hall, networking events, and a variety of presentations and workshops. Princeton Hydro, a proud contributing sponsor of the conference, led four presentations and one workshop; below, we provide a free download of each.


Princeton Hydro’s Senior Aquatic Ecologist and NALMS Board of Directors President Chris L. Mikolajczyk, CLM gave the following two presentations:

Click here to learn more and download the presentations.

Dr. Fred Lubnow, Senior Technical Director, Ecological Services for Princeton Hydro presented on “The Development of Site-Specific Harmful Algal Bloom (HABs) Management Plans.”

Click here to learn more and download the presentation.

Princeton Hydro Senior Aquatic Ecologist Paul Cooper led a presentation titled, “A 30-Year Assessment of Internal Phosphorus Loading, Nutrient Load Management, and Climate Change at Lake Hopatcong.”

Click here to learn more and download the presentation.

On the first day of the conference, Chris and Fred led a half-day workshop about developing Harmful Algal Blooms Management and Restoration Plans for Beaches and Marinas, which are designed as part of a larger, all-encompassing Watershed Implementation Plan. The workshop provided both in-lake, near-shore, and local watershed solutions to preserve water quality and protect the health of people and pets utilizing these waterbodies.

Click here to learn more and download the presentation.

A daring group of symposium participants bundled up and braved the cold temperatures for the Clean Lakes Classic 5k Run, which Princeton Hydro sponsored. The point-to-point course followed along the Mississippi River, through city greenways, and around snowy Minneapolis neighborhoods.

[gallery columns="4" ids="11943,11928,11927,14365"]

We’re also excited to announce that Chris L. Mikolajczyk won this year’s International Symposium photo contest for this stunning image he captured during a recent visit to Rocky Mountain National Park in Colorado. The photo is titled “Aquatic Plant Management: No Permits Needed!”

Congratulations, Chris! . . . Founded in 1980, NALMS is dedicated to forging partnerships among citizens, scientists, and professionals to foster the management and protection of lakes and reservoirs for today and tomorrow. For more information about NALMS and upcoming events, click here. To read about upcoming events that Princeton Hydro is participating in and sponsoring, click here. [post_title] => FREE DOWNLOADS: Presentations from the North American Lake Management Society International Symposium [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => free-presentation-downloads-nalms-2022 [to_ping] => [pinged] => [post_modified] => 2024-01-19 01:14:03 [post_modified_gmt] => 2024-01-19 01:14:03 [post_content_filtered] => [post_parent] => 0 [guid] => https://princetonhydro.com/?p=11974 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [5] => WP_Post Object ( [ID] => 11220 [post_author] => 1 [post_date] => 2022-08-30 10:25:05 [post_date_gmt] => 2022-08-30 10:25:05 [post_content] =>

The Highlands Region of Northern New Jersey is an 800,000-acre area covering approximately 1,200 square miles and made up of 88 municipalities in seven counties. The Region is an essential source of drinking water for over 5.4 million New Jersey residents.

The New Jersey Highlands Water Protection and Planning Council (Highlands Council) is a regional planning agency that works in partnership with municipalities and counties in the Highlands Region to help those communities take a proactive and regional approach to watershed protection.

Historically, private lake associations and municipalities have worked autonomously to address water quality issues and develop improvement plans. Working together, however, and taking a regional approach to lake and watershed management has much farther-reaching benefits. Taking an integrated approach helps improve water quality and reduce incidents of aquatic invasive species and harmful algal blooms (HABs) not just in one waterbody, but throughout an entire region of lakes and streams.

The Highlands Council was created as part of the New Jersey Highlands Water Protection and Planning Act (the Highlands Act), which was signed into law in 2004. It has funded numerous water-quality-related planning grants throughout the region.

Today, we’re excited to announce that the Township of Byram in Sussex County, New Jersey, is the latest municipality to receive Highlands Council grant approval for a Lake and Watershed Management Program for ten of the Township's waterbodies. The Township chose to engage the services of Princeton Hydro to support the project work. Princeton Hydro also assisted the Township in pursuing the Highlands Council grant opportunity and securing the grant funding.

“Byram Township, the Township of Lakes, is excited to have received the grant funding from the Highlands Council providing the opportunity to develop a Lake and Watershed Management Plan with the goal of improving water quality within the Township’s watersheds," said Joseph Sabatini, Township Manager. "Having an adopted plan will open the door to opportunities to grant funding to implement the recommend improvements.”

 

The Township of Byram

Located 55 miles from New York City, the Township of Byram has a population of about 8,000. It is locally known as “The Township of Lakes” because the community has two dozen or more lakes and ponds within its borders, an area of about 22.7 square miles.

The Township chose to engage the services of Princeton Hydro to assist in designing a scope of work for a municipal-wide holistic watershed management plan that identifies and prioritizes watershed management techniques and measures that are best suited for immediate and long-term implementation.

Given the large number of waterbodies in the area, and in an effort to keep the first phase of the Highlands Council funded Lake and Watershed Management Program to a reasonable scope, a selection process occurred with input from the Township offices, the Township Environmental Commission, Princeton Hydro and ultimately, the Highlands Council.

Specifically, the grant guidelines are “to establish tiers of lake management appropriate to management strategies that help protect lake water quality and community value from the impacts of present and future development,” and lake management programs are instructed to focus efforts on lakes that are greater than ten acres in size.

The ten waterbodies included in the Township of Byram's Lake and Watershed Management Program are: Cranberry Lake, Lake Lackawanna, Johnson Lake, Forest Lake, Panther Lake, Wolf Lake, Wright Pond, Jefferson Lake, Stag Pond, and Kofferls Pond.

For the first phase of the Lake and Watershed Management Program, Princeton Hydro will conduct a number of analyses, including watershed modeling; hydrologic and pollutant loading analysis; watershed-based and in-lake water quality assessments; and tropic state assessments.

The assessment aims to:
  • Identify, quantify and prioritize the watershed-based factors which may cause eutrophication,
  • Identify the watershed management measures needed to address general causes of water quality impairments,
  • Identify the relative cost of the recommended general watershed management measures,
  • Identify and quantify the lake-based factors which may cause eutrophication, and
  • Prioritize and schedule the implementation of recommended watershed management measures.

Once all the lab data is processed, the watershed modeling is complete, and historical data reviewed, Princeton Hydro will create a General Assessment Report that will summarize the data/observations and identify which watershed management techniques and measures are best suited for immediate or long-term implementation.

"We're thrilled to be partnered with Bryam on this important initiative to bring together under one holistic management plan in one form or another ten private and public lakes throughout the township," said Princeton Hydro’s Senior Manager, Christopher Mikolajczyk, a Certified Lake Manager and lead designer for this initiative. "Byram is the fourth Highlands based Township I have worked with to take this regional approach, which will continue to make a significant impact in managing stormwater, improving water quality, and mitigating HABs throughout the Highlands region of New Jersey."

 

Regional Approach to Lake Management 

[gallery link="none" ids="8527,4168,8523"]

This regional approach to lake management has been implemented by Princeton Hydro in other New Jersey Highland communities. In 2019, the Borough of Ringwood became the first municipality in the state of New Jersey to take a regional approach to private lake management through a public-private partnership with four lake associations within six lakes.

Ringwood ultimately became a model for similar Highlands Council grants within the region, including West Milford Township, for which the Highlands Council approved funding in 2020 to support a watershed assessment of 22 private and public lakes. Rockaway Township in Morris County also received Highlands Council grant approval in 2021 to complete a Lake Management Planning Study for 11 lakes. Princeton Hydro authored the scopes of work for these projects.

To learn more about Princeton Hydro’s natural resource management services, click here. And, click here to learn more about Highlands Council and available grant funding.

[post_title] => Township of Byram Receives Highlands Council Grant Funding for a Lake and Watershed Management Program [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => township-of-byram [to_ping] => [pinged] => [post_modified] => 2022-08-29 18:46:33 [post_modified_gmt] => 2022-08-29 18:46:33 [post_content_filtered] => [post_parent] => 0 [guid] => https://princetonhydro.com/?p=11220 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [6] => WP_Post Object ( [ID] => 11034 [post_author] => 1 [post_date] => 2022-07-01 06:24:42 [post_date_gmt] => 2022-07-01 06:24:42 [post_content] => July is Lakes Appreciation Month! This national initiative was started in 1998 by the North American Lake Management Society (NALMS) as a way to draw attention to the value and importance of lakes and reservoirs, and encourage people to take action in appreciating and protecting our precious water resources. We’ve put together four tips to help you celebrate:

1. Love Your Lake.

Whether you enjoy birding, photography, boating, paddle boarding or simply taking a leisurely stroll in nature, one of the best ways to celebrate your local lake is getting outside to enjoy your favorite lake-related outdoor activities. Check your local lake association calendar for upcoming community events. Invite a friend or family member out for a day of environmentally-friendly fishing. If you're in Pennsylvania, consider joining PALMS at Blue Marsh Lake for a community full moon paddle-out. If you photograph your adventures, share them on social media using the hashtag: #LakesAppreciation, and hopefully you’ll inspire others to show their lake appreciation too.


2. Join the Secchi Dip-In.

The “Secchi Dip-In” is an annual citizen science event where lake-goers and associations across North America use a simple Secchi disk to monitor the transparency or turbidity of their local waterway. Created and managed by NALMS, volunteers have been submitting information during the annual Dip-In since 1994. NALMS invites you to join this international effort to track changes in water quality! Get all the Dip-In details here. And, for detailed instructions for how to use a Secchi disk, check out this NALMS student video.


3. Enter the NALMS Short Clips Video Contest.

NALMS is hosting a Lakes Appreciation Short Clips Video Contest. Create a 140-second video that best illustrates your love for lakes and inspires others to appreciate lakes too! Submit your clip to the NALMS Twitter feed (@NALMStweets) using the hashtag: #LakesAppreciation. A Twitter poll of the general public will be used to determine the winner. First place gets a $50 Visa gift card. The submission deadline is July 31, polling will run through the month of August, and the winner will be announced August 31, 2022. Click here for more details. And, to see the winning entries from a previous Lakes Appreciation photo contest, go here.


4. Learn About Lakes.

[embed]https://www.youtube.com/watch?v=xsJBSNZ26no[/embed]

You can support your favorite lake by educating yourself about how to monitor the condition of the lake, identify harmful algal blooms (HABs) and invasive species, and engage in activities that protect water quality and improve fish and wildlife habitat. Consider becoming a member of or volunteering for your lake or watershed association. Learn how to track and report HABs. And, take part in educational opportunities to learn about lake management, like our recent live Q&A session with Princeton Hydro's resident lake experts Dr. Fred Lubnow and Chris L. Mikolajczyk, CLM.


To learn about NALMS and get more ideas on how to celebrate your local lakes, click here.

If you’re interested in learning more about Princeton Hydro’s broad range of award-winning lake management services, click here. And, if you're interested in reading about our work to reduce HABs and increase biodiversity in Lake Latonka, click here.

[post_title] => July is Lakes Appreciation Month: Four Tips to Help You Celebrate [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => lakes-appreciation-month-2022 [to_ping] => [pinged] => [post_modified] => 2022-07-12 15:57:56 [post_modified_gmt] => 2022-07-12 15:57:56 [post_content_filtered] => [post_parent] => 0 [guid] => https://princetonhydro.com/?p=11034 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [7] => WP_Post Object ( [ID] => 10753 [post_author] => 1 [post_date] => 2022-05-11 13:31:42 [post_date_gmt] => 2022-05-11 13:31:42 [post_content] =>

The New York State Federation of Lake Associations (NYSFOLA) held its Annual Conference in Lake George, NY on April 29th and 30th.

This year’s conference, which was titled, “Maximizing Your Lake Data,” featured a diverse exhibitor hall, networking events, a silent auction, a student poster session and a variety of presentations and workshops. Princeton Hydro, a proud sponsor of the conference, led four presentations and exhibited.

[gallery link="none" ids="10811,10812,10810"]  

Below, we provide more information and a free download of each presentation:

Presentation Title: The Value of Developing a Long Term Database for Lakes and their Management Presentation By:  Senior Technical Director of Ecological Services, Dr. Fred Lubnow Learn more and download the presentation.  

Presentation Title: Assessing Trends and Quantifying the Internal Phosphorous Load of Lake Hopatcong Utilizing a 30-Year Continuous Database

Presentation By: Princeton Hydro Environmental Scientist Pat Rose, Senior Aquatic Ecologist Paul Cooper and Senior Technical Director of Ecological Services Dr. Fred Lubnow Learn more and download the presentation.   Presentation Title: CSLAP and Customized Monitoring - How Additional Data is Helping Sleepy Hollow Lake Presentation By: Princeton Hydro Senior Project Manager Chris Mikolajczyk, CLM & Staff Scientist Jesse Smith along with Laurel Wolfe of The Association of Property Owners of Sleepy Hollow Lake Learn more and download the presentation.   Presentation Title: The Importance of Hands-On Field Education and Exposure with Regards to Monitoring Data Presentation By:  Princeton Hydro Senior Project Manager Chris Mikolajczyk, CLM and Dr. Curt Stager of Paul Smiths College Learn more and download the presentation.    

NYSFOLA was founded in 1983 by a coalition of lake associations concerned about water quality, invasive species, and other issues facing New York's lakes. NYSFOLA, which has 200+ members across the state, is the only NY-statewide voice for lakes and lake associations. NYSFOLA is an Affiliate of the North American Lake Management Society, for which Chris Mikolajczyk is the current Board President.

For more information about NYSFOLA and the Annual Conference, click here. To read about some of Princeton Hydro's upcoming events, click here.

[post_title] => FREE DOWNLOADS: New York State Federation of Lake Associations Annual Conference Presentations [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => free-downloads-nysfola-presentations [to_ping] => [pinged] => [post_modified] => 2022-05-11 20:11:31 [post_modified_gmt] => 2022-05-11 20:11:31 [post_content_filtered] => [post_parent] => 0 [guid] => https://princetonhydro.com/?p=10753 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [8] => WP_Post Object ( [ID] => 10283 [post_author] => 1 [post_date] => 2022-03-07 06:12:46 [post_date_gmt] => 2022-03-07 06:12:46 [post_content] =>

Lake Latonka is a 260-acre man-made freshwater lake in Mercer County, Pennsylvania. The lake serves as the centerpiece of the Lake Latonka community, and is used for fishing, boating, swimming, and a variety of recreation activities.

The watershed of Lake Latonka encompasses 8,000+ acres of rural land, which is comprised predominantly by agricultural type land uses (57%) and forest (27%) with low-density residential (12%) occurring along the immediate lake shores. The area is bordered by Ohio to the West and located midway between the cities of Erie and Pittsburgh.

[caption id="attachment_10338" align="aligncenter" width="841"] Photo by Lynne Annis[/caption]  

The Lake, which was formed in 1965, has been studied and managed in some form since its formation with a record of consistent management and study since the mid-1990s. This work has included water quality monitoring, academic study of the sediment transport to the lake, herbicide and algaecide applications, and the development of generalized guidance for lake management. Additionally, some advanced management and restoration activities were implemented, including the installation of a community sewer system and maintenance dredging of the lake's inlet area.

Despite these ongoing efforts, the lake has suffered from water quality impairments primarily due to excessive phosphorus from surrounding agricultural land that flows into the waterbody via stormwater runoff. These nutrients fuel algal growth and contribute to the increased deposition of sediment and nutrients at the lake bottom.

Over time, the increase in biological oxygen demand has led to anoxia (i.e. no oxygen) in the lake’s deep waters, which causes phosphorus to be ‘pumped’ from the sediments during the summer months. This process is termed ‘internal loading’ and leads to an acceleration of lake productivity that has fueled harmful algal blooms (HABs).

Recognizing the importance of the lake within the community, the Water Quality Committee (WQC) of Lake Latonka commissioned Princeton Hydro to perform an in-depth diagnostic/feasibility study and, based on the study's findings, develop a comprehensive Lake Management Plan.

The diagnostic/feasibility study, in accordance with USEPA protocol, also analyzed background data; collected site specific water quality and fishery data; and computed the nutrient and hydrologic load. The study also included trophic calculations, the development of SMART (Specific, Measurable, Achievable, Relevant, and Time-based) goals, and the establishment of site-specific management recommendations.

In order to meet Lake Latonka’s water quality goals most expediently, Princeton Hydro recommended five primary management measures:

  1. Phosphorus Loading Mitigation
  2. Biomanipulation
  3. Management of Submerged Aquatic Vegetation
  4. Waterfowl Management
  5. Regular Water Quality Monitoring and Testing.

Phosphorus Loading Mitigation

Although phosphorus is a nutrient utilized for plant growth, excessive phosphorus in waterbodies has problematic effects in that it speeds up weed production, reduces water quality, and can lead to HABs. One of the most sustainable means of controlling nuisance weed and algae proliferation is to control phosphorus inputs or reduce the availability of phosphorus for biological uptake and assimilation.

For Lake Latonka, Princeton Hydro recommended an alum treatment as a primary method for reducing internal phosphorus loading. Alum (aluminum sulfate) is a commonly used nutrient inactivation product that controls the internal recycling of phosphorus from the sediments of the lake bottom. On contact with water, the alum binds with the phosphorus so it can no longer be used as food by algae. On the bottom of the lake, the alum creates a barrier that prevents the phosphorus from releasing into the lake’s sediments under anoxia.

In addition, recommendations were made to address phosphorous loading from the larger agricultural watershed. These recommendations lead to the formation a Watershed Sub-Committee, which has been monitoring water quality and identifying nutrient-loading "hot spots." As these areas are discovered, the community will work with local stakeholders to recommend watershed best management practices (BMPs) to reduce phosphorus and sediment loading at the source.

Biomanipulation

The diagnostic/feasibility study revealed a major change in Lake Latonka from a previous fishery study conducted in 2016: the establishment of gizzard shad. The gizzard shad, not found in any previous surveys, represented 29% of the total catch in the 2020 survey. These fish can, if present in significant densities, outcompete beneficial fish and aquatic species and alter the zooplankton population, which can lead to water quality impairment, HABs, and cyanobacteria.

Biomanipulation in lake management refers to the deliberate alteration of the lake’s ecosystem by adding or removing species. One of the main recommendations for Lake Latonka is to control the gizzard shad population by stocking the lake with hybrid striped bass (Morone saxatilis x Morone chrysops), which is a cross between striped bass and white bass that are not able to reproduce. The plan includes measures to bolster the walleye, largemouth bass, black crappie, and panfish populations to offer a robust recreational fishery. This "top down" approach to nutrient management serves as a complementary effort to the aforementioned phosphorus loading mitigation activities.

Management of Submerged Aquatic Vegetation

[caption id="attachment_10336" align="alignright" width="273"] Photo by Lynne Annis[/caption]

As phosphorus is reduced and water quality conditions improve, algae will diminish in abundance and water clarity will improve, and the shallow areas of the lake will become excellent habitat for increased growth of submerged aquatic vegetation (SAV).

SAV is a critical component of a healthy lake and important habitat for juvenile fish and invertebrates. Additionally, SAV serves to precipitate suspended solids and assimilates nutrients that may otherwise be taken up by algae for growth. Still, elevated levels of SAV may prove to hinder recreational use of the lake.

The Plan for Lake Latonka recommends regular SAV surveys in order to monitor densities, document species composition, and ensure proper management. As SAV increases, pragmatic, measured management will be recommended to maintain an optimal balance of plant growth while allowing for recreational lake access.

Waterfowl Management

Resident populations of Canada Goose (Branta canadensis) contribute acute sources of nitrogen, phosphorus, and bacteria to lakes via waste products.

Using loading coefficients derived from scientific literature, in combination with Canada geese population surveys, the team determined the approximate phosphorus load being contributed by the resident goose population each year is 88.6 lbs per year.

The Plan recommends a variety of deterrent/harassment actions as permitted through Federal and State agencies in order to minimize the resident population of these waterfowl.

Regular Water Quality Monitoring and Testing

The Management Plan also provided recommendations for routine water quality monitoring related to nutrient concentrations, algal types and densities, and safety for lake users. Lake monitoring helps track changes in water quality over time and is utilized to objectively assess the impacts of prescribed management measures. In this manner, monitoring can help to address potential issues before they become large problems.

Specifically, Princeton Hydro recommended growing season monitoring, which entails monitoring for five months each year, in order to build a lake water quality database for nutrients, in-situ measures, and plankton. Additionally, the team recommends robust contact testing at the beach and open water for E. coli sampling, fecal coliform, and cyanotoxins.

[caption id="attachment_10339" align="aligncenter" width="793"] Photo by Jim Janzig[/caption]   Simply put, there is more to lake management than weed and algae treatments alone. A customized plan acts as a “blueprint” that guides proactive, long-term lake management and care while remaining flexible enough to adapt to new challenges that may arise. Our scientists, engineers, and Certified Lake Managers can assess the status of a waterbody and provide a holistic management plan that is based on the waterbody's unique physical, hydrologic, chemical, and biological attributes. A management plan identifies water quality issues, determines the causes of those issues, and provides the guidance needed to correct the issues. The results are far more environmentally sustainable than simple (and often unnecessary) reactive weed and algae treatments. During the Pennsylvania Lake Management Society Annual Conference held on March 2 & 3, Senior Aquatic Ecologist Michael Hartshorne gave a presentation about the the creation and implementation of the Lake Latonka Management Plan: If you're interested in reading more on the topic of lake management, click here: [visual-link-preview encoded="eyJ0eXBlIjoiaW50ZXJuYWwiLCJwb3N0Ijo0ODY0LCJwb3N0X2xhYmVsIjoiQXJ0aWNsZSA0ODY0IC0gRmxvYXRpbmcgV2V0bGFuZCBJc2xhbmRzOiBBIFN1c3RhaW5hYmxlIFNvbHV0aW9uIGZvciBMYWtlIE1hbmFnZW1lbnQiLCJ1cmwiOiIiLCJpbWFnZV9pZCI6MCwiaW1hZ2VfdXJsIjoiIiwidGl0bGUiOiJGbG9hdGluZyBXZXRsYW5kIElzbGFuZHM6IEEgU3VzdGFpbmFibGUgU29sdXRpb24gZm9yIExha2UgTWFuYWdlbWVudCIsInN1bW1hcnkiOiJMb29raW5nIGZvciBhIHVuaXF1ZSBhbmQgY3JlYXRpdmUgd2F5IHRvIG1hbmFnZSBudXRyaWVudCBydW5vZmYgaW4gZnJlc2h3YXRlciBsYWtlcz8gSW5zdGFsbGluZ8KgRmxvYXRpbmcgV2V0bGFuZCBJc2xhbmRzwqAoRldJKSBpcyBhIGxvdy1jb3N0LCBlZmZlY3RpdmUgZ3JlZW4gaW5mcmFzdHJ1Y3R1cmUgc29sdXRpb24gdXNlZCB0byBtaXRpZ2F0ZSBwaG9zcG9ydXMgYW5kIG5pdHJvZ2VuIHN0b3Jtd2F0ZXIgcG9sbHV0aW9uIG9mdGVuIGVtYW5hdGluZyBmcm9tIGhpZ2hseSBkZXZlbG9wZWQgY29tbXVuaXRpZXMgYW5kL29yIGFyZ3JpY3VsdHVyYWwgbGFuZHMuIEZXSXMgYXJlIGRlc2lnbmVkIHRvIG1pbWljIG5hdHVyYWwgd2V0bGFuZHMgaW4gYSBzdXN0YWluYWJsZSwgZWZmaWNpZW50LCBhbmQgcG93ZXJmdWwgd2F5Li4uLiIsInRlbXBsYXRlIjoic2ltcGxlIn0="] [post_title] => Reducing HABs & Increasing Biodiversity in Lake Latonka [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => lake-latonka-management-plan [to_ping] => [pinged] => [post_modified] => 2024-01-18 05:32:48 [post_modified_gmt] => 2024-01-18 05:32:48 [post_content_filtered] => [post_parent] => 0 [guid] => https://princetonhydro.com/?p=10283 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [9] => WP_Post Object ( [ID] => 9485 [post_author] => 1 [post_date] => 2021-11-10 20:22:10 [post_date_gmt] => 2021-11-10 20:22:10 [post_content] =>

This article was originally published in the Musconetcong Watershed Association's "Instream Update" eNewsletter.

The Musconetcong River begins at New Jersey’s largest lake, Lake Hopatcong, and flows southwest for 42 miles before emptying into the Delaware River. At the headwaters in Lake Hopatcong, the community has been battling with harmful algal blooms (HABs). HABs can cause significant water quality issues in lakes and ponds, often forming a visible and sometimes odorous scum on the surface of the water. Blooms are primarily caused by warmer temperatures and increased amounts of nutrients (i.e., nitrogen and phosphorus) from stormwater runoff.

In 2019, the local community suffered immensely from HABs, which was the most prolific bloom the lake has experienced over the last two decades, resulting in public health advisories to be issued for recreation on the lake. Because Lake Hopatcong is a popular summer vacation destination, this outbreak unfortunately stunted the local economy, restricted recreational usage of the lake, and impacted fish and wildlife.

The Lake Hopatcong Commission and Lake Hopatcong Foundation, in partnership with municipalities, counties, the state, local groups like the Musconetcong Watershed Association, and Princeton Hydro, have been working to improve water quality for years by prioritizing stormwater mitigation and septic management policies within the watershed.  So why was the summer of 2019 so intense?

Analysis of 30 Years Water Quality Data 

Princeton Hydro scientists have been collecting water quality data in Lake Hopatcong for 30 years. This includes dissolved oxygen, pH, and temperature, as well as concentrations of total suspended solids, total phosphorus, nitrate‐N, ammonia‐N and chlorophyll a, and various biological factors. There are not many lakes in New Jersey that have such a robust and consistent public dataset, which presents a rare opportunity to study long-term trends. We dove a little deeper into this information to see what many have caused the 2019 blooms. 

We analyzed a statistically significant dataset of surface water temperatures and found that average July surface temperatures in Lake Hopatcong have been steadily increasing over time.  We also have 20+ years of observational data that documents an increase in frequency, duration, and magnitude of HABs over the same time period. In fact, HABs have recently persisted all the way into the winter months, enabling “green ice” to form on the lake surface, as observed in December 2020.

In summer of 2019, the Lake Hopatcong region was hit with a dramatic amount of rainfall. These weather patterns resulted in some of the highest early summer total phosphorus (TP) concentrations in Lake Hopatcong in over 20 years. The mean June TP concentration was 0.043 mg/L; the last time it exceeded 0.04  mg/L was in 1999. In order to have acceptable water quality conditions in the lake, the mean TP concentrations should be at 0.03 mg/L or lower.

It has been well documented that phosphorus is the primary limiting nutrient in Lake Hopatcong. Meaning, a slight increase in phosphorus can result in a substantial increase in algal and/or aquatic plant biomass. The water quality analysis identified the cause for the HABs (the high frequency of storms in June 2019 transporting nutrients, in particular phosphorus, to the lake) and identified why they persisted over the growing season (internal phosphorus loading).

Climate Change as a Driver for HABs

Climate change is leading to more frequent, more intense rainstorms that transport run-off pollutants into waterways, coupled with hotter days to warm the water. The latest Intergovernmental Panel on Climate Change (IPCC) report, “AR6 Climate Change 2021: The Physical Science Basis,” confirmed that human influence has warmed the atmosphere, ocean, and land, and that this human-induced climate change is already affecting many weather and climate extremes in every region across the globe.  It predicts, “increases in the frequency and intensity of hot extremes, marine heatwaves, and heavy precipitation, agricultural and  ecological droughts in some regions, and proportion of intense tropical cyclones, as well as reductions in Arctic sea ice, snow cover and permafrost.” In the Mid-Atlantic region of the U.S., most climate models indicate that the landscape will become warmer and wetter.

Looking at our observations and 30-year dataset for Lake Hopatcong, our preliminary analysis shows that climate change — increased precipitation (which flushed the phosphorus into the lake) followed by intense heat to warm surface water temperatures — was a significant variable that led to the devastating HABs at Lake Hopatcong in 2019. 

Other communities have experienced similar trends too. According to the U.S. Environmental Protection Agency, HABs have now been observed in all 50 states, ranging from large freshwater lakes, to smaller inland lakes, rivers, and reservoirs. Our neighbors in Upstate New York suffered from 1,000+ HAB occurrences during the 2019 season, including a HAB that covered 600+ square miles of Lake Erie causing beach closures and fish kills.

A study recently published in Nature journal reviewed three decades of high-resolution satellite data for 71 large lakes globally and determined that “peak summertime bloom intensity has increased in most (68%) of the lakes studied, revealing a global exacerbation of bloom conditions.” The study called for water quality management efforts to better account for the interactions between climate change and local hydrological conditions.

We are witnessing these impacts firsthand at Lake Hopatcong and within the Musconetcong River Watershed.  And, according to the IPCC report, these climate change-induced instances (i.e. intense rainfall followed by intense heat) may become even more frequent. To further understand the connection between climate change and HABs at Lake Hopatcong, Princeton Hydro is conducting a more rigorous study that includes more distinct data. We hope this will provide some insight on how to manage expected climate impacts in lakes and watersheds.

Taking Action in the Musconetcong River Watershed

While the IPCC report conclusions may be depressing, there is still much we can do at both a global and local level to limit future climate change. The key here is limiting cumulative CO2 (carbon dioxide) and CH4 (methane) emissions and quickly reaching (at least) net zero CO2 emissions. And, to specifically reduce occurrences of HABs While the IPCC report conclusions may be depressing, there is still much we can do at both a global and local level to limit future climate change. The key here is globally limiting cumulative CO2 (carbon dioxide) and CH4 (methane) emissions and quickly reaching (at least) net zero CO2 emissions. And, to specifically reduce occurrences of HABs fueled by climate change in Lake Hopatcong, eliminating sources of phosphorus from entering the lake is critical. So what can we do in the Musconetcong River Watershed?

In 2019, NJ Department of Environmental Protection committed $13.5 million via their Water Quality Restoration Grant programs for local projects that aim to improve water quality in New Jersey’s lakes and ponds. The Lake Hopatcong Commission landed a $500k grant via the program to evaluate and implement a variety of innovative, nearshore projects at Lake Hopatcong. Projects included performing an alternative non-copper-based algaecide treatment and one of the largest nutrient PhosLock treatments in the Northeast on the lake as well as the installation of Biochar bags, near-shore aeration systems, and floating wetland islands. 

This could not be possible without the help of all project partners including Lake Hopatcong Foundation, Morris County, Sussex County, Jefferson Township, Borough of Hopatcong, Borough of Mt. Arlington, and Roxbury Township, who collectively contributed over $330k in match support.  The Lake Hopatcong Commission also landed a subsequent $206,000 grant via NJDEP’s 319 program a few months later, with $44,000 in match support from the four municipalities and Lake Hopatcong Foundation and Commission, for the design and implementation of four in-lake/watershed projects to protect Lake Hopatcong's water quality.

[gallery link="none" ids="9848,9870,9148"]

 

The results of these projects were significant. Over the last two years, the mean June TP concentrations were lower than 2019 (0.033 mg/L in 2020 and 0.020 mg/L in 2021). These in-lake and watershed efforts have had a positive impact on reducing available phosphorus.

Just this month, Lake Hopatcong Commission landed another $480k from a National Fish and Wildlife Foundation Delaware Watershed Conservation Fund grant, which was backed with $489k more in match support from Lake Hopatcong Commission, Lake Hopatcong Foundation, Musconetcong Watershed Association, NJDEP, Borough of Hopatcong, Township of Roxbury, Mount Arlington Borough, Morris and Sussex Counties, Lake Hopatcong Historical Museum, Rutgers University, NJ Highlands Council, and Princeton Hydro.  The project team will design and implement three streambank stabilization projects in the watershed, which were identified as priority projects in the 2021 Upper Musconetcong River Watershed Implementation Plan. 

 

“Managing loads of phosphorous in watersheds is even more important as the East Coast becomes increasingly warmer and wetter thanks to climate change. Climate change will likely need to be dealt with on a national and international scale. But local communities, groups, and individuals can have a real impact in reducing phosphorous levels in local waters.”

Dr. Fred Lubnow, Director of Aquatics for Princeton Hydro

To read the full article in the Musconetcong Watershed Association's "Instream Update" eNewsletter, click here.


The Musconetcong Watershed Association is an independent, non-profit organization dedicated to protecting and improving the quality of the Musconetcong River and its watershed, including its natural and cultural resources. Since 2003, Princeton Hydro has been working with MWA in the areas of river restoration, dam removal, and engineering consulting. Click here to read our Client Spotlight blog featuring MWA’s Executive Director Cindy Joerger and Communications Coordinator Karen Doerfer.

 

 

 

 

[post_title] => Are Harmful Algal Blooms in Lake Hopatcong Fueled by Climate Change? [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => habs-fueled-by-climate-change [to_ping] => [pinged] => [post_modified] => 2022-09-28 12:57:14 [post_modified_gmt] => 2022-09-28 12:57:14 [post_content_filtered] => [post_parent] => 0 [guid] => https://princetonhydro.com/?p=9485 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [10] => WP_Post Object ( [ID] => 9539 [post_author] => 1 [post_date] => 2021-09-23 06:04:00 [post_date_gmt] => 2021-09-23 06:04:00 [post_content] =>

Welcome to another edition our Client Spotlight series! Each blog provides a peek into our partnership with a particular client. We value our client relationships and pride ourselves on forming strong ties with organizations that share our values of creating a better future for people and our planet. 

Meet Medford Lakes Colony

Medford Lakes Colony is a not-for-profit organization that organizes social, community, and recreational activities for the Town of Medford Lakes, New Jersey. The Colony grew out of a resort development in the early 1920’s in the heart of New Jersey’s Pine Barrens on the edge of the Pinelands National Reserve. The area was first settled hundreds of years ago by the Lenni-Lenape tribe of Native Americans.

Today the Colony lakes are still dotted by log cabin homes built according to the original plan for the community nearly a century ago.

For this Client Spotlight, we spoke to Medford Lakes Colony’s Lake Restoration Chair, Jim Palmer

Q: What makes your organization unique?

The Medford Lakes Colony is a nearly 100-year-old, private, not-for-profit organization. Our organization is actually older than the municipality in which we reside. We “own” the 21 lakes in our town. We are nearly an all-volunteer organization with only an Office Manager and a Maintenance Manager on our payroll. Everything else is done by volunteers.

Q: What does your organization value?

Everyone in our town will agree with the following statement: The most important asset in our town is our lakes. And maintaining the water quality in those lakes is a high-value responsibility. But with that said, we are a town in the New Jersey Pinelands, with all our lakes surrounded by trees. That presents us with challenges every year.

Sioux Levee

Q: How long have you been working with Princeton Hydro? 

The Colony started working with Princeton Hydro back in the late 1990s. I have personally been working with Princeton Hydro for around 10 years. I have partnered with nearly a dozen Princeton Hydro people, from Princeton Hydro President Geoffrey Goll, PE down to many individual Project Engineers. 

Q: What types of services have we provided to your organization?

Princeton Hydro has provided recurring dam inspection services, as well as design, permitting, and oversight work for both planned and emergency dam repair and maintenance work. There are multiple dams for which Princeton Hydro completes the NJDEP Dam Safety inspections. There have been multiple large spillway repair projects where Princeton Hydro has been the Engineer-of-Record, completing the official designs, getting Dam Safety approval, and doing the full project management. The Princeton Hydro engineers and project managers have always been great partners on these projects.

Q: Do you have a favorite or most memorable project we’ve worked on together?

Three years ago we had an emergency situation at our Wauwaushkashe Dam. Over the previous several years, unknown to us, the culvert pipe was getting increasingly clogged with organic material. Then, one Sunday, it became completely plugged. 

Ballinger Lake Dam Restoration

The upstream lake filled till the water was a foot above the top of the outbound spillway and was threatening to overtop the dam. Through the network of volunteers we have in Medford Lakes, we were able to get a contractor out within 24 hours to clear the plug. Princeton Hydro was brought into the project because the full repair was going to require engineering design, project plan development, submission to Dam Safety, and ongoing oversight to ensure the repair was completed correctly. Princeton Hydro managed that full process with a very quick turnaround. Who would have thought that pine needles could plug a 30-inch corrugated culvert pipe?

Q: What are some exciting things your organization is working on right now?

In this line of work, around managing dams and water quality, we don’t like “exciting.” Waking up one day to a plugged culvert pipe and a lake about to overtop a dam is the kind of “excitement” we would prefer not to have! 

We are moving along with a program to install aeration bubblers in most of our lakes. We have them in about one-third of the lakes completed right now. Subject to budget constraints, we should have them in all relevant lakes within the next two years. We are also in the first year of a small longitudinal data collection project. Last fall, the Colony purchased a YSI Proline data logger which allows us to collect temperature and dissolved oxygen (DO) levels. I have partnered with another volunteer, and we have collected data from nearly a dozen lakes on multiple dates in May, June, July, and August. We have defined locations in each lake and we gather data in one-foot increments in the entire water column at each location. We are able to see water stratification developing in some of the lakes as the summer moves on and temperatures rise. I have identified a couple locations where we have underground springs flowing into specific lakes. This is just the start of a broader data collection and the analysis program the Colony wants to implement to understand the long-term dynamics of this watershed. 


Click here to read the previous edition of our Client Spotlight blog series, which features The Nature Conservancy in New Jersey:

[post_title] => Client Spotlight: Medford Lakes Colony [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => client-spotlight-medford-lakes-colony [to_ping] => [pinged] => [post_modified] => 2021-09-30 13:53:44 [post_modified_gmt] => 2021-09-30 13:53:44 [post_content_filtered] => [post_parent] => 0 [guid] => https://princetonhydro.com/?p=9539 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) ) [post_count] => 11 [current_post] => -1 [before_loop] => 1 [in_the_loop] => [post] => WP_Post Object ( [ID] => 12877 [post_author] => 1 [post_date] => 2023-07-01 05:00:41 [post_date_gmt] => 2023-07-01 05:00:41 [post_content] =>

July is Lakes Appreciation Month! This national initiative was started in 1998 by the North American Lake Management Society (NALMS) with the goal of illuminating the value and importance of lakes and reservoirs, and encouraging people to take action in appreciating and protecting our precious water resources.

We’ve put together five tips to help you celebrate:

1. Embrace your Lake.

"Aeration System" by Chris Mikolajczyk, Photo Contest Submission  

Discover, Capture, and Share the Joy of Lakes Appreciation! Whether you're a birding enthusiast, a photography pro, a boating lover, a paddle-boarding champ, or someone who enjoys leisurely strolls, it's time get lakeside to enjoy your favorite activities. Stay in the loop with your local lake association's calendar and discover fun community events. If you're in the Berks County, Pennsylvania area, join PALMS on July 14 at Blue Marsh Lake for their community sunset paddle and float event. Capture your lake love and spread the joy - share your adventure photos on social media using #LakesAppreciation and inspire others to embrace lake appreciation too! Whatever fun adventure you choose, always remember to respect our natural landscape and treat it with care. Click here for a few tips to help you enjoy your Lakes Appreciation Month outings responsibly and sustainably. 


2. Take the Family BINGO Challenge.

Bingo Card designed by NALMS to celebrate Lakes Appreciation Month

To encourage everyone in the family to get outside together and enjoy the lakes that surround them, NALMS is  created a family BINGO Challenge game. The BINGO board features a variety of activities, like "Have a picnic at your favorite lake," "Go wildlife or bird watching," and "Pick up trash around your favorite lake." As you complete each activity,  you mark the square with an X. Once you complete all activities in a row or diagonally, you get “BINGO." Fill the card completely for maximum lake appreciation! This simple game is designed to stir creativity, curiosity and action, and is intended to act as  a reminder for us all to pause and appreciate something we often take for granted. Play it, share it, and enjoy!


3. Support Your Local Lake Association.

[gallery link="none" ids="12891,9124,8942"]

In celebration of Lakes Appreciation Month, lake associations nationwide are hosting family-fun events, volunteer opportunities and community gatherings. On July 14, Pennsylvania Lake Management Society invites you to join them at Blue Marsh Lake for a community sunset paddle/float. On July 20 at the Stone Water lakefront restaurant, Lake Hopatcong Foundation is hosting its 11th Anniversary Gala & Auction, which aims to bring together community members who are passionate about Lake Hopatcong, to have fun and raise funds critically needed to protect the environment and enhance the experience on and around Lake Hopatcong. Organize a community trash pick-up day at a nearby lake or get in touch with your local lake association to find out how you can get involved.


4. Join the National Secchi Dip-In.

The “Secchi Dip-In” is an annual citizen science event where lake-goers and associations across North America use a simple Secchi disk to monitor the transparency or turbidity of their local waterway. Created and managed by NALMS, volunteers have been submitting information during the annual Dip-In since 1994. NALMS invites you to join this international effort to track changes in water quality! Get all the Dip-In details here. And, for detailed instructions for how to use a Secchi disk, check out our tutorial.


5. Monitor Your Lake & Report HABs.

[gallery link="none" ids="11570,11578,11568"]

In addition to the Secchi Dip-In, you can support your favorite lake by identifying and reporting harmful algal blooms (HABs) and invasive species. And, the bloomWatch App is a great educational resource and tracking tool! By using the app on your smartphone, you can contribute to a nationwide community science program dedicated to tracking and documenting the occurrence of potential HABs. Click here for a brief video on how to use the bloomWatch app. And, for more information about HABs, click here to view a presentation given by Dr. Fred Lubnow at the NALMS 42nd Annual International Symposium.


Click here to learn about NALMS and get more ideas on how to celebrate your local lakes.

Princeton Hydro provides a broad range of award-winning lake management services. Click here to read about our work to reduce HABs and increase biodiversity in Lake Latonka, a 260-acre man-made freshwater lake in Mercer County, Pennsylvania.

[post_title] => July is #LakesAppreciation Month: 5 Tips to Help You Celebrate [post_excerpt] => [post_status] => publish [comment_status] => open [ping_status] => open [post_password] => [post_name] => lakes-appreciation-2023 [to_ping] => [pinged] => [post_modified] => 2024-01-18 02:49:13 [post_modified_gmt] => 2024-01-18 02:49:13 [post_content_filtered] => [post_parent] => 0 [guid] => https://princetonhydro.com/?p=12877 [menu_order] => 0 [post_type] => post [post_mime_type] => [comment_count] => 0 [filter] => raw ) [comment_count] => 0 [current_comment] => -1 [found_posts] => 201 [max_num_pages] => 19 [max_num_comment_pages] => 0 [is_single] => [is_preview] => [is_page] => [is_archive] => [is_date] => [is_year] => [is_month] => [is_day] => [is_time] => [is_author] => [is_category] => [is_tag] => [is_tax] => [is_search] => [is_feed] => [is_comment_feed] => [is_trackback] => [is_home] => 1 [is_privacy_policy] => [is_404] => [is_embed] => [is_paged] => [is_admin] => [is_attachment] => [is_singular] => [is_robots] => [is_favicon] => [is_posts_page] => 1 [is_post_type_archive] => [query_vars_hash:WP_Query:private] => 8eba863851f8ba5dab8414f615166cbd [query_vars_changed:WP_Query:private] => 1 [thumbnails_cached] => [allow_query_attachment_by_filename:protected] => [stopwords:WP_Query:private] => Array ( [0] => about [1] => an [2] => are [3] => as [4] => at [5] => be [6] => by [7] => com [8] => for [9] => from [10] => how [11] => in [12] => is [13] => it [14] => of [15] => on [16] => or [17] => that [18] => the [19] => this [20] => to [21] => was [22] => what [23] => when [24] => where [25] => who [26] => will [27] => with [28] => www ) [compat_fields:WP_Query:private] => Array ( [0] => query_vars_hash [1] => query_vars_changed ) [compat_methods:WP_Query:private] => Array ( [0] => init_query_flags [1] => parse_tax_query ) )

Blog

archive
 
Topics
Select Topics
Posted on July 01, 2023

July is #LakesAppreciation Month: 5 Tips to Help You Celebrate

Popular Topics

Company News

Engineering

Environmental Action

Environmental Services

Flood Mitigation

Invasive Species Management

Lake and Pond Management

Natural Resource Management

Stormwater Management

Stream Restoration